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ABSTRACT Many unfortunate victims in road traffic crashes do not receive ideal treatment because their
injury severity is not understood at an early stage. Swift crash severity prediction enables trauma and
emergency centers to estimate the potential damage resulting from a road traffic crash and accordingly
dispatch the proper emergency units to provide appropriate emergency treatment. A two-layer ensemble
machine learning model is proposed in this study to predict road traffic crash severity. The first layer
integrates four base machine learning models: k-nearest neighbor, decision tree, adaptive boosting, and
support vector machine; the second layer classifies the crash severity based on the feedforward neural
network model. The models are developed using road traffic crash data of road intersections over 6 years
(2011–2016) obtained fromGreat Britain’s Department of Transport online database. Only the crash features
that can be instantaneously and easily obtained are used as an input. To simplify the two-layer ensemble
model, principal component analysis technique is used for dimensionality reduction in the second layer of
the model. The performance of the two-layer ensemble model is compared with five base models: k-nearest
neighbor, decision tree, adaptive boosting, support vector machine, and feedforward neural network. The
prediction results reveal that the two-layer ensemble model outperforms the five base classification models
based on two performance indicators: testing accuracy and F1 score. The transferability of the developed
model is tested using the 3-year crash dataset for Canada obtained from the National Crash Database Online.
The outcome indicates that the two-layer ensemble model shows the best performance for the Canadian
dataset also. The proposed two-layer ensemble model would be beneficial in predicting crash severity
with high accuracy based on limited initial crash information obtained from the crash location. Using this
information, trauma centers would be able to prepare for appropriate and prompt medical treatment.

INDEX TERMS Emergency treatment, machine learning, principal component analysis, road intersections,
and two-layer ensemble model.

I. INTRODUCTION
Road traffic crashes are considered a major threat around the
world as they result in fatalities and injuries, which lead to
economic and societal losses. Approximately 1.25 million
people die annually in leading to an annual economic loss
of 260 billion dollars, while non-fatal crashes affect no fewer
than 20–50 million people per year, as reported by World
Health Organization (WHO) [1]. Although road intersections
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account for a very small proportion of road infrastructure,
a high proportion of traffic crashes occur at road intersections
in urban areas [2]. Many unfortunate victims in traffic crashes
do not receive ideal treatment because their injury severity
is not understood at an early stage. Significant attention is
required to minimize the severity of collisions.

Since the severity of vehicular collisions is random, tradi-
tional parametric techniques such as logit and probit models
have been widely used to predict crash severity. However,
these parametric techniques have shortcomings. These tech-
niques require a predefined mathematical form; the presence
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of outliers and missing values in the dataset negatively affect
the outcome of the predictionmodel. In contrast to parametric
techniques, machine learning (ML) techniques can manage
outliers and missing values in the dataset. Recently, several
ML techniques have been employed to extract useful infor-
mation from large traffic crash datasets for different road
networks.

Crash severity models can predict the expected severity
of a crash, which can help trauma centers to estimate the
potential impacts and provide appropriate and prompt med-
ical treatment. This is especially important when crashes
occur in remote areas and when several crashes happen in
proximity. Swift severity prediction enables trauma centers
to dispatch the properly equipped emergency vehicles to
the crashes and subsequently direct them to the hospitals or
emergency centers capable of handling the patients efficiently
and promptly. A previous study sought to predict on-scene
crash severity for occupants using the conventional regression
approach. However, this study considered multiple features
that are not readily available from crash sites [3].

Our main objective in this research is to aid trauma
and emergency centers in proactively managing emergen-
cies based on limited initial crash information. This initial
information could be conveyed to emergency centers through
on-road CCTV or by an emergency phone call at the crash
location. Using this information, trauma centers would be
able to predict the severity of injuries, dispatch an appropriate
emergency unit, and prepare accordingly for prompt medical
treatment. None of the reviewed research has such charac-
teristics and ability. Our contribution through this paper is
the introduction of a two-layer ensemble ML model that
can predict crash severity with high accuracy based on crash
features that can be obtained quickly and easily.

II. LITERATURE REVIEW
The importance of traffic safety studies is highlighted by
significant economic and societal losses, including unneces-
sary delays for road users, property damage, and health costs.
Previous studies on traffic safety have mainly focused on two
main aspects: prediction of road traffic collision severity and
identification of significant factors affecting road traffic col-
lision severity. Statistical techniques have traditionally been
used for modeling crash severity. The most widely used tech-
niques are the ordered probit (OP) model [4]–[7], the binary
logit (BL) model [8]–[10], and the multinomial logit (MNL)
model [11]. These statistical models have a clear mathemat-
ical relationship between independent and dependent vari-
ables, so the output is easy to interpret. These models have
a few limitations; the first limitation is the assumption about
data distribution, and the second limitation is an assumption
about the linear relationship between predictor variables and
the dependent variable. Incorrect factor estimates are pro-
duced if any of these assumptions are violated [12]–[14].
To overcome the shortcomings of statistical methods, many
ML techniques have been employed, which do not assume
any underlying relationship between dependent and predictor

variables [15]–[20]. In this section, studies relating to severity
prediction are presented.

Many studies have compared parametric and non-
parametric techniques for predicting crash severity. One study
was conducted to predict and compare road traffic collision
severity using machine learning and statistical techniques.
The two statistical techniques employed for the severity
prediction were the OP and MNL models, while the four
machine learning techniques were the k-nearest neighbor
(KNN), decision tree (DT), random forest (RF), and support
vector machine (SVM). The study used road traffic colli-
sion data for Florida. The study concluded that the machine
learning techniques, while they suffered from over-fitting
issues, outperformed the classical statistical techniques in
terms of prediction accuracy. Among these six techniques,
RF showed the highest overall prediction accuracy while
OP had the lowest accuracy [21]. Another study modeled
and compared crash severity using the MNL, mixed multi-
nomial logit (MMNL), and SVM models using rear-end
crash data for California. The study found that SVM outper-
formed other models in terms of prediction accuracy [22].
Singh et al. [23]modeled the traffic crash severity usingMNL
and two non-parametric techniques – RF and DT – for a
dataset in Haryana, India. To balance the crashes by severity
level, synthetic minority oversampling and randomized class
balancing techniques were used. The RF model performed
better than the other two models for classifying crash severity
levels.

Decision trees and RFs are widely used as classifiers.
In one study, J48DT, RF, instance-based learningwith param-
eter k (IBK), and MNL models were employed for motor-
cycle crash severity prediction. Five-year motorcycle crash
data with four severity levels was collected from the road
traffic collision database in Ghana. The study revealed that
ML techniques outperform statistical techniques in terms of
accuracy and efficiency. Location type, collision type, day
and week of the crash, road surface condition, and shoul-
der condition were some of the factors that determined the
motorcycle crash severity [24]. Decision trees (J48, ID3, and
CART) and naïve Bayes algorithms were employed using the
WEKA software tool for predicting crash severity. The J48
decision tree algorithm outperformed the other data mining
classification techniques in terms of accuracy [25]. Wang and
Kim [26] compared discrete models and tree-based models
for predicting crash severity using the data for Maryland
State for 2017. The MNL model belonging to the discrete
models’ class and the RF model belonging to the tree-based
models’ class were employed. The RF model outperformed
the MNL model in terms of accuracy. Similarly, in another
study, multilayer perceptron (MLP), rule induction (PART),
and simple cart models were used for predicting motorcycle
crash severity in Ghana. The study revealed that the testing
accuracy was highest for the simple cart model (73.85%)
followed by PART (73.45%) and MLP (72.16%). The crash
severity was affected by location type, crash type, crash time,
settlement type [27].
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Similarly, artificial neural networks (ANN) have also been
employed for predicting crash severity. One study used ANN
models to predict the severity of alcohol-related vehicular
crashes using the data of North Carolina. The validation accu-
racies for three-class neural networks and binary class neural
networks were found to be 65.33% and 69.65% respectively.
The study revealed that the main factor contributing to fatal-
ities and injuries in crashes was vehicles overturning, while
the use of seat belts and deployment of airbags influenced
crashes that did not cause injuries [28]. Arhin and Gatiba [29]
developed around 25 ANN models to predict the severity
of road traffic collisions at unsignalized intersections in the
USA. The study used 3301 crash records of angle crashes.
The architecture of the best ANN model had five, ten, and
five neurons in three hidden layers respectively, giving an
accuracy of 85.62%. In another study, a novel rule-based
genetic algorithm (GA) was proposed and compared to ANN,
SVM, and DT using three years’ (2011–2013) worth of
data for Iran’s Tehran province. The study revealed that GA
outperformed the other three classification models with an
accuracy of 87% [30].

Ensemble models, like RF and adaptive boosting
(AdaBoost), are also used to model crash severity. In one
study, a two-layer stacking framework was employed to
predict crash severity. The stacking model is an ensemble
technique consisting of two layers. The first layer integrates
three basic classification models – RF, AdaBoost, and gradi-
ent boosting decision tree (GBDT); the second layer classifies
the injury severity using the logistic regression (LR) model.
When compared with SVM, the stacking model, neural net-
work, and RF showed better classification performance in
terms of accuracy and recall [31]. Jiang et al. [32] modeled
highly unbalanced crash severity data using the ensemble
modeling technique and global sensitivity analysis. This
study aimed to efficiently model each severity level as most
existing methods favor the crash categories with maximum
observations. Three ensemble models – RF, AdaBoost, and
GBDT – were used to model unbalanced CIS data. The
study concluded that AdaBoost and GBDT produce better
results and more balanced prediction accuracies. Further-
more, global sensitivity analysis revealed that grade percent-
age, driver restraint, crash type, heavy vehicle percentage,
and road characteristics significantly influence the injury
severity.

With the current applications of deep learning in almost
every field, researchers in traffic safety have also started
employing deep learning to model crash severity. In one
study, a deep-learning-based convolutional neural net-
work (CNN) was employed to predict road traffic collision
severity. The CNN was trained and tested using eight years’
worth of crash data for the city of Leeds, United Kingdom.
The feature matrix to the grey image algorithm (FM2GI)
was used to convert the single feature crash relationship to
the grey image. The proposed method was compared with
several statistical techniques like the LR model and ML tech-
niques like SVM and ANN. The study revealed that the CNN

model performed better than all the other techniques [33].
Das et al. [34] used deep learning to model the crash severity
of at-fault motorcycle riders. A deep scooter (deep learning
framework) was used to predict severity using five years’
worth of data (2010–2014) for Louisiana State. It was found
that the model could predict severity with a testing accuracy
of 94%, while SVMandmultinomial logistic regressionmod-
els for the same dataset showed an accuracy of no more than
78%. Gradient boosting trees, deep learning, and naïve Bayes
machine learning techniques were used to predict the severity
of road traffic collisions using six years’ worth of raw data
from the Spanish traffic agency. The study concluded that the
deep learning model outperformed the other two models in
terms of accuracy and precision [35].

Deep learning models, including CNN, could be used
in this study as they have shown significant performance
enhancement compared to shallow models. However, these
models require large datasets and require more time to train.
Recently, a few studies have discussed some specific lim-
itations of deep learning models [36]. For example, the
CNN cannot differentiate the spatial arrangement of features,
which may cause erroneous results. To solve the problem,
additional significantly large datasets are needed. Thus, one
study has proposed a newmodeling approach, such as capsule
neural network [37]. However, some other recent approaches,
such as deep forest [38] and others, are expected to perform
better than CNN with small datasets.

The preceding section of the literature review presented
several techniques employed for predicting crash sever-
ity. These include many statistical techniques and ML
techniques. As a general conclusion, ML techniques like
SVM, DT, and RF perform better than statistical techniques
like logit and probit models. Furthermore, among the ML
techniques, deep learning models generate the most accu-
rate results for severity prediction, although deep learning
requires a large amount of data for better performance.

III. CLASSIFICATION TECHNIQUES
Several techniques are used for modeling a classifier. In this
study, we employed five base machine learning classification
models – KNN, DT, AdaBoost, feedforward neural network
(FNN), and SVM – to model road traffic crash severity.
Subsequently, a two-layer ensemble model was developed
using these base models to enhance the performance. This
section presents a brief conceptual description of these
techniques.

A. K-NEAREST NEIGHBOR
The most basic classification technique is KNN, which is
used as the first choice if the information about data distribu-
tion is very little or none. It is a supervised learning technique,
where the input contains k nearest training examples and
the output is class membership. The KNN technique works
by classifying an observation based on closest k neighbor
observations. The new data point is classified based on the
majority of k closest observations. A popular metric used for
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FIGURE 1. Illustration of k nearest neighbour.

the KNN algorithm is the Euclidean distance method. Two
important features to be identified in KNN are the k value and
the distance function. The k value is determined by testing
many values of k and selecting the one with the best precision
accuracy; the Euclidean distance (distance function) is deter-
mined as a distance between two-dimensional points [39].
Generally, KNN is classified based on the Euclidean distance
between training samples and the test sample, as shown in the
following equation:

d(xi, xl) =
√
(xi1 − xl1)+ (xi2 − xl2)+ . . . (xip − xlp) (1)

Here xi is an input data, having p features (xi1, xi2, . . . , xip);
n is the total number of input samples (i = 1, 2, ....., p) and p
is the total number of features (j = 1, 2, .....p).
KNN is clearly illustrated in Figure 1, where ‘‘red star’’

and ‘‘green square’’ represent two separate classes of training
data. The value of k is a hyperparameter that can be selected
through several heuristic techniques. A greater value of k
generally minimizes the noise in classification data, but the
distinction of boundaries between classes is not clear [40].
In the following Figure 1, when k = 3, the test point falls in
category A, while when k = 5, the test point is classified the
same as class B.

B. DECISION TREES
For both regression and classification problems, DT is a
widely used ML technique. The goal of the DT model is
to predict a target value based on many input features as
illustrated in Figure 2. A DT is a flowchart-like structure used
for classification of data. A DT classifies the instances by
sorting them based on feature values. Each tree has nodes and
branches: the node represents the feature to be classified; the
branch represents the values that a node can assume. The root
node is the starting point for the classification of instances
in the decision tree, and instances are sorted based on their
feature values. In the decision tree model, the relationship
between features is clear, and feature importance is also
obvious [41].

FIGURE 2. Illustration of decision tree.

In the root node or first split of a decision tree, all the
features are considered, and the training dataset is divided
into as many groups as the number of features. The feature
that is selected first is decided based on the information gain.
Information gain is the measurement amount of information
a feature can give about output class. The split with maxi-
mum information gain is selected as the first split, and this
process continues until the information gain approaches zero.
Features with the low information gain do not separate the
output classes clearly, while features with high information
gain can separate two output classes and further the process
of reaching the decision [42]. To measure information gain,
the entropy must first be measured. The entropy is the level
of impurity in the training dataset. Themathematical relation-
ship for entropy is shown below:

Entropy :
∑

i = 1− p ∗ log2(pi) (2)

Entropy(S) = −p+log2p+ − p−log2p− (3)

where S is the sample of training examples, p+ and p− are
the proportion of positive and negative training examples
respectively.

After calculating the entropy, the information gain can be
calculated using the following equations:

Gain(S,A) = Entropy(S)

−

∑
vEValues(A)

rac |Sv| S| .Entropy(Sv) (4)

Here, the set of all possible values for feature A is Val-
ues (A); Sv is the subset of S, for which feature A has
value v. The first term in the equation is original entropy,
while the second term is the entropy of children node, which
is calculated by partitioning S using feature A. Information
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FIGURE 3. Step for the learning process of AdaBoost Model.

gain can be briefly shown by the following equation:

Information Gain = Entropy (parent node)

−Average Entropy (children node) (5)

The performance of the DT model can be enhanced by
using a technique called pruning. Pruning is cutting off the
branches that involve features with little information gain.
This way, the decision tree becomes simpler and the problem
of overfitting is resolved, thus enhancing the accuracy of the
model [43].

C. ADABOOST
Adaptive boosting (AdaBoost) is a boosting ensemble model
that was first introduced by Freund and Schapire [44].
AdaBoost performs exceptionally well with decision trees.
AdaBoost learns from the misclassification error of previous
data points through many iterations. The main purpose of
AdaBoost is to train multiple weak learners using the same
training dataset and then construct a strong learner by group-
ing the weak learners. AdaBoost has several features:
1. The sampling of the dataset remains the same for each

iteration and only the distribution of the dataset is
changed.

2. The change in the distribution of dataset depends on the
accuracy of classification. In the training dataset D, every
sample has a weight w associated with it. The samples
that are often misclassified have higher weight, while the
correctly classified samples have lower weight

3. Every weak learner in the AdaBoost algorithm has a
weight represented by a vector. The input samples are
represented as follows:

[x = (x1, x2, . . . , xi)yi], i = 1, 2, 3, . . .m

The output is the probability of a sample belonging to dif-
ferent severity levels. The steps for the learning process and
prediction of AdaBoost are shown in Figures 3 and 4.

D. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks are among the most commonly
used tools for machine learning, and they are inspired by
human brains. As the name suggests, ANNs try to mimic
the way a human brain reacts. Artificial neural networks

FIGURE 4. Illustration of final prediction by AdaBoost model.

FIGURE 5. Typical feedforward neural network.

consist of input, output, and in most cases hidden layers,
as shown in Figure 5. The hidden layers consist of neurons
that connect input and output layers by transforming the
input layer into something that can be used by the output
layer. Artificial neural networks can find complex patterns in
data that are far too complicated to be recognized by human
programmers [45], [46].

The basic unit of an ANN is an artificial neuron that works
by receiving numerical information through several input
nodes. After receiving the information, the neuron processes
it internally and generates an outcome. The processing phase
consists of two steps: after a linear combination of input
variables in the first step, the result is used as an argument
for a non-linear activation function. Each connection in the
ANN has a weight term (wi) and a constant bias term 2.
The activation function is a differentiable function that can
be either an identity function (y = x) or a sigmoid func-
tion. In the neural network algorithm, some hyperparame-
ters must be fixed before the training process starts. Some
of the hyperparameters that are determined before training
are learning rate, number of hidden layers, and batch size.
Network architecture is defined by the organization of neu-
rons. For example, in the multilayer perceptron (MLP) type,
neurons are organized in layers; the same inputs may con-
tribute to neurons of each layer but have no connection with
each other. In the feed-forward architecture of ANN, the
preceding layer’s output is taken as an input for the following
layer [45].
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TABLE 1. Descriptive statistics of key variables.

E. SUPPORT VECTOR MACHINES
Support vector machines, just like ANN, are an extensively
used machine learning technique for classification problems.
Support vector machines transform the input data into a
higher dimensional feature space. The main aim of the SVM
technique is to find the best hyperplane, which maximizes
the margin between support vectors. Support vectors are the
points in the data that are nearest to the hyperplane and
that would alter the position of the hyperplane if removed,
as shown in Figure 6. The greater the margin between support
vectors, the greater confidence one can have in the correct
classification of the data by the hyperplane. Support vector
machines solve multi-classification problems by finding a
hyperplane in high dimensional space for separating points
into different groups [47], [48].

In the SVM used in this study, all the crash-related input
variables are represented by vectors (xi ∈ Rn) for [i =
1, 2, 3 . . .N ] and the crash severity (the training output) is
represented as (yi ∈ Rn). The hyperplane that separates the
outcome can be formulated as a set of point X that satisfies
the equation

W .X − b = 0 (6)

where ‘‘.’’ represents dot product and vector W denotes nor-
mal vector that is perpendicular to the hyperplane.

In a binary classification problem, the SVM needs to be
optimized for a given set of input and output variable pairs

FIGURE 6. Illustration of maximum separation hyperplane.

(xi, yi):

minw,b,ξ
1
2
wTw+ C

N∑
i=1

ξi (7)

Subject to

yi(wTφ(xi)+ b ≥ 1− ξi, ξ ≥ 0 (8)

where ξ are slack variables that measure misclassification
errors and C is the penalty factor to errors that enhance
the capacity control of the classifier. Lagrange multipliers
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are used to minimize the objective function. Several kernels
have been suggested by researchers, while radial basis func-
tion (RBF) is widely used [47], [49].

IV. DATA DESCRIPTION AND PREPARATION
Road traffic crash models are largely dependent on the avail-
ability of crash data, and thus the accuracy of these models
relies on the quality of the available crash dataset. To ensure
the reliability of crash models, six years’ worth (2011–
2016) of road traffic collision data from the Department of
Transport, Great Britain,1 were utilized in this research. The
data were filtered to obtain crashes that occurred at road
intersections only. Data cleaning was conducted by deleting
any duplicate, irrelevant, or incomplete data fields. Extrac-
tion of the dataset after filtering and cleaning resulted in
251,000 crash records for the road intersections. Crashes at
road intersections represent 60% of crashes in Great Britain
between 2011 and 2016. The data contained a total of 64 input
features related to road, environment, and vehicle. Out of the
total features, fourteen child features were selected as input;
every child feature belonged to one of five parent features as
shown in Table 1: (1) crash features, (2) roadway features,
(3) environmental features, (4) vehicle features, and (5) area
features. The fourteen selected input features are those that
can be quickly and easily obtained from the crash location
within no time of a crash. A random sample of crashes
containing 6000 crash points was extracted from the filtered
dataset using a randomized class balancing procedure [50].
This technique eliminated any possibility of bias toward a
specific severity level; the severity levels were categorized as
slight, serious, and fatal in the original dataset. The severity
level explains the level of injury sustained by individuals
involved in a crash. Due to a significantly low percentage
of fatal crashes in the dataset, fatal and serious crashes were
merged and categorized as severe crashes. The severity levels
used in the analysis are illustrated in Table 2.

Most of the crashes in the dataset involved two vehicles
(53%), most of the vehicles were passenger cars (76%), and
the highest number of crashes occurred on Fridays (16%).
A substantially higher number of crashes are recorded when
the road surface was dry (71%) compared to when the road
surfacewaswet. Furthermore, 78%of the crashes occurred on
single-carriageway roads. The environmental features of our
data suggest that most crashes occurred during the daylight
(69%) and in fine weather conditions (83%). Around 69%
of the crashes were recorded in urban areas; 32% occurred
in rural areas. For crashes occurring at intersections, most
crashes were at T intersections (67%); 82% of the crashes
were at uncontrolled intersections.

To achieve accurate results from machine learning models,
all the variables utilized in model development were on the
same scale. Data standardization assists most machine learn-
ing algorithms to converge by minimizing the loss function.

1https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277
47e5ce24a11f/road-safety-data

TABLE 2. Crash severity level.

This data scaling is achieved by subtracting the mean value
of each variable from the original score of each observation
and then dividing it by the standard deviation of the variable.
This scaling results in variables’ transformation having a zero
mean and unit variance. The standardized value of each vari-
able denoted by Z is calculated using the following equation:

Z =
(x − µ)
σ

(9)

where µ is the mean of a variable, σ is the standard deviation
and x is the original encoded value of each observation of a
variable.

V. METHODOLOGY
The predictive models for all six ML techniques were devel-
oped using a high-level programming language, MATLAB.
The fourteen input features used for model development are
shown in Table 1. The five base models used in this study
are KNN, DT, AdaBoost, SVM, and FNN. These five base
models have been used by many researchers in the recent past
to predict traffic crash severity [20], [21], [31]. To improve the
performance, a sixth model – a two-layer ensemble model –
was developed by stacking the base models. The input crash
data were randomly divided into training and testing datasets
with percentages of 70% and 30%, respectively.

The parameters were carefully set in all the machine learn-
ing models to achieve accurate predictive results. Two impor-
tant features to be identified in KNN are the k value and
distance function. The k value was determined through trial
and error. Values of k between 1 and 100 were tried, and the
predictive performance was checked against every k value.
In this study, the k value was finally set at 65; Euclidean
distance, which is most commonly used, was selected as a
distance function. In the DT model, the parameters were
chosen upon consideration of the type of data, sample size,
and critical interest in the fatal crash. In DT, the initially
selected feature was decided based on the information gain.
The split with maximum information gain was selected as the
first split, and this process continued until the information
gain approached zero. To overcome the problem of over-
fitting, pruning was conducted by removing the splits with
little information gain. In the AdaBoost model, the parameter
that must be optimized is the number of weak learners or
trees to train. There is a tradeoff between model accuracy
and computational time during parameter tuning. After per-
forming several experimental tests and consulting literature,
the number of trees was selected to be 1500; this returned the
best testing accuracy.
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In the SVM model, two hyperparameters that must be
optimized are penalty factor C and Gamma (γ ). The penalty
factor C controls the cost of misclassification on training
data, while the γ parameter characterizes how far the impact
of single training example extents. A systematic trial and
error procedure was followed to determine the values of C
and γ in SVM. The values of C and γ were finally set to
be 130 and 5, respectively. Along with these two parame-
ters, kernel function also affects the classification accuracy.
In this study, several kernel functions (as suggested by many
researchers [47]) were tried. Radial basis function (RBF),
a widely used kernel, was finally chosen due to better results.

A feedforward neural network (FNN) was eventually
developed to predict crash severity. Classification by FNN
is an iterative process for adjusting weights and bias based
on the provided information. FNN architecture consists of
three types of layers: the input layer, hidden layers, and
output layer. These layers consist of neurons that are inter-
connected with the subsequent layer. In this study, the input
layer consisted of 14 neurons, each representing one input
feature as shown in Table 1; the output layer consisted of
one neuron that represented the target variable. An itera-
tive searching procedure was followed to set the number of
hidden layers and the number of neurons in each hidden
layer until an optimized model was obtained. Several iter-
ations resulted in two hidden layers consisting of five and
two neurons, respectively. After testing several training algo-
rithms, the Levenberg-Marquardt (LM) training algorithm
was selected for the FNN, as this provided the best predictive
accuracy. After setting the parameters for the above ML
techniques, the models were tested on the testing dataset, and
the performance of each model was evaluated based on the
confusion matrix (CM).

After developing the base models, a stacking framework
was applied to integrate five base machine learning models
– KNN, DT, AdaBoost, SVM, and FNN – for crash sever-
ity prediction. Stacking is an ensemble modeling technique
for combining multiple models using a meta-classifier [51].
This framework consisted of two layers, as illustrated
in Figure 7. The four base models – KNN, DT, AdaBoost,
and SVM – were trained and validated in the first layer.
The four base models were selected based on their diversity.
In the second layer, a meta-classifier, FNN, was used for
classification based on the outputs of the four base models
from the first layer. However, by using only the outputs
of the first layer as input for the second layer, the model
suffered from underfitting. To overcome this, some features
from Table 1 were used as additional input, along with the
outputs of layer one. The purpose of this was to simplify the
model by using a reduced number of input features in layer
two compared to those used for the base models. To minimize
the number of features, principal component analysis (PCA)
was performed using the SPSS statistical package.

Principal component analysis is a mathematical tech-
nique employed to transform a high-dimensional dataset
into low-dimensional orthogonal feature space. To do this,

FIGURE 7. Structure for the two-layer ensemble model.

PCA transforms several highly correlated features into a
smaller number of uncorrelated features; the maximum vari-
ance of the dataset is retained. The small number of uncorre-
lated features are called principal components. Themaximum
variance in the data is explained by the first principal compo-
nent, followed by each following component, which explains
the next maximum possible variance. Principal component
analysis works on the principle of a mathematical technique
called Eigen analysis, where one solves for the eigenvalue and
eigenvector of a square matrix, called the covariance matrix.
In our analysis, the average eigenvalue criterion, also known
as an eigenvalue-one rule, was followed to select the principal
components. According to this rule, only principal compo-
nents with an eigenvalue greater than 1.0 were selected [52].
The six principal components had eigenvalue greater than
1.0, as shown by a scree plot in Figure 8. These six princi-
pal components explain 64.7% of the variance in the data.
Extracted principal components can be interpreted accord-
ing to component loadings, which represent the correlation
between original features and the principal components. For
ease of interpreting the six principal components, varimax
rotation was conducted. The component loading obtained
from varimax rotation is shown in Table 3. Only the loadings
with an absolute value of more than 0.3 were tabulated; this
facilitates the interpretation of the principal components [53].
For more information about PCA, see Rencher [54]. The prin-
cipal component analysis of the entire dataset of 14 features
resulted in six principal components (Table 3) based on the
eigenvalue-one rule. These six principal components, along
with the output of layer one, were used as input for layer two
of the ensemble model.

The input features in the second layer were trained using
FNN. The input layer of FNN consisted of 10 neurons,
each representing one input features, while the output layer
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TABLE 3. Rotated component loadings for PCA of crash data.

FIGURE 8. Scree plot for principal components.

consisted of one neuron that represented the target variable.
An iterative searching procedure resulted in two hidden lay-
ers consisting of ten and two neurons respectively. In FNN,
the LM training algorithm was selected after testing several
training algorithms – it provided the best predictive accuracy.
After setting these parameters, the two-layer ensemble model
was tested on the test set.

VI. RESULTS AND DISCUSSION
The results of the proposed two-layer ensemble model were
compared with five base machine learning models. The mod-
els were trained and tested on a dataset that was randomly
divided into a training set and a testing set with a ratio
of 7:3. The performance of each model was evaluated based
on the data generated by the CM, which contains the results
of the original and predicted classifications provided by a
classification model. A general representation of a CM for
binary output classes is shown in Table 4 – observations of

TABLE 4. Confusion matrix.

an actual class are shown in the rows; observations of the
predicted class are represented in the columns.

The entities in CM are defined as follows:
• TN represents the entities that are originally negative and
classified correctly as negative.

• FN represents entities that are positive but incorrectly
classified as negative.

• TP represents the entities that are originally positive and
classified correctly as positive.

• FP represents entities that are originally negative but
incorrectly classified as positive.

The observations of the confusion matrix for every model
were used to calculate the following performance metrics and
evaluate model performance based on these metrics:
• Accuracy: the proportion of the total number of instances
that were classified correctly, shown by the following
equation:

Accuracy(AC) =
(TP+ TN )

(TP+ TN + FP+ FN )
(10)

• Error rate: the rate of misclassification of predictions.

Error_rate(ER) = 1− Accuracy (11)

• Recall: the proportion of positive instances that were
classified correctly, shown by the following equation:

Recall(R) =
TP

TP+ FN
(12)
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TABLE 5. Classification of different models.

• Precision: the proportion of the anticipated posi-
tive cases that were correct, shown by the following
equation:

Precision(P) =
TP

TP+ FP
(13)

• F1-Measure: the performance of the model is measured
using the F1 measure that represents the harmonic mean
of Recall and Precision. Its value ranges between 0 and
1, where 1 represents the best model while 0 represents
the worst model. The equation for the F1 score is shown
below.

F1 =
2 ∗ (R ∗ P)
R+ P

(14)

The classification accuracy of each model is shown
in Table 5 and Figure 9. The overall training accuracy ranges
from 67.9% to 81.6%, while the overall testing accuracy
ranges from 67.1% to 76.7%. The FNN and SVM models
show almost similar performance; DT suffers from over-
fitting. Among the base models, AdaBoost has the high-
est testing accuracy while KNN performs the worst among
all models. The proposed two-layer ensemble model shows
excellent performance in training and testing, outperforming
all the other models with a training accuracy of 81.6% and
testing accuracy of 76.7%.

Although accuracy is a metrics that represents the per-
formance of an individual model, relying only on accuracy
as a performance measure can be misleading – the model
might be biased toward one severity class. To overcome
these limitations, other performance measures like precision,
recall, and F1 score were determined. These performance
measures determine the performance of individual severity
levels, providing better insight into the models. The results
of these performance measures for both severity levels are
illustrated in Tables 6 and 7 respectively. Figures 10 and 11
also depict the performance ofmodels for both severity levels.

According to the definitions of precision and recall, any
model that maximizes both performance measures is the best.
The F1 score acts as a good performance indicator since
it uses both precision and recall to interpret the model’s
performance. In this study, all the models performed almost
equally well for both levels of severity, as evident from the
results of performance measures in Tables 6 and 7. Among

FIGURE 9. Training and testing accuracy for all models.

TABLE 6. Performance measures of models for severe crashes.

TABLE 7. Performance measures of models for non-severe crashes.

the base models, the KNN model has the lowest F1 score,
while AdaBoost has the highest score for both the severity
levels. Furthermore, DT, SVM, and FNN performed simi-
larly for both levels of severity. Therefore, among individual
models, AdaBoost outperformed the other models in terms
of accuracy and F1 score, while KNN performed the worst
of all the models. However, there is a significant enhance-
ment of predictive performance with the introduction of the
two-layer ensemble model. The test accuracy of the two-layer
ensemble model increased to 76.7%, while the second-best
model, AdaBoost, had a test accuracy of 71.4%. Similarly,
the F1 score improved significantly for both levels of severity.
The enhanced performance of the two-layer ensemble model
indicates that it is a viable option for predicting traffic crash
severity. Notably, the use of all 14 variables in the second
layer of the ensemble model gives similar results to using six
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FIGURE 10. Performance measures for test dataset of severe crashes.

FIGURE 11. Performance measures for test dataset of non-severe crashes.

principal components obtained through PCA. Thus, to sim-
plify the model, we suggest using only the six principal
components. The two-layer ensemble model also showed
reasonable performance with an accuracy reduction of only
1% if the KNN model was eliminated from the first layer.

Although the prediction accuracy of the developed ensem-
ble model is not as high as other models in the litera-
ture [30], [34], the model is far more useful practically. The
ensemble model’s objective is not to predict the severity of a
crash precisely, but rather to predict it using a minimum num-
ber of attributes that can be obtained quickly and easily from
the crash site just when the crash happens, with reasonable
accuracy. We aimed to develop a model beneficial for saving
lives by predicting crash severity with acceptable accuracy
based on the crash features that can be easily and rapidly
obtained from the crash location. Based on this prediction,
trauma centers would be able to predict the severity of injuries
at any crash, dispatch an appropriate emergency unit to the
crash site, and prepare prompt medical treatment for patients
upon arrival at the nearest hospital.

VII. MODEL TRANSFERIBILITY
This section summarizes the detailed analysis for model
transferability. To check the transferability of the developed
models, the models were applied on a crash dataset for three

years’ worth of data (2014–2016) obtained from the online
National Collision Database (NCDB) Canada.2 The same
procedure as that for Great Britain’s dataset was followed
for the model development, using similar input features, and
the output of each crash was either fatal or non-fatal as
indicated in the original dataset. A similar process of principal
component analysis was followed, resulting in six principal
components. The models were trained and tested on the crash
dataset for Canada again.

The models performed similarly to Great Britain’s dataset
in terms of accuracy and F1 score. Among the base models,
AdaBoost performed better than other base models with an
accuracy of 73.6%, while KNN showed the lowest accuracy
of 67.3%. The other three base models – ANN, SVM, and DT
– showed similar performance, and DT again suffered from
overfitting. The two-layer ensemblemodel also outperformed
all other models with an accuracy of 79.3% and F1 scores
of 0.78 and 0.80 for fatal and non-fatal crashes, respectively.
The comparison of results for the two datasets indicates that
these models are expected to show similar performance on
any crash dataset with similar input features. These results
indicate that a high accuracy of crash severity prediction is
expected if these models are employed at a global level for
any other dataset.

VIII. CONCLUSION AND RECOMMENDATIONS
This paper concentrates on accurately predicting crash sever-
ity using readily available features that can be easily and
rapidly collected from the crash location, such as type of
intersection control, weather condition, type of vehicles
involved in the crash, and the speed limit in the area.

The study compared the performance of various machine
learning models for predicting road traffic collision severity.
Based on six years’ worth (2011–2016) of road traffic colli-
sion data from the Department of Transport, Great Britain,
five base models (KNN, DT, AdaBoost, SVM, FNN) and
a two-layer ensemble model was developed. The two-layer
ensemble model was developed by integrating KNN, DT,
AdaBoost, SVM, and FNN in two layers. The models were
compared with each other in terms of the testing accuracy.
The dataset was randomly classified into training and testing
datasets with a ratio of 7:3. Since accuracy is not always
the recommended performance measure for model interpre-
tation, three other performance indicators (precision, recall,
and F1 score) were calculated to provide better insight into
the performance of models.

Among the base models, AdaBoost outperformed all other
individual models in terms of accuracy and F1 score, without
facing the problem of overfitting. On the other hand, KNN
was the least accurate model, with the lowest F1 score for
both the severity levels. However, the proposed two-layer
ensemble model resulted in significant improvement in the
prediction of crash severity levels. The accuracy of the
two-layer ensemble model for both training and testing was

2https://open.canada.ca/data/en/dataset/1eb9eba7-71d1-4b30-9fb1-
30cbdab7e63a
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substantially enhanced. The model performed better than all
the base models, with a testing accuracy of 76.7% and F1
scores of 0.75 and 0.77 for severe and non-severe crashes
respectively. If the KNN model was eliminated from the
first layer, the two-layer ensemble model still showed rea-
sonable performance, with just a 1% reduction in accu-
racy. The transferability of these models was checked on
a crash dataset obtained from the online National Collision
Database (NCDB) Canada. The models performed similarly
to how they performed with Great Britain’s dataset. The
two-layer ensemble model outperformed all other models,
with an accuracy of 79.3% and F1 scores of 0.78 and 0.80 for
fatal and non-fatal crashes, respectively. This research indi-
cates that a high accuracy of crash severity prediction is
expected if these models are employed at a global level for
any other crash dataset.

The introduction of the two-layer ensemble model to
significantly improve the predictive performance for crash
severity is a contribution of this research that may save
human lives. This research will enable trauma and emer-
gency centers to estimate the potential damage resulting
from a traffic crash and accordingly dispatch the proper
emergency units to provide appropriate emergency treat-
ment. Although the proposed model has the highest accuracy,
the limitation of the proposed method can be the higher
running time of the two-layer ensemble model compared to
individual models. Moreover, a randomized class balancing
procedure was followed in this study to solve the prob-
lem of an imbalanced dataset. Other advanced approaches
could have been used address the issue of the imbalanced
dataset.

This study provides a few recommendations for future
research. Firstly, sensitivity analysis can be conducted to pro-
vide complete inferences of feature importance. Although the
selected features for this study are based on an extensive lit-
erature review, sensitivity analysis would provide a complete
understanding of factors contributing to crash severity. Sec-
ondly, deep learning and other ensemblemodeling techniques
could be employed to compare the predictive performance
for crash severity. Finally, the developed models should be
applied on datasets for different countries of the world. Based
on the results of this study, we strongly recommend that a
standard crash data collection format should be used by traffic
wardens across the globe. If a standard data collection format
is followed, the transferability and validation of these models
would be reasonable and easy.
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