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ABSTRACT Highway tunnels have a higher risk of crashing than open roads, which require a systematic
approach to tunnel safety. However, previous research had the following problems: 1) Studies have largely
focused on open roads, with very little research on tunnels. 2) The collected crash contributing factors involve
narrow ranges, with very little tunnel crash data including both tunnel design features, traffic conditions
and pavement conditions. 3) None of the studies considered both excess zero observations and unobserved
heterogeneity with its interactions. To address these issues, this paper first established an appropriate tunnel
dataset containing 3 to 5 years of crash data from several highways in China and the influence factors of
tunnel design features, traffic conditions and pavement conditions. A correlated random parameters negative
binomial Lindley (CRPNB-L) model that considers both excess zero observations and unobserved hetero-
geneity with its interaction effects was then proposed. Compared to the uncorrelated random parameters
negative binomial Lindley (URPNB-L) model, fixed parameters negative binomial Lindley (FPNB-L) model
and fixed parameters negative binomial (FPNB) model, the CRPNB-L model solves the deviation that
arises from excess zero observations by introducing the Lindley distribution and considers the unobserved
heterogeneity with its interactions by introducing correlated random parameters. In the comparisons, the
CRPNB-L model achieves the best effects in the goodness-of-fit. Furthermore, the estimated results of the
CRPNB-L model showed that segment length, traffic volume, proportion of class 5 vehicle (heavy trucks
and trailers), tunnel entrance and exit segments, and steep uphill and downhill segments were associated
with higher crash frequency, while curvature, tunnel length, pavement damage condition index (PCI) and
skid resistance index (SRI) were associated with lower crash frequency. In addition, the random variables of
the curvature, the steep downgrade indicator, the proportion of class 5 vehicle and SRI were identified and
their intercorrelations were analyzed.

INDEX TERMS Tunnel safety, correlated random parameters, negative binomial Lindley model, tunnel
design features, traffic conditions, pavement conditions.

I. INTRODUCTION
Over the past decade, highway safety has received increas-
ing attention from transportation authorities and researchers
around the world [1], [2]. As special structures of highways,
tunnels have the characteristics of rapidly changing lighting at
the entrance and exit, limited cross-section width and a closed
field of vision, which make the driving environment more
complicated and require more alertness of drivers. Therefore,
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tunnel segments are frequently prone to crashes, and their
safety problems are particularly important [3]–[6]. Taking
China as an example, by the end of 2019, the total mileage
of tunnels in China reached 17236 kilometers and the crash
frequency of tunnel segments was 1.44 times that of open
segments [7], according to the Transportation Industry Devel-
opment Statistics Bulletin (TIDSB). Therefore, it is very
important to seek appropriate crash frequency models for
highway tunnels and analyze factors that influence crashes for
the design and management of these tunnels. The occurrence
of a crash is a complex event involving the interactions of
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drivers, vehicles, roads, and environments [1], [6]. In research
related to crash models, the main problems to be overcomed
are selecting appropriate influencing factors affecting crashes
and considering the attributes of excess zero observations,
unobserved heterogeneity and its interactions that exist in the
crash panel data [8]–[10].

A. CRASH CONTRIBUTING FACTORS
A review of previous studies found that the indica-
tors related to road design characters [11]–[22], traffic
conditions [11]–[15] and pavement conditions [23]–[25]
have significant impacts on traffic safety. First, the
impacts of traffic conditions on crashes was reviewed.
Studies [11]–[14] showed that the crash frequency increases
with increases in traffic volume and the proportion of
heavy trucks. Studies [11], [13]–[15] have found that
speed limits also significantly affect crash frequency, where
papers [11], [13] proved that higher speed limits are asso-
ciated with a higher crash frequency, whereas other stud-
ies [14], [15] indicated that setting higher speed limits can
reduce crash frequency. In terms of the impacts of road design
characteristics on the crash frequency, some scholars found
that the geometric shape of a highway cross-section is related
to the crash frequency. For example, studies [11], [12], [16]
verified that highway sections with narrow shoulders and
a small offset of longitudinal separation columns have a
higher crash frequency. The safety effects of adding lanes
are debatable. Research [11], [16] asserted that adding lanes
increases the chances of changing lanes, which leads to
frequent crashes, while other research [17]–[19] believed that
adding lanes is beneficial to safety because adding lanes not
only reduces the traffic density but also reduces the potential
dangerous interactions between vehicles under high-flow
conditions. In addition, the impacts of horizontal and vertical
alignment on safety are also crucial. Research [16], [20], [21]
found that an increase in the longitudinal slope would sharply
increase the crash frequency. However, the relationship
between curves and safety remains a topic of discussion.
Studies [11], [12], [15], [16] believed that curve segments
increase the operating difficulty of drivers and may lead to a
higher crash frequency. Other studies [13], [20], [22] showed
that drivers pay more attention and drive at a comfortable
speed in most cases when driving on a curved segments,
which reduce the crash frequency of these segments. With
regard to the impacts of pavement on crashes, relevant stud-
ies [23]–[25] deeply discussed this type of topics by establish-
ing Safety Performance Functions (SPFs) between pavement
conditions and crash frequency, which reached the following
conclusions: (1) Good pavement conditions can reduce the
crash frequency, so regular maintenance is an effective way
to improve the safety performance of roads. (2) Pavement
rutting had great influences on the crash frequency, especially
when more heavy trucks are present. (3) Improvement in
the friction coefficient can significantly reduce the crash
frequency under wet pavement conditions. According to the
above fundings, the selection of influencing factors of crash

frequency has great impacts on estimation results, and even
the opposite results may occur due to improper selection of
influencing factors. Therefore, it is important to establish a
appropriate database of crash influencing factors.

B. EXCESS ZERO OBSERVATIONS OF CRASH DATA
As for the crash modelling techniques, the negative bino-
mial (NB) and its variant models [26]–[31], which can not
only satisfy the nonnegative integer and randomness of crash
frequency but also adapt to the attribute of overdiscreteness
(variance greater than mean) of crashes, are the mainstream
methods. Road crashes are, however, rare events, especially
in highway tunnels, where excess zero observations result in
a deviation between the actual distribution of crash frequency
and the negative binomial distribution [32]. Therefore, the
studies [33]–[35] employ the zero-inflated negative bino-
mial (ZINB) model, where special attention is paid to the
impacts of zero observations on crashes, as an alternative
method. This kind of model first uses Logit or Probit mod-
els to divide the zero observations into an absolute safety
state and a nonabsolute safety state, and then fits the zero
observations of the nonabsolute safety state and nonzero
observations by NB models, which effectively eliminates
the counts of zero observations. However, the ZINB models
have been criticized as an effort that seeks to maximize
the statistical fit rather than as an explanation of the crash
occurrence process [36]. To allow road segments to change in
time under the two states of absolute safety and nonabsolute
safety, Malyshkina et al. [37] and Malyshkina and Manner-
ing [38] proposed two-state Markov switching count models
whereby roadway segments are allowed to switch states over
time across two unobserved but significantly different unsafe
states. The specification of this model, however, is complex,
and thus its application to a large dataset is computationally
heavy [39]. Modeling efforts to deal with crash data with
excess zeros have continued with the introduction of new
distributions that are capable of handling observations with
small counts and combining them with the parent distribu-
tions capturing the crash data generating process (NB distri-
butions). These kinds of models mainly include the negative
binomial Lindley (NB-L) model [40], [41], the negative
binomial crack (NB-CR) model [42], the negative binomial
generalized index (NB-GE) model [43], etc. Moreover, these
studies also verify that the improvements of negative bino-
mial distributions are more appropriate for actual crash fre-
quency distributions. Concretely, Lord and Geedipally [41]
compared the performance of Poisson, NB and NB-L models
using two crash datasets containing zero observations of 89%
and 90%. The results showed that the NB-L model has a
better goodness-of-fit and prediction accuracy. Furthermore,
Geedipally et al. [40] modeled crash data with zero obser-
vations of 36% in Indiana and zero observations of 70%
in Michigan, which verified that the NB-L model has bet-
ter performance than the NB model and the ZINB model.
Vangala et al. [43] conducted a further analysis using the
same data as that of Lord and Geedipally [41] and found
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that the performance of the NB-GE model was compara-
ble with the NB-L model and significantly outperformed
the traditional NB model. It should be emphasized that the
above literatures, which attempt to address the excess zero
observations of crash panel data, are all aimed at open roads.
However, to the best of our knowledge, research to solve
the problem of excess zero observations for crash data of
highway tunnels has not occurred. Given the prior knowledge
provided by the above research, it is reasonable to establish an
appropriate improved model based on the NB-L model to fit
the relationship between crash frequency and influence fac-
tors in view of the characteristics of excess zero observations
of highway tunnel.

C. UNOBSERVED HETEROGENEITY AND ITS INTERACTION
EFFECTS
In addition to excess zeros, another important challenge in
crash modeling is to account for unobserved heterogene-
ity and its interaction effects resulting from other sources.
Ideally, if we can obtain all the factors that cause crashes,
the established models can show the most reasonable rela-
tionships between the influencing factors and crashes and
achieve the best goodness-of-fit [44], [45]. However, based
on the limitations of data collection methods, the data we
collected represent only a part of all the influencing fac-
tors (road design characters, traffic conditions, pavement
conditions, etc.). The influences of unobserved factors on
observed variables or crashes vary in multiple dimensions
(i.e., space, time, group and individual dimensions), which
is called unobserved heterogeneity. For example, considering
the impacts of the lighting indicator on the crash frequency of
highway tunnels (assuming that the value of the variable is 1 if
lighting exists; otherwise, it is 0), due to the different types of
terrain, lighting conditions and degrees of fatigue of drivers
in different highway tunnels, the variable of the lighting
indicator has different influences on crash frequency, even if
the values of lighting indicators are the same. Therefore, if the
estimated parameters of the lighting indicator are limited to
fixed values in all segments, biased estimation will inevitably
occur [12], [45]. Ignoring unobserved heterogeneity and lim-
iting the effects of observed variables to be the same in all
segments, namely, fixed parameter (FP) models [15], [46],
will usually lead to biased estimation, which in turn leads to
incorrect inference and prediction. To address this limitation,
studies [17], [44], [47] adopted random effect negative bino-
mial (RENB) models to analyze crash frequency and verified
better goodness-of-fit was achieved by the RENB model
than that of a fixed parameter negative binomial (FPNB)
model. The RENB models assume that the combined effects
of unobserved variables obey a certain distribution (usually a
normal distribution) regarding the intercept terms [17]. The
constraint conditions assumed by an RENB are, however, too
harsh, where the randomness of the intercept terms alone is
not sufficient to explain the unobserved heterogeneity. Based
on this situation, studies [48]–[50] proposed an uncorrelated
random parameter negative binomial (URPNB) model as an

alternative method, which does not treat the intercept term as
the only random component but allows the regression param-
eters of each variable to change randomly in multiple dimen-
sions (i.e., space, time, group and individual dimensions). The
results also showed that the URPNB model achieved a better
goodness-of-fit compared with RENB model.

It should be emphasized that the URPNB models assume
that the distributions of random parameters are independent,
which cannot capture the potential interaction impacts among
random parameters. According to Conway andKniesner [51],
ignoring the correlation between random parameters may
lead to biased estimation. Pavement damage conditions and
the percentage of trucks, for example, have significant effects
on tunnel crash frequency [26], but trucks are more likely to
be involved in crashes when driving in segments with severe
pavement damage. In other words, an interaction between
the proportion of trucks and the pavement damage condi-
tions jointly influences the crash frequency. Consequently,
the assumption of the URPNBmodel that these two variables
are independent does not reflect the actual situation, which
may lead to biased estimation. Aiming to solve the problems
existing in the URPNB model, some researchers tried to
further capture the interactions of unobserved heterogeneity.
Yu et al. [52] analyzed the influences of weather conditions
on highway crashes by using a correlated random parameter
model and found that a Tobit model with correlated random
parameters was statistically superior to the corresponding
uncorrelated random parameter model. Emine et al. [53]
found that the goodness-of-fit of a correlated random param-
eter negative binomial (CRPNB) model was better than that
of a URPNB model in analyzing crash frequency in multiple
cities. Therefore, it is reasonable to believe that the applica-
tion of correlated random-parameters methods to capture the
unobserved heterogeneity and its interactions in expressway
tunnels safety analysis will achieve a breakthrough effects.

D. SAFETY ANALYSIS OF TUNNELS
The studies about tunnel safety can divide into two cate-
gories. The first type of research divided the tunnel into
different zones according to the driving environment and
light conditions, which is aimed to deeply analyze the sta-
tistical characteristics of crashes among different zones and
the qualitative relationship between crashes and some influ-
ence factors. For example, studies [58]–[61] divided a tunnel
into three or four zones and investigated the crash rates of
different tunnel zones to evaluate the tunnel features that
could mainly affect safety. Literature [62] have investigated
the characteristics of crashes of freeway tunnel groups in
China, by adopting five-zone approach for safety analysis of
tunnel groups, While the study [63] employed a seven-zone
analytic approach for the safety investigation of 18 express-
way tunnels with length ranging from 2 to 3 km. It should
be pointed out that these studies focus on the characteristics
of the temporal, spatial, and modality distributions of tunnel
crashes, rather than quantitatively analyzing the influences of
factors on crashes. The second type of research focuses on
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establishing Safety Performance Functions (SPFs) to under-
stand the effects of crash contributing factors. Literature [5]
applied, for example, the bivariate negative binomial model
to fit the non-severe crash frequency and severe crash fre-
quency, and used random effects binomial regression mode
to analyze the year effect of severe crashes. Literature [64]
provided an analysis of severe crashes (fatal and injury acci-
dents only) that occurred in 260 Italian road tunnels on the
basis of random-parameters regression models. Furthermore,
research [54], [65] consider the interactions of unobserved
heterogeneity, the research [54] used a random effects nega-
tive binomial model (RENB), an uncorrelated random param-
eters negative binomial model (URPNB), and a correlated
random parameters negative binomial model (CRPNB) to fit
crash frequency of freeway tunnels in China, which showed
that the CRPNB model provided better goodness-of-fit and
offered more insights into the factors that contribute to tun-
nel safety. Similarly, The research [65] provided an analysis
of crash frequency, which occurred in 226 unidirectional
motorway tunnels over a four-year monitoring period in Italy,
based on the unrelated and correlated random-parameter
Poisson models. The results still showed that the corre-
lated random-parameter Poisson model obtained the optimal
goodness-of-fit. The second type of research can effectively
reveal the relationship between crash contribution factors
and crash variables, which is also the purpose of this paper.
However, the research related to this method (1) have not
adequately collected the dadaset of crash contributing factors,
where most of the tunnel crash contributing factors estab-
lished in literature [5], [64], [65] are related to tunnel design
features and the impacts of pavement conditions on tunnel
crash are rarely reported, (2) have not considered both unob-
served heterogeneity and excess zero observations, where
studies [5], [64], [65] were all modeling only for unobserved
heterogeneity.

E. OBJECTIVE AND SCOPE
By reviewing the above research, we summarize the issues
that need to be addressed in the crash frequency modeling
techniques of highway tunnels. (1) Studies have lacked rel-
atively appropriate databases on the influencing factors of
tunnel crashes. The occurrence of crashes involves various
factors, such as drivers, vehicles, roads and the environment.
Starting with unilateral factors to establish crash frequency
models will lead to biased estimation and incorrect judg-
ments. (2) Although some studies have proposed improved
models to address the characteristics of excess zero observa-
tions existed in crash datasets, to our best knowledge, such
crash modeling techniques have yet to address highway tun-
nels. (3) Few studies have used correlated random parameter
models, which take into account the unobserved heterogene-
ity and its interaction effects, in the safety analysis of highway
tunnels, especially for Chinese expressway tunnels.

In conclusion, this paper promoted three contributions for
tunnel safety analysis (the pipeline of the proposed meth-
ods is shown in Fig. 1.): (1) We established an appropriate

and accurate dataset for tunnel safety analysis by collecting
3–5 years of tunnel crash data from three typical high-
ways in Guangdong Province, China (Lianzhou to Huaiji on
the G55 highway, hereinafter referred to as G55-1; Huaiji
to Sanshui on the G55 highway, hereinafter referred to as
G55-2; and Maan to Hekou on the G80 highway, here-
inafter referred to as G80), and the influencing factors
involving tunnel design tunnel design features, traffic condi-
tions and pavement conditions, with a total of 11 variables.
(2) A tunnel-based correlated random parameters negative
binomial Lindley (CRPNP-L) model, which simultaneously
takes into account the excess zero observations by intro-
ducing the Lindley distribution and unobserved heterogene-
ity with its interactions by introducing correlated random
parameters, was developed. Compared with the established
uncorrelated random parameters negative binomial Lindley
(URPNB-L) model, the fixed random parameters negative
binomial Lindley (FPNB-L) model and the fixed random
parameters negative binomial (FPNB) model, the Bayesian
estimation results confirmed that the CRPNP-L model had
a better goodness-of-fit based on the evaluation indexes of
the Deviation information criterion (DIC), the Mean absolute
deviance (MAD), and the Mean squared prediction error
(MSPE). (3) Based on the established CRPNP-L model,
an in-depth analysis of the interaction of variables and
their influence principles on crash frequency was conducted,
which provides new technical support for the design and
management of highway tunnels in China.

II. DATA DESCRIPTION
In this study, a dataset related to multiyear crashes and the
influencing factors of 84 one-way tunnels with a total length
of 93.87 km, which are located on typical mountain highways
G55-1, G55-2 and G80 in southern China, were collected (the
routes of the three highways and the schematic of a tunnel
are shown in Fig. 2). The three highways are all managed by
the Guangdong Provincial Department of Communications
(GPDC), where the data of the G55-1 highway were collected
from 2012 to 2017, the data of the G55-2 highway were
collected from 2014 to 2017, and the data of the G80 highway
were collected from 2015 to 2018. In addition, these data
involve a total of 545 crashes and a total of 11 influencing
factors, including tunnel design features, traffic conditions
and pavement conditions. The crash data were provided by
the Guangdong Provincial Highway Administration (GDFA).
The data on traffic condition indicators were collected from
toll stations on each highway, which included the annual
average daily traffic volume (AADT) and the proportion
of class 5 vehicle. The data on the tunnel design features,
which contain 7 variables, were provided by Jilin Trans-
portation Construction Co., Ltd., and Guangdong Changda
Highway Engineering Co., Ltd. Pavement condition indexes
were provided at intervals of 20 m or 50 m by the Guang-
dong Transportation Group Testing Center (GTGTC), which
included the pavement damage condition index (PCI) and
skid resistance index (SRI). After the selection of variables,
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FIGURE 1. The pipeline of the proposed method. The top of the figure shows the process of creating a dataset
that includes crashes and three types of explanatory variables. The middle of the figure presents the CRPNB-L
model proposed in this paper and the contrasting URPNB-L, FPNB-L and FPNB models. The bottom of the
figure shows the evaluation and safety analysis methods. The FPNB, FPNB-L, URPNB-L and CRPNB-L models
represent the fixed parameters negative binomial model, the fixed parameters negative binomial Lindley
model, the uncorrelated random parameters negative binomial Lindley model and the correlated random
parameters negative binomial Lindley model, respectively. The DIC, MAD and MSPE represent the
goodness-of-fit indexes of the Deviation information criterion, Mean absolute deviance and Mean square
prediction error, respectively.

FIGURE 2. The routes of the three highways where the studied tunnels are located and the schematic of a tunnel. (a) represents the
route of the G55-1 highway. (b) represents the route of the G55-2 highway. (c) represents the route of the G80 highway.
(d) represents the schematic diagram of a tunnel, in which also present the actual pictures at the entrance, inside and exit of the
tunnel, respectively.

the division of tunnel segments is a key step in modeling
techniques, which usually includes fixed-length methods and
homogeneous methods. Relevant studies [54], [55] showed

that the fixed-length methods have defects in the average
treatment of indicators that significantly affect the model’s
performance. Therefore, this paper used the homogeneous
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TABLE 1. Descriptive statistics of the variables.

method to classify segments on the basis of curvature and
longitudinal slope indexes, where the tunnels were divided
into 783 observations with consistent alignment. The length
distribution is shown in Fig. 3, where the lengths of the tunnel
segments are concentrated in the interval [300 m, 1000 m].
The shortest length of a segment is only 106 m, and the
maximum length reaches 4811 m.

On this basis, the statistical values of the variables in each
tunnel segment were sorted in terms of years, and a dataset
was established for tunnel crash frequency models (as shown
in Table 1). Notably, since the sampling frequency of the
pavement conditions is not aligned with the segment length,
the mean values of the pavement condition indicators are
used as a proxy. From Table 1, the following explanations are
required: (1) The AADT is calculated for highway sections
between adjacent toll stations according to the method pro-
vided by [54]. (2) The literature [54], [55] provides clues that
it is reasonable to design segment length and AADT as expo-
sure variables, which participate in the parameter estimation

FIGURE 3. Length distribution of homogeneous segments.

process by taking their logarithmic forms in the models.
(3) The vehicles are categorized into five classes for
the Guangdong Freeway Network Toll System (GFNTS)
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FIGURE 4. The distribution of crash frequency.

FIGURE 5. Resemblance of Lindley distribution to the frequency
distribution of observed tunnel crash counts.

according to the height, number of axles, number of wheels
and wheelbase. The class 5 vehicle are represented by
heavy trucks, heavy trailers and 40-foot container trucks.
(4) According to the Chinese technical standards for road
engineering (JTG B01-2014), a tunnel with a length greater
than or equal to 500 m is defined as a medium-long tunnel;
otherwise, the tunnel is defined as a short tunnel. (5) A tun-
nel’s influence zone starts at the tunnel exit/entrance points
and is 100 m long [54]. (6) Literature [54] defines tunnel
segments with a longitudinal slope degree of more than 2%
as steep segments. Research [55], [56] found that the crash
frequency of tunnel segments with a longitudinal slope degree
of more than 2% is significantly higher than that of other
tunnel segments. Therefore, whether the slope is greater than
2% is used as one of the influencing factors of crash frequency
in this paper.

Furthermore, the Variance Inflation Factor (VIF) is used
to test whether multicollinearity exists among variables (as
shown in Table 2). Note that according to the clues pro-
vided in the literature [56], a VIF value of a variable greater
than 5 indicates the multicollinearity exists between this
variable and other variables, and such a variable should be
eliminated. Table 2 clearly shows that the VIF values of the

TABLE 2. VIF values of the explanatory variables.

variables selected in this paper are all less than 5, so these
influencing factors used for modeling are reasonable.

In addition, we drew a distribution diagram of the crash
frequency (as shown in Fig. 4) and a figure that shows the
probability density of the Lindley distribution against NB
distributions overlaid with the histogram of tunnel crash
frequency data used in this study (as shown in Fig. 5).
As shown in Fig. 4, the crash counts were basically concen-
trated between 0 and 4, and the segments of 0 crash count
accounts for 64.879% of the total segments, which verified
that the dataset in this paper has the characteristics of excess
zero observations. It can be seen from Fig. 5 that the density
of the Lindley distribution around zero fits the histogram of
tunnel crashes quite well, and thus a combination of NB and
Lindley distributions can shift the sole NB distribution to the
left and can capture excess zeros more effectively.

III. METHODOLOGY
A. DESCRIPTION OF THE FPNB AND FPNB-L MODELS
In this paper, an FPNB model was used to match the nonneg-
ative integer and over-discreteness (variance greater than the
mean) attributes of the crash frequency in highway tunnels.
Specifically, the probability of tunnel segment i experiencing
ni crashes within a specified period of time (1 year in this
paper) is calculated by the following equation.

P(ni) =
[

1/α
1/α + λi

]1/α
0[1/α + ni]
0(1/α)ni!

[
λi

1/α + λi

]ni
(1)

where α is a dispersion parameter used to illustrate the
relationship between the mean and variance of the crash
frequency. When the value of α is 0, that is, the mean and
variance of the crash frequency are equal, the NB model
degenerates into a Poissonmodel.0(.) is the Gamma distribu-
tion function, and λi represents the mean number of crashes
for segment i, which is generally designated as an exponential
function of independent variables and logarithmic forms of
exposure variables. The calculation formula is as follows:

λi = exp(βXi + εi) (2)

where β is a vector of the estimable parameters, and Xi is a
vector of the independent variables and exposure variables for
segment i. It is important to note that the exposure variables
of segment length and AADT participate in the regression
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parameter estimation process by taking their logarithmic
forms in the models (independent variables and logarithmic
forms of exposure variables are referred to as explanatory
variables below). exp(εi) is a gamma-distributed error term
with a mean of 1 and variance α.

The appealing characteristic of the FPNB-L model stems
from the property of its core distribution, the Lindley distribu-
tion, whose mean is close to zero and has a long tail for obser-
vations, which is extremely similar to the actual distribution
of the crash frequency. The FPNB-L is a combination of NB
and Lindley distributions, which can also be expressed as a
hierarchical representation of negative binomial, Bernoulli
and gamma distributions [40]. For the FPNB-L model, the
probability of tunnel segment i experiencing ni crashes within
a specified period of time (1 year in this paper) is calculated
by the following formula:

P(ni) =
[

1/α
1/α + θi

]1/α
0[1/α + ni]
0(1/α)ni!

[
θi

1/α + θi

]ni
(3)

where θi is a Lindley parameter, which is calculated as
follows:

θi = λiϕi,

ϕi ∼ Gamma(1+ γ, χ)

γ ∼ Bernoulli(1/(1+ χ )) (4)

B. DESCRIPTION OF THE RPNB-L MODEL
The parameters β of equation (2) are fixed in all tunnel seg-
ments, which does not deeply reveal the unobserved hetero-
geneity of crash frequency. In an actual situation, due to the
existence of unobserved heterogeneity, the influence degree
of explanatory variables on the crash frequency varies in
different segments. Therefore, the unobserved heterogeneity
through the random parameters in the RPNB model is allow-
able by introducing a random component δi to the parameter
β:

βi = β + δi (5)

where βi is a regression parameter vector of explanatory
variables for segment i, and δi is a random variable with a
deterministic probability density function, which is subject
to a normal distribution with a mean of 0 and variance of σ .
A regression parameter is defined as random if the esti-

mated standard deviation of the parameter is significantly dif-
ferent from zero; otherwise, it is defined as a fixed parameter.
Therefore, the probability density function for the RPNB-L
model is expressed as equation (6), where g(.) is the proba-
bility density function of δi

P(ni | θi, α, σ ) =
∫
δi

[
1/α

1/α + θi

]1/α
0[1/α + ni]
0(1/α)ni!

×

[
θi

1/α + θi

]ni
g(δi)d(δi) (6)

C. DESCRIPTION OF THE URPNB-L AND CRPNB-L
MODELS
There is no correlation among the random parameters in an
RPNB-L model, namely, a URPNB-L model, which means
that the random parameters are independent. In reality, there
are likely correlations among the parameters due to the
possible interactive effects of the explanatory variables on
the dependent variable. To explore the potential correlation
effects among the random parameters, βi was assumed to
follow a multivariate normal distribution in this study:

βi = β +W ζi (7)

W =


(σ1)2 σ1,2 · · · σ1,j−1 σ1,j
σ2,1 (σ2)2 · · · σ2,j−1 σ2,j
...

...
. . .

...
...

σj−1,1 σj−1,2 · · · (σj−1)2 σj−1,j
σj,1 σj,2 · · · σj,j−1 (σj)2

 (8)

whereW is the variance-covariance matrix of the multivariate
normal distribution, which is a lower triangular matrix that
engenders the correlation among the elements of the random
parameter vector βi. j is the number of random parameters,
and ζi is the randomly and independently distributed uncor-
related vector term.

As previously mentioned, the URPNB-L model assumes
that the off-diagonal elements in the variance-covariance
matrix W are zero (i.e., no correlation exists among the
random parameters), which to some extent seems to be a
rather strong restriction. In this study, a CRPNB-L model
was developed by using an unrestricted variance-covariance
matrix to investigate the safety and the heterogeneous effects
of various factors as well as the possible interactive effects of
correlated variables.

D. EVALUATION INDEXES OF MODEL PERFORMANCE
Three common standards, Deviation information criterion
(DIC), Mean absolute deviance (MAD) and Mean square
prediction error (MSPE) were used in this study to measure
the goodness-of-fit of the models. According to the definition
in the literature [10], the calculation formula of DIC is as:

DIC = D̄+ PD (9)

in which D̄ is the posterior mean deviance for assessing the
model fit, and PD is the effective number of parameters
in the model for measuring model complexity. Generally,
a model with a lower DIC value is preferred. DIC differences
between 5 and 10 are deemed substantial, while differences
of more than 10 indicate the significant outperformance of
the model with a lower DIC [10].

MAD and MSPE reflect the deviation degree between the
crash frequency fitted by the model and the actual crash
frequency. Lower values of MAD and MSPE represent better
goodness-of-fit. According to the clues in the literature [10],
MAD and MSPE are defined by the following equations,
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respectively.

MAD =
1
N

i=N∑
i=1

|K ′i − Ki| (10)

MSPE =

√√√√i=N∑
i=1

(K ′i − Ki)
2/N (11)

where N is the number of all tunnel segments, K ′i represents
the crash counts fitted by the models for segment i, and Ki
represents the crash counts observed for segment i.
In addition, to understand the influences of observable

factors on crash frequency, the Incidence Rate Ratio (IRR),
which represents the change scope of the expected crash
frequency when an independent variable xm is increased by
one unit [56], is calculated as follows.

IRRm =
E(ni|X i, xm + 1)

E(ni|X i, xm)
= exp (βm) (12)

where X i are the independent variables other than xm, and βm
is the regression coefficient of xm. For the exposure variables,
the IRR values represent the change of expected crash fre-
quency when an exposure variable xe increases by 1%, whose
equation is as follows:

IRRe =
E(ni|X i, 1.01xe)

E(ni|X i, xe)
= 1.01xe (13)

where βe is the regression coefficient of xe.

E. MODEL ESTIMATION
With the continuous progress of crash modeling technology,
the Bayesian method has become the mainstream parameter
estimation method in the field of road safety statistical anal-
ysis [9], [10], [56], [57]. The Bayesian method does not need
the closed likelihood function, which can solve the parameter
estimation problem of the complex model. WinBUGS is one
of the most commonly software approaches for Bayesian
inference, which adoptsMarkov chainMonte Carlo (MCMC)
simulation and the Metropolit-Hastings algorithm to infer
the posterior distribution of parameters based on the prior
distribution and observation data. Therefore, this paper uses
WinBUGS software to implement the Bayesian estimation
process of all models.

Without sufficient prior knowledge, noninformative pri-
ors are specified for the parameters and hyperparameters.
Specifically, we use a diffused normal distribution, Normal(0,
104), for the priors of the regression coefficients (i.e., the
elements of β and βi) [10]. A diffused gamma distribution,
Gamma(0.001, 0.001), is used to obtain the priors of the
precision parameters 1/σ and 1/α [9], [10]. The prior dis-
tribution of χ is set as Bernoulli (1/(1 + e−1). A Wishart
prior, W (P, r), is used for parameter W , where P is the
identity matrix with 4 rows and 4 columns, and r = 4
is the degrees of freedom [10]. For each model, a chain
of 130000 iterations of the MCMC simulation is constructed,
and the first 20000 iterations are excluded as a burn-in. The

ratios of the Monte Carlo Errors are monitored relative to the
standard deviations of the estimates, and the MCMC trace
plots for themodel parameters are visually inspected to assess
the MCMC convergence.

IV. RESULTS AND DISCUSSION
This section includes the comparison of the goodness-of-fit of
each model, the interpretation of estimated regression param-
eters, and the in-depth analysis of the impacts of significant
variables and interaction effects of random variables on the
crash frequency based on the CRPNB-L model.

A. COMPARISON OF GOODNESS-OF-FIT
The superparameters and goodness-of-fit indexes estimated
by candidate models in this paper are shown in Table 3.

In order to test the advantages of introducing the Llind-
ley distribution, the performance of the FPNB model and
FPNB-L model is compared. It can be seen from Table 3 that
the DIC, MAD and MSPE values of the FPNB-L model
are 1185, 0.33 and 0.3, respectively, which are all lower
than that of the FPNB model with DIC, MAD and MSPE
values of 1212, 0.35 and 0.31, respectively. These results
are similar to those in paper [40], [41], which demonstrated
that the FPNB-L model is more adaptable to the tunnel
crash dataset of excess zero observations and thus achieves
a better goodness-of-fit. In addition, the Lindley parameter
θ of the FPNB-L model is significantly 1.108 at the 95%
Bayesian credibility level, indicating that it is reasonable to
use the NB-Lindley distribution to fit the tunnel crash data
in this study. Furthermore, the dispersion parameter α of the
FPNB-L model with a value of 3.16 is much larger than
the that of FPNB model with a value of 1.914, which also
reflected that the FPNB-L model considers more zero-value
segments, leading to the increase of discrete parameters (the
relative magnitude of the mean and variance of crashes).

Second, we discuss the effects of unobserved heterogene-
ity and its interactions by comparing the performance of
FPNB-L, URPNB-L and CRPNB-L models. Similarly, it can
be seen from Table 3 that the DIC value of the URPNB-L
model (a value of 1163) is far lower than that of FPNB-L
model (a value of 1185). Although the MAD value of the
URPNB-L model is the same as that of the FPNB-L model
with a value of 0.33, the MSPE value of the URPNB-L
model (a value of 0.28) is lower than that of the FPNB-L
model (a value of 0.3). In general, the URPNB-L model
has a better goodness-of-fit. This result is consistent with
previous research [55], [57], which explained that randomiz-
ing the regression parameters is helpful to capture the unob-
served heterogeneity, reducing occurrences of an incorrect
definition and improving the goodness-of-fit. When adding
the CRPNB-L model to the discussion, we found that the
CRPNB-L model has the best goodness-of-fit among the
candidate models due to its lowest DIC value of 1128, MAD
value of 0.3 and MSPE value of 0.27. Such findings are
expected because the CRPNB-L model captures not only
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TABLE 3. Superparameters and goodness-of-fit indexes of candidate models in this paper.

TABLE 4. Estimation results of regression coefficients in the candidate models.

unobserved heterogeneity but also further explains the inter-
actions between heterogeneity [54], [55].

B. ANALYSIS OF ESTIMATED REGRESSION PARAMETERS
The estimation results of the posterior means of parameters
in each model are shown in Table 4. As can been seen from
Table 4, 8 variables are significant at the 95% Bayesian
credibility level in the FPNBmodel, while the FPNB-Lmodel
added 2 significant variables based on the 8 significant vari-
ables determined by the FPNB model, namely, length of tun-
nel and PCI (i.e., 10 significant variables). TheURPNB-L and
CRPNB-L models added a significant variable of the tunnel
exit indicator based on the FPNB-Lmodel (i.e., 11 significant
variables).

Furthermore, the URPNB-L model detected four variables
related to random parameters, namely, curvature, steep down-
grade indicator, proportion of class 5 vehicle and SRI, whose
mean and standard deviation were statistically significant.

Table 5 and Fig. 6 present the standard deviations and distri-
bution curves of random parameters in the URPNB-L model,
respectively. According to Table 5, the standard deviations
of random parameters follow the order of the proportion of
class 5 vehicle > steep downgrade indicator > curvature >
SRI. Among them, the random parameters related to the pro-
portion of class 5 vehicle and the steep downgrade indicator
exhibit strong fluctuations in each segment, indicating that
the unobserved heterogeneity has prominent interactions with
the above two influencing factors. By contrast, the standard
deviations of random parameters related to curvature and SRI
were small, indicating that the unobserved heterogeneity has
some influences on these two influencing factors, but their
degree was relatively weak. Furthermore, we can analyze the
impacts of each random variable on crash frequency based
on the URPNB-L model and conclude with the following
conclusions from Fig. 6: (1) The parameter of curvature is
positive in 20.96% of segments, that is, setting the curved
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FIGURE 6. Distributions of random parameters in the URPNB-L model. (a) represents the random parameter distribution of
the curvature. (b) represents the random parameter distribution of steep downgrade indicator. (c) represents the random
parameter distribution of the proportion of class 5 vehicle. (d) represents the random parameter distribution of the SRI.

TABLE 5. Estimated standard deviations of random parameters in the
URPNB-L model.

segments will increase the crash frequency, while the parame-
ter of curvature is negative in 79.04% of segments, indicating
that the curved segments will be beneficial to reduce the crash
frequency. (2) 81.59% of segments indicated that the crash
frequency of segments with a downhill slope of more than
2% was higher than that of other segments, while 18.41%
of segments indicated that tunnel sections with a downhill
slope of more than 2% was conducive to reducing the crash
frequency. (3) The parameter of proportion of class 5 vehicle
is positive for 65.02% of segments and is negative for 34.98%
of segments, indicating that most of the segments justify that
the proportion of class 5 vehicle is positively correlated with
crash frequency. (4) The parameter of SRI was only positive
in 0.45% of segments, indicating that most segments showed
a negative correlation between SRI and crash frequency.

The random parameters detected by the CRPNB-L model
were consistent with the random parameters detected by the
URPNB-L model. However, the CRPNB-L model further
explained the degree of correlation of each random parameter.
Table 6 and Table 7 list the variance-covariance matrix and
the correlation matrix of random parameters in the CRPNB-L

model, respectively. Two main pieces of information can be
obtained from Table 6: (1) The variance order of the four
random parameters was proportion of class 5 vehicle > SRI
> steep downgrade indicator > curvature. (2) The parameter
covariance between the proportion of class 5 vehicle and the
steep downgrade indicator was the largest, reaching 0.284,
while the parameter covariance between the curvature and
SRI was the smallest, at only 0.012. The following two main
pieces of information can be obtained from Table 7: (1) All
the random parameters were positively correlated. (2) The
correlation coefficients of parameters between the propor-
tion of class 5 vehicle and the steep downgrade indicator
and between the curvature and the steep downgrade indica-
tor reached 0.666 and 0.432, respectively, proving that the
interaction effects between the above two pairs of random
variables were obvious.

C. THE INFLUENCES OF VARIABLES AND INTERACTION
EFFECTS OF RANDOM VARIABLES
In this section, we specifically analyzed the influences of
significant variables and the interactions of random variables
on the crash frequency for the CRPNB-L model according
to the posterior mean values of parameters (as shown in
Table 4 and Fig. 7.) and IRR values of significant variables
(as shown in Table 8 and Fig. 7.).

1) THE INFLUENCES OF SIGNIFICANT VARIABLES ON CRASH
FREQUENCY
First, the influences of exposure variables on crash frequency
were analyzed. Regression parameters of the Log (segment
length) and the Log (AADT) were significantly positive at
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TABLE 6. Variance-covariance matrix for the CRPNB-L model, the values in brackets represent the 95% Bayesian credibility interval.

TABLE 7. Correlation matrix of random parameters for the CRPNB-L model.

FIGURE 7. The estimated parameters and IRR values of significant variables based on the CRPNB-L models. (a) represents the
estimated parameters of the CRPNB-L model. (b) represents the IRR values of the CRPNB-L model.

the 95% Bayesian credibility level with a posterior mean
of 1.194 and a posterior mean of 1.564, respectively. These
results indicated that larger traffic volume and longer tunnel
segments have more crash frequencies, which was consis-
tent with the results of relevant research [8], [9], [33], [34].
The IRR values of segment length and AADT are 1.012
and 1.016, respectively, which was insignificantly different
from 1, meaning that the crash frequency increased almost
linearly with the increase of the segment length or the AADT.
Concretely, the crash frequency will increase by 1.2% if the
segment length increases by 1%, while the crash frequency
will increase by 1.6% if the AADT increases by 1%.

Then, the influences of tunnel design features on crash
frequency were analyzed. The effects of the length of tunnel
on crash frequency were significantly negative at the 95%
Bayesian credibility level with a parameter value of −0.173,
indicating that the increase of tunnel length could effectively
reduce the crash frequency. According to experience, drivers
in a closed tunnel environment for a long time will be more
alert and less prone to traffic crashes. The IRR value (0.841)
of the length of tunnel makes it clear that the crash frequency
on the tunnels with a length longer than 500 m was reduced

TABLE 8. The IRR values of each significant variable in candidate models.

by 15.9% compared with the tunnels with a length shorter
than 500 m. Similarly, the impacts of the curvature on crash
frequency are significantly negative at the 95% Bayesian
credibility level, with a parameter value of−0.052 and an IRR
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value of 0.950. The results provide evidence that the crash
frequency will be nonlinearly reduced with the increase of
curvature, where a 1% increase in curvature results in a 5%
decrease in crash frequency. These estimation results are in
line with the actual situation of highway tunnels in China.
Since the curvature indexes of highway tunnels are strictly
set in accordance with the design specifications, and even
far better than the critical value in the specifications, there
are usually no crashes caused by an unreasonable design of
curvature, but caused by driver fatigue or distraction due to
a curve’s failure to reach the alert level or an insufficient
warning level. A driver may thus exhibit an appropriate
visual impact when driving on sharp curvature segments in
a tunnel, which forces the driver’s attention to be highly
concentrated and the driver to drive in a relatively safe state.
The tunnel entrance indicator and tunnel exit indicator are
both significantly positive at the 95% Bayesian credibility
level, with posterior means of parameters at 0.275 and 0.051,
respectively, indicating that the crash frequency at the tunnel
entrance and exit is higher than that at other tunnel segments.
The IRR values of the tunnel entrance indicator and tunnel
exit indicator (values of 1.317 and 1.052) also clearly proved
that the crash frequency at the tunnel entrance/exit increased
by 31.7%/5.2% than that of other tunnel segments, respec-
tively. Apparently, The sudden changes in environment at
a tunnel entrance or exit, including the light changing and
the visual changes, have great impacts on the physiology of
the drivers, increasing the driver’s safe operation standard
and easily leading to crashes. In addition, tunnel segments
with upper and lower longitudinal slopes greater than 2%
are also prone to crashes, due to the parameter value of the
steep upgrade indicator at 0.176 and the parameter value
of the steep downgrade indicator at 0.259. It can be con-
cluded from IRR values that the crash frequency of tunnel
segments with an upper or lower longitudinal slope degree
greater than 2% increases by 19.2% and 29.6%, respectively,
compared with other tunnel segments. This phenomenon is
easy to explain because the longitudinal slope has certain
influences on the vehicle braking performance, which can
easily cause vehicle braking failures and occurrences of
crashes.

In terms of traffic conditions, the proportion of class 5
vehicle is significantly positively correlated with the crash
frequency at the 95% Bayesian credibility level with the
posterior mean of the parameter at 0.102, indicating that the
greater the proportion of class 5 vehicle there is, the greater
is the crash frequency of this tunnel segment. In reality,
class 5 vehicles, comprising heavy trucks, heavy trailers and
40-foot container trucks limit the driving vision of standard
vehicles in their proximity, so class 5 vehicles are more likely
to have crashes with standard vehicles in their proximity in a
closed tunnel environment. The IRR value of the proportion
of class 5 vehicle is 1.107, explaining that there is a nonlinear
relationship between class 5 vehicles and the crash frequency.
Specifically, if the proportion of class 5 vehicle increases by
1%, the crash frequency will increase by 10.7%.

Finally, the influences of pavement conditions on tunnel
safety were analyzed. The estimation results showed that
PCI and SRI had significantly negative impacts on crash fre-
quency at the 95% Bayesian credibility level, with parameter
posterior means of −0.067 and −0.101, respectively. The
results are also easily understood since drivers have a high
safety rate when driving on tunnel segments with good pave-
ment integrity and better anti-skid performance in most cases.
It is worth noting that the IRR values of PCI and SRI are
0.935 and 0.904, respectively, indicating their nonlinear rela-
tionship with crash frequency. Specifically, crash frequency
decreased by 6.5%when PCI increased by 1 unit.While crash
frequency decreased by 9.6%, when SRI increased by 1 unit.

2) THE INTERACTION EFFECTS OF RANDOM VARIABLES ON
CRASH FREQUENCY
According Table 7, the interaction effects of random variables
on crash frequency can be analyzed. These interactions of
all random variables were positive correlations, where the
interaction between the proportion of class 5 vehicle and
the steep downgrade indicator and between the curvature
and the steep downgrade indicator were most obvious, with
correlation coefficients of 0.666 and 0432, respectively. The
interaction effects of each group of random variables are
explained as follows.

• The interaction effects between the proportion of
class 5 vehicle and the steep downgrade indicator were
positively correlated, with a correlation coefficient of
0.666 (close to 1), which indicated that when steep
downgrade tunnel segments existed a high proportion of
class 5 vehicles, the crash frequency of these segments
is significantly increased. The reason is that a large
number of class 5 vehicle driving on steep downhill
tunnel segments are prone to brake failure and crashes
with standard cars around them.

• The presence of a high proportion of class 5 vehicle in
curved tunnel segments led to a higher crash frequency,
with a correlation coefficient of 0.310. According to
experience, the tunnel segments with a high proportion
of 5 vehicle have limited vision, especially on the curved
tunnel segments. When standard vehicles drive on the
curved tunnel segments with class 5 vehicles at the
same time, the narrow vision will hinder drivers’ correct
operation and increase the crash frequency.

• The combined effects of the proportion of class 5 vehicle
and the SRI were positively correlated with a correlation
coefficient of 0.127, which indicated that the combined
effects of these two factors increased the driving risk in
tunnel segments to some extent. These results are also
easy to understand. Due to the large volume and heavy
weight of class 5 vehicles, the anti-skid performance of
the pavement can easily affect the operation stability of
the class 5 vehicles. Therefore, when class 5 vehicles
drive on the segments with a low SRI value, the vehicles
are more likely to lose control and lead to crashes.
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• The combined effects of the curvature and the steep
downgrade indicator were positive with a correlation
coefficient of 0.432, which meant that a greater crash
frequency will exist in tunnel segments that com-
bine curved and downhill segments. The tunnel seg-
ments combined curved and longitudinal slope sections
improves the operation difficulty of drivers, it is difficult
for drivers to turn smoothly and quickly on the tunnel
segments that combined with curved and steep downs-
lope sections.

• Steep downslope tunnel segments with poor skid resis-
tance had a higher crash frequency, with a correlation
coefficient of 0.185. The reason is also clear given that
vehicles are prone to brake failure when driving on the
steep tunnel segments with poor skid resistance.

• Curved tunnel segments with poor skid resistance had
a higher crash frequency. The main reason is that it
may lead to the failure of the vehicle braking perfor-
mance when turning on the curved tunnel segments with
poor skid resistance. It should be noted that the correla-
tion coefficient between the curvature and SRI is only
0.043, indicating that the interaction effects of the above
two random variables have weak influences on crash
frequency.

V. CONCLUSION
Based on the safety status of highway tunnels in China, this
paper discusses crash frequency models of highway tunnels
and analyses the influences of factors and the interactions
of random variables. First, we collected a total of 545 tun-
nel crashes on typical highways in Guangdong for 3 to 5
years and three types of influence factors of tunnel design
features, traffic conditions and pavement conditions to estab-
lish an appropriate dataset. Based on the established dataset,
we proposed a CRPNB-L model for fitting crash frequency,
which simultaneously considers excess zero observations,
unobserved heterogeneity and its interaction effects existed
in tunnel crash dataset. The CRPNB-L model was compared
with its corresponding FPNB, FPNB-L and URPNB-L mod-
els in terms of goodness-of-fit with DIC, MAD and MSPE,
and the results verified that the CRPNB-L model can deeply
reveal the influences of various factors and their interactions
on crash frequency in highway tunnels, resulting in a better
effectiveness in terms of goodness-of-fit. Finally, we took the
CRPNB-L model as the object to analyze the influencing fac-
tors of tunnel safety. The CRPNB-Lmodel detected 11 signif-
icant variables at the 95% Bayesian credibility level, among
which the estimated parameters of 7 variables were fixed and
those of 4 variables were random parameters, namely, curva-
ture, steep downgrade indicator, proportion of class 5 vehicle
and SRI. The impacts of length of tunnel, curvature, PCI and
SRI on crash frequency were significantly negative, while
the other significant variables were positively correlated with
crash frequency. The IRR values indicated that the tunnel
entrance indicator, the steep upgrade indicator, the steep
downgrade indicator and the proportion of class 5 vehicle had

more prominent impacts on crash frequency. On the other
hand, the CRPNB-L model explained the expected interac-
tion effects of random variables as follows: (1) Interaction
effects between the proportion of class 5 vehicle and the
steep downgrade indicator and between the steep downgrade
indicator and the curvature on crash frequency were rela-
tively strong with correlation coefficients of 0.666 and 0.432,
respectively. (2) When three cases exist, namely, curved
tunnel segments with numerous class 5 vehicle, downslope
tunnel segments that have poor anti-sliding performance of
the pavement, and class 5 vehicles that are traveling on pave-
ment with anti-sliding performance, the crash frequency of
these tunnel segments will be increased to a certain extent.
(3) The interaction effects between curvature and SRI on
crash frequency are positive, but their influence is relatively
weak with a correlation coefficient of 0.043.

The results from this study are expected to provide a better
understanding of how tunnel design features, traffic condi-
tions, and pavement conditions influence crash frequency
in freeway tunnels and provide some suggestions on tunnel
safety measures. For example, the degree of longitudinal
slope in the tunnel segments should be less than 2% as far
as possible, especially when the proportion of class 5 vehicle
is expected to be high. The entrance and exit of tunnels
should be equipped with driving warning signs, especially
in the tunnel entrance. In addition, this study addressed the
importance of road surface maintenance from the aspects of
PCI and SRI. Maintaining road surfaces in good condition
could significantly decrease the crash frequency in tunnels.
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