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ABSTRACT Data envelopment analysis (DEA) is a method of measuring the efficiency of peer
decision-making units (DMUs). Conventional DEA evaluates the performance of each DMU only from the
optimistic point of view. In this paper, the efficiency of a DMU is measured by using an interval efficiency
evaluation model based on incentive compatibility, which considers both the optimistic and pessimistic
attitude of the DMU during the evaluation process. The efficiency of a DMU, which is computed by
combining the two attitudes, can be expressed by interval and provide a more reasonable assessment of the
DMU. The lower bound of the interval efficiency are computed by measuring the worst relative efficiency
of the ADMU, which is between the results of bounded DEA models from the optimistic or pessimistic
points of view. Two numerical examples were examined using the proposed interval DEA model to show its
potential application and validity.

INDEX TERMS Interval linear programming, data envelopment analysis, interval ranking.

I. INTRODUCTION
Data envelopment analysis (DEA), first proposed by
Charnes et al. [1], is an extensively used nonparametric
method to measure the performance of decision-making
units (DMUs) by comparing them in order to obtain the
best evaluation. The corresponding Charnes–Cooper–Rhodes
efficiencies (CCR efficiencies) are referred to as the best
relative efficiencies, which are restricted to be no greater than
one. If the CCR efficiency of a DMU is equal to one, then
it is considered to be DEA efficient; otherwise, it is DEA
non-efficient.

The traditional CCR model only considers the most effi-
cient that the DMU can achieve, but does not consider the
lower efficiency limit of DMU. Searching for the optimal effi-
ciencies of DMUs is an optimistic evaluation, while searching
for the worst efficiency of DMUs is a pessimistic evaluation.
Unilateral evaluation is only considering optimistic evalua-
tion or pessimistic evaluation. The result of unilateral evalua-
tion is crisp efficiency, and interval efficiency can be obtained
by considering optimistic and pessimistic perspectives.
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To consider only unilateral evaluation is one-sided and
unrealistic. Some researchers considered that interval effi-
ciency, which can give a perspective assessment of each
DMU, can be used to evaluate a DMU better than a crisp
efficiency [2]–[5]. Therefore, they proposed many different
models to assess DMUs by using interval efficiency. Theo-
retically, the upper and lower limits of the interval efficiency
constitute the maximization and minimization of the objec-
tive function under the same constraint conditions, respec-
tively. For example, the structures of the interval DEAmodels
that Doyle et al. and Entani et al. proposed to compare
multiattribute objects were similar, but they had the same
drawback that only one input and one output data item of the
DMU were utilized effectively and all the remaining input
and output data were not included in the evaluation process.
Therefore, several scholars developed bounded models to
overcome these defects [6]–[12].

For the existing models, the upper limit of the intervals
of a DMU can be computed easily, which even equals CCR
efficiency in most cases [6], [7], [9], [10], [13], [14]. How-
ever, the lower limits of the intervals cannot be reasonably
measured. In most cases, it is easy to define the best produc-
tion standards, whereas it is frequently difficult to provide
the worst production standards. Wang et al. [13] defined a
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virtual anti-ideal DMU (ADMU), which consumed the most
inputs only to produce the least outputs. They formulated the
bounded DEA by using the CCR efficiency of the ADMU
as the lower bound of all DMUs, and the upper bound of
all DMUs was set to an efficiency of one. In their view,
the relative efficiency of every DMUmust be restricted by the
standard absolutely. However, certain researchers considered
it unreasonable to make the CCR efficiency of ADMU the
lower bound of all DMUs, and developed many models to
modify it. Azizi andAdjirlu [8] presented a virtual ideal DMU
(IDMU), which consumed the least inputs to produce the
most outputs, and they constructed the bounded model by
using the ratio of the CCR efficiency of an ADMU to the
pessimistic efficiency of the IDMU as the lower bound, and
retained the efficiency of one as the upper bound. Chen [15]
retained the worst relative efficiency of the ADMU as the
lower bound efficiency and modified the traditional bounded
DEA models without distortion of frontiers. Nevertheless,
the improved bounded DEA models have a common defect:
the lower limit of interval efficiency of each DMU, which is
computed by the improved bounded models, is too small and
very close to zero [8], [10], [15].

In the market economy, a DMU has both positive and neg-
ative attitudes in the production process and the two attitudes
exist in the self-evaluation. In this paper, compared to the
bounded DEA models, we does not restrict the efficiency of
a DMU by making the standard compulsorily, but introduce
an incentive mechanism to explain the relationship between
the two attitudes and make a DMU as efficient as possible
while imposing the standard. We compute two main sets of
weights for the two attitudes of a DMU and set up the partic-
ipation constraints and incentive compatibility constraints to
conceive an interval DEA model. Then, we discuss whether
the upper bound of each DMU is equal to its CCR efficiency
in most cases. Furthermore, we explain the reasonableness
of the bounded DEA models and redefine the widest interval
efficiency of all DMUs.

The main contents of the remainder of this paper are as
follows. The basic DEA models for evaluating DMUs from
both the optimistic and pessimistic viewpoint are presented
in Section II. In Section III, Wang et al.’s bounded model
is introduced, and the analysis of the irrationalities and the
development of the interval DEA model based on incentive
compatibility are described. In Section IV, the Hurwicz crite-
rion approach for comparing and ranking interval efficiencies
of DMUs is briefly introduced. This is followed by two exam-
ple implementations using real data to show the practical
application of the interval DEA model based on incentive
compatibility. The summary of the paper is presented in
Section VI.

II. PRELIMINARY
In DEA, the maximum ratio of outputs to inputs is called the
efficiency, which is obtained from the optimistic viewpoints
for each DMU.S.ppose there are n DMUs with m inputs and
s outputs. Let xij(i = 1, 2, · · · ,m) and yrj(r = 1, 2, · · · , s)

be the amount of inputs and outputs for the jth DMU (j =
1, 2, · · · , n); we can assume xij(i = 1, 2, · · · ,m) and yrj(r =
1, 2, · · · , s) are all positive. The efficiency of the jth DMU is
defined as

θj =

∑s
r=1 uryrj∑m
i=1 vixij

where ur is the weight of the r th output and vi is the weight
of the ith input. The classic CCR model proposed by Charnes
et al. to measure the efficiency of DMU0 (the subscript zero
represents the DMU under evaluation) relative to the other
DMUs from the optimistic viewpoint is

Max θ0 =

∑s
r=1 uryr0∑m
i=1 vixi0

s.t. θj =

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1, j = 1, 2, · · · , n,

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m. (1)

The variables ur and vi are decision variables and ε is the
non-Archimedean infinitesimal. Eq. (1) can be solved by an
equivalent linear programming (LP) model:

Max θ0 =
s∑

r=1

uryr0

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n,

m∑
i=1

vixi0 = 1,

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m. (2)

Denote by u∗r (r = 1, · · · , s) and v∗i (i = 1, · · · ,m) the
optimal solution to Eq. (2). Then, let θCCR0 =

∑s
r=1 u

∗
r yr0

be the CCR-efficiency or the best relative efficiency.
If θCCR0 = 1, we consider DMU0 to be DEA efficient
(CCR efficient); otherwise, the DMU is considered DEA
non-efficient.

III. INTERVAL DATA ENVELOPMENT ANALYSIS MODELS
BASED ON INCENTIVE COMPATIBILITY
A. BOUNDED DATA ENVELOPMENT ANALYSIS MODEL
In actual production, in order to determine the worst pro-
duction standard, we usually need to consider the waste of
resource. Therefore, we can define the ADMU as follows.
Definition 1 [13]: An anti-ideal DMU (ADMU) is a vir-

tual DMU that consumes the most inputs only to produce the
least outputs.

By this definition, xmax
i (i = 1, 2, · · · ,m) and ymin

r (r =
1, 2, · · · , s) are the inputs and outputs of the ADMU, respec-
tively. They are determined by

xmax
i = max

j
{xij}, i = 1, · · · ,m

ymin
r = min

j
{yrj}, r = 1, · · · , s

219448 VOLUME 8, 2020



W. Pengfei, H. Yan: Interval Efficiency Evaluation Model Based on Incentive Compatibility

Denote by θCCRADMU the CCR efficiency of theADMU,which
is determined by the model

Max θCCRADMU =

∑s
r=1 ury

min
r∑ m

i=1
vixmax

i

s.t. θj =

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1, j = 1, 2, · · · , n,

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m. (3)

This equation can be solved by an equivalent LP model:

Max θCCRADMU =

s∑
r=1

urymin
r

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n,

m∑
i=1

vixmax
i = 1,

ur , vi≥ε, r=1, 2, · · · , s; i = 1, 2, · · · ,m. (4)

Since the ADMU is the worst virtual DMU that con-
sumes the most inputs to produce the least outputs,
the CCR-efficiency of all the DMUs cannot be less than
θCCRADMU. The following theorem shows this.
Theorem 1: θCCRADMU ≤ θ

CCR
0 .

Proof: Let θCCRADMU be the optimum solution of Eq (1),
and u∗rADMU

, v∗iADMU
be the optimal weights of the ADMU

corresponding to θCCRADMU. By Definition 1.∑s
r=1 u

∗
rADMU

yrj∑m
i=1 v

∗
iADMU

xij
≥

∑s
r=1 u

∗
rADMU

ymin
r∑m

i=1 v
∗
iADMU

xmax
i
= θ∗ADMU

and clearly u∗rADMU
, v∗iADMU

is the solution of the model rep-
resented by Eq. (1). Let θCCR0 be the optimum solution

of Eq. (1); then, we have θCCR0 ≥

∑s
r=1 u

∗
rADMU

yrj∑m
i=1 v

∗
iADMU

xij
≥∑s

r=1 u
∗
rADMU

ymin
r∑m

i=1 v
∗
iADMU

xmax
i
= θCCRADMU. This completes the proof. �

Wang et al. (2007) [13] considered the ADMU the worst
virtual DMU, and then it could be considered the worst
standard of all DMUs. This means that the lower and upper
bounds of every DMU should be within the range of inter-
val [θCCRADUM, 1] absolutely. Therefore, the bounded DEA
model was developed to measure the best and worst relative
efficiency:

Max/Min θ0 =

∑s
r=1 uryr0∑m
i=1 vixi0

s.t. θCCRADUM ≤

∑s
r=1 uryrj∑m
i=1 vixij

≤ 1, j = 1, 2, · · · , n

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m. (5)

Eq. (5) can be solved by an equivalent LP model

Max/Min θ0 =

∑s
r=1 uryr0∑m
i=1 vixi0

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n,

s∑
r=1

uryrj − θCCRADUM ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n,

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m. (6)

Denote by θU∗0 and θL
∗

0 the optimal solution of Eqs. (5)
and (6), respectively. They are the best and worst relative
efficiencies of DMU0, and therefore, the interval relative
efficiency of DMU0 is [θL

∗

0 , θU
∗

0 ]. After the study, we can
find θU∗0 ≤ θCCR0 . We prove this conclusion as follows.
Theorem 2: Let θU∗0 be the upper bound of DMU0 based

on the bounded DEA model. Then, we have θU∗0 ≤ θCCR0 .
Proof: Let θU∗0 be the maximum solution of Eq. (5)

and uU
∗

r , vU
∗

i be the optimal weights of DMU0 corresponding
to θU∗0 ; let θCCR0 be the optimum solution of Eq. (2) and
u∗r , v

∗
i the optimal weights of DMU0 corresponding to θCCR0 .

Clearly, uU
∗

r , vU
∗

i is also the solution of Eq. (2), and therefore,
we have θU∗0 ≤ θCCR0 . This completes the proof. �
In most cases, if θCCRADMU is sufficiently small, θU∗0 is equal

to θCCR0 [6], [7], [9], [10], [13], [14].
In the bounded DEA model, Wang et al. (2007) [13]

attempted to explore the lower limit of DMU efficiency by
assuming that all DMU efficiencies are higher than θCCRADMU.
In fact, θCCRADMU is the best relative efficiency of an ADMU.
If the inputs and outputs of the DMU are close to those of the
ADMU, it is unreasonable that their worst relative efficien-
cies must be higher than θCCRADMU. Recently, Azizi and Adjirlu
[8], Azizi [10], and Chen [15] put forward a smaller lower
bound of all DMUs instead of θCCRADMU. However, the lower
bound of each DMU is too small and even close to the
zero in these models, because the bounded models required
that all the relative efficiencies be not less than the lower
bound. Moreover, most researchers considered that if the
lower bound were sufficiently small, the model would be
more reasonable. In our opinion, an incentive mechanism is
required to ensure that the DMUs can be as efficient as pos-
sible according to the restriction of the lower bound. There-
fore, we introduce a new model that considers the incentive
mechanism.

B. INTERVAL DATA ENVELOPMENT ANALYSIS MODEL
BASED ON INCENTIVE COMPATIBILITY
There exists some kind of incentive mechanism to make a
human pursue personal interests, coinciding with the goal of
enterprise, this institutional arrangement constitutes ‘‘incen-
tive compatibility.’’ Incentive mechanisms have been widely
used in many fields [17]–[21].

In fact, the production process is complex. The DMU may
have positive and negative attitudes. When a DMU pursues
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the best efficiency, the positive attitude makes the process
increasingly better. The negative attitude is also caused by
the restriction of the production conditions and in contrast
it causes the process to be increasingly worse. However,
the positive attitude can emerge by means of the incentive
mechanism, so that the worst relative efficiency of DMUs
cannot be close to zero. In other words, the two attitudes exist
at the same time and they influence each other. Therefore,
it is necessary to consider the two attitudes when a DMU
measures its relative efficiency. In this paper, we denote two
sets of inputs/outputs weights for the two attitudes, respec-
tively. Let {ur , vi,|r = 1, 2, · · · , s, i = 1, 2, · · · ,m} be a set
of weights corresponding to the positive attitude, which must
satisfy the conditions

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n (7)

The above equation means the efficiency of the DMU
computed by using the weights of the positive attitude cannot
be greater than one. Then, let {ur , vi|r = 1, 2, · · · , s, i =
1, 2, · · · ,m} be a set of weights corresponding to a negative
attitude, which must satisfy
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n (8)

As Wang et al. [13] assumed, we need to provide an
estimate of the lower bound to ensure that the worst relative
efficiencies of the DMU are not infinitely close to zero. Since
the ADMU is the most wasteful of all DMUs, we can hope
that most of the efficiencies of the DMUs will be higher than
θCCRADMU. Then, we consider that the efficiency of each DMU
when the weights of the negative attitude are applied cannot
be less than θCCRADMU, as shown in Eq. (8).
As noted above, whether a DMU is pursuing a good or a

bad evaluation, it has two attitudes at the same time. Obvi-
ously, the DMU is more positive when pursuing a better
evaluation and more negative when pursuing a worse eval-
uation. Under the different circumstances, the two attitudes
show different priorities. The relationship can be explained
as follows.
Definition 2: The two pursuits are incentive compatible.

The positive attitude is weakly preferred to the negative atti-
tude for the pursuit of a higher efficiency evaluation, while the
negative attitude is weakly preferred to the positive attitude
for the pursuit of a lower efficiency evaluation.

This definition refers to The Theory of Incentives – The
Principal-Agent Model (2001).
As is known, when DMUs seek to obtain a better evalu-

ation, they compare their efficiency with the best efficiency.
In contrast, when they have to seek the lower limit of their
own efficiency, they determine whether they can achieve the
relative minimum standard. Mathematically, Definition 2 can
be expressed as the incentive compatibility constraints

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij, (9)

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij

≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij.

(10)

Eq. (9) illustrates that when DMUs compare their effi-
ciency with the best efficiency, they are more positive and the
positive attitude is weakly preferred to the negative attitude,
and therefore, the difference between the outputs and inputs
caused by the set of weights of the positive attitude is no
less than that caused by the set of weights of the negative
attitude. Eq. (10) illustrates that when DMUs compare their
efficiency with θCCRADMU, this means they want to explore the
worst relative efficiency, and therefore, they are more neg-
ative and the negative is weakly preferred to the positive
attitude. Therefore, the difference between the outputs and
inputs caused by the set of weights of the negative attitude is
no less than that caused by the set of weights of the positive
attitude. The incentive compatibility constraints ensure that
the two sets of weights for the two attitudes can be configured
more reasonably under the different situations.

From Eqs. (7) and (8), the efficiency of one and θCCRADMU can
be considered as relative standards, such as the efficiency of
one is only for the positive attitude and the efficiency θCCRADMU
is only for the negative attitude. This means that the efficiency
of a DMU may be lower than θCCRADMU or higher than one.
Therefore, we need to ensure that the DMU is as efficient
as possible. It is noteworthy that some researchers disagreed
with θCCRADMU as the lower bound of DMUs [8]–[10], [15].
In their opinion, θCCRADMU is considered the absolute standard,
because it is unrealistic that the lower limit of interval effi-
ciency of every DMU should be strictly not less than θCCRADMU.
However, θCCRADMU was regarded as the relative minimum
standard in this study. Furthermore, we hope DMUs can be
better evaluated by using an incentive mechanism. It may
be reasonable to take θCCRADMU as the relative standard for the
negative attitudes because of the incentive mechanism.

The incentive and participation constraints together define
a set of incentive feasible allocations achievable through a
menu of contracts. This leads to the following definition.
Definition 3: A menu of collocation is incentive feasible

if it satisfies both the incentive and participation constraints
represented by Eqs. (7) to (10).

Since we should discuss the interval efficiency of a DMU
based on the incentive and participation constraints of the
two attitudes, we adopt the mean value of the two sets of
the weights to set up the objective function. The principal
problem is written as

Max/Min θ0 =

∑s
r=1 uryr0 +

∑s
r=1 uryr0∑m

i=1 vixi0 +
∑m

i=1 vixi0

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n;
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s∑
r=1

uryrj − θ CCR
ADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n;
s∑

r=1

uryrj − θ CCR
ADMU ∗

m∑
i=1

vixij ≥
s∑

r=1

uryrj

− θCCRADMU ∗

m∑
i=1

vixij, j = 1, 2, · · · , n;

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m.

(11)

Eq. (11) can be solved by the equivalent LP model:

Max/Min θ0 =
s∑

r=1

uryr0 +
s∑

r=1

uryr0

s.t.
m∑
i=1

vixi0 +
m∑
i=1

vixi0 = 1;

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n;
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij, j = 1, 2, · · · , n;

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m.

(12)

Let θL
∗

0 and θU∗0 be the minimum and maximum respec-
tively of the objective function in Eq. (11). By repeat-
ing the above solution process for each DMU, we can
obtain the interval efficiencies of all the DMUs [θL

∗

j ,
θU
∗

j ](j = 1, 2, · · · , n).
We now discuss a special case of incentive feasible allo-

cation of contracts obtained when the contracts targeted for
each situation coincide, i.e., ur = ur = ur , r = 1, · · · ,m,
vi = vi = vi, i = 1, · · · , s. Themodel represented by Eq. (12)
is changed to

Max/Min θ0 =

∑s
r=1 uryr0∑m
i=1 vixi0

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n,

s∑
r=1

uryrj − θCCRADUM ∗

m∑
i=1

vixij ≥ 0,

j = 1, 2, · · · , n,

ur , vi ≥ ε, r = 1, 2, · · · , s; i = 1, 2, · · · ,m.

(13)

The model represented by Eq. (13) is the same as the
bounded DEA model in [13] Wang’s paper (2007), and we
can call it bunching allocations. In Eq. (13), the incentive con-
straints are all trivially satisfied by these contracts. Incentive
compatibility is thus easy to satisfy, but at the cost of a clear
loss of flexibility in allocations that are no longer dependent
on the state of nature. Only the participation constraints are
now important.

As compared with the bounded DEA models, the interval
DEAmodel based on incentive compatibility does not simply
set the absolute standard of the lower bound for all the DMUs,
but also provides the relative standard. Moreover, the indi-
vidual differences of DMUs were fully taken into account
in this study. As a result, the worst relative efficiencies of
DMUs from Eq. (12) are lower than the results in Eq. (6),
and some may be lower than θCCRADMU. This is in line with the
facts. θCCRADMU is the best relative efficiency of the ADMU, but
the lower limit of interval efficiency means only the worst
relative efficiency of a DMU. The evaluation perspectives of
these two kinds of efficiency are different, and therefore, it is
unreasonable to require the worst relative efficiency of every
DMU to be higher than θCCRADMU . Therefore, we take θCCRADMU
only as the relative standard to restrict the negative attitude in
Eq. (12). As the negative attitude is weakly preferred to the
positive attitude when the DMU pursues a worse evaluation,
the relative efficiency obtained by positive attitudes is no
higher than the result obtained by negative attitudes, as shown
in Eq. (10), and therefore, the final relative efficiency of
a DMU is lower than when only the negative attitudes are
considered, as shown in Eqs. (6) and (13).

C. LOWER AND UPPER BOUND OF THE INTERVAL
EFFICIENCY BASED ON THE INCENTIVE COMPATIBILITY
In the models presented in [7], the best relative efficiency
of a DMU was equivalent to the CCR efficiency for every
DMU, when it was further transformed. Similarly, we have
proved that the best relative efficiency of a DMU is no larger
than its CCR efficiency in the bounded DEA model in [13].
In this paper, we should discuss whether the results also hold.
We prove the conclusion as follows.
Theorem 3: Let θU

∗

0 be the best relative efficiency of the
DMU DMU0 resulting from the interval efficiency model
based on incentive compatibility. Then, we have θU

∗

0 ≤ θ
CCR
0 .

Proof: Let {ur , vi, |r = 1, 2, · · · , s, i = 1, 2, · · · ,m},
{ur , vi|r = 1, 2, · · · , s, i=1, 2, · · · ,m} satisfy the con-
straints in Eqs. (7) and (9), and therefore, we have that
{ur , vi|r=1, 2, · · · , s, i = 1, 2, · · · ,m} satisfy

∑s
r=1 uryrj−∑m

i=1 vixij ≤ 0, which means
∑s

r=1 (ur + ur )yrj −
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∑m
i=1 (vi + vi)xij ≤ 0. Consider the model

Max θ0 =
s∑

r=1

(ur + ur )yr0

s.t.
s∑

r=1

(ur + ur )yrj −
m∑
i=1

(vi + vi)xij ≤ 0,

j = 1, 2, · · · , n,
m∑
i=1

(vi + vi)xi0 = 1,

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m

(14)

If we let u′r = ur + ur , v′i = vi + vi, the model above
represented by Eq. (14) is the same as the CCR model. Then,
let θU∗0 be the maximum solution of Eq. (11) and uU

∗

r , vU
∗

i ,

uU∗r , vU
∗

i be the optimal weights of DMU0 corresponding to
θU
∗

0 . Clearly, uU
∗

r , vU
∗

i , uU∗r , vU
∗

i satisfy the constraints of the

model represented by Eq. (14), and therefore, θU
∗

0 ≤ θCCR0 .
This completes the proof. �
In order to compute the lower bound of all DMUs, we can

consider the worst relative efficiency of the ADMU to be
obtained by the model

Min θADMU =

∑s
r=1 ury

min
r
+
∑s

r=1 ury
min
r∑m

i=1 vix
max
i +

∑m
i=1 vix

max
i

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij, j = 1, 2, · · · , n

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m

(15)

Eq. (15) can be solved by an equivalent LP model:

Min θADMU =

s∑
r=1

urymin
r
+

s∑
r=1

urymin
r

s.t.
m∑
i=1

vixmax
i +

m∑
i=1

vixmax
i = 1

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0,

j = 1, 2, · · · , n
s∑

r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij, j = 1, 2, · · · , n

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m

(16)

We denote by θL
∗

ADMU the optimal solution of Eq. (15). The
following theorem proves θL

∗

ADMU is the lower bound of all
DMUs.
Theorem 4: Let θL∗0 be the worst relative efficiency of

DMU0 resulting from the interval efficiency model based on
incentive compatibility. Then, we have θL∗0 ≥ θ

L∗
ADMU.

Proof: Let θL
∗

0 be the minimum solution of
Eq. (11) and uL

∗

r , v
L∗
i , uL∗r , v

L∗
i the optimal weights of

DMU0 corresponding to θL∗0 . Likewise, uL
∗

r , v
L∗
i , uL∗r , v

L∗
i

also satisfy the constraints of Eq. (15), and there-

fore, we have θL∗0 =

∑s
r=1 u

L∗
r yr0 +

∑s
r=1 u

L∗
r yr0∑m

i=1 v
L∗
i xi0 +

∑m
i=1 v

L∗
i xi0

≥∑s
r=1 u

L∗
r ymin

r
+
∑s

r=1 u
L∗
r ymin

r∑m
i=1 v

L∗
i xmax

i +
∑m

i=1 v
L∗
i xmax

i

≥ θL
∗

ADMU. This completes

the proof. �
From Theorems 3 and 4, we can obtain the widest interval

[θL
∗

ADMU, 1], and the efficiency of all DMUswill not exceed it.
As compared with the conclusion in [13], θL

∗

ADMU is the worst
relative efficiency of an ADMU, and therefore, it is more
reasonable to take θL

∗

ADMU than θCCRADMU as the lower bound
of all DMUs. θL

∗

ADMU is obtained by taking into account the
incentive mechanism. In addition, it is higher than the result
in Chen’s (2014) [15] study, where also the worst relatively
efficiency of the ADMU was considered the lower bound of
all DMUs.

D. IMPROVED MODEL
In the model represented by Eq. (11), we utilize the mean
values of the two attitudes to set up the objective functions.
However, the expectations of decision makers (DMs) from
the two attitudes would be different in a real-life production
environment. Now, the parameter η0 denotes the optimistic
expectation of the positive attitude. If η0 > 0.5, the DMU is
said to be up-type, if η0 = 0.5, it is said to be neutral-type, and
if η0 < 0.5, it is said to be down-type. Therefore, the model
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can be improved by including the expectancy:

Max/Min θ0 =
η0
∑s

r=1uryr0 + (1− η0)
∑s

r=1 uryr0
η0
∑m

i=1 vixi0 + (1− η0)
∑m

i=1 vixi0

s.t.
s∑

r=1

uryrj −
m∑
i=1

vixij ≤ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n;
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij,

j = 1, 2, · · · , n;

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m.

(17)

Eq. (17) can be solved by an equivalent LP model:

Max/Min θ0=
η0
∑s

r=1 uryr0 + (1− η0)
∑s

r=1 uryr0
η0
∑m

i=1 vixi0 + (1− η0)
∑m

i=1 vixi0

s.t. η0
m∑
i=1

vixi0 + (1− η0)
m∑
i=1

vixi0 = 1;

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0,

j = 1, 2, · · · , n;
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥ 0, j = 1, 2, · · · , n;

s∑
r=1

uryrj −
m∑
i=1

vixij ≥
s∑

r=1

uryrj −
m∑
i=1

vixij,

j = 1, 2, · · · , n;
s∑

r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij ≥

s∑
r=1

uryrj − θCCRADMU ∗

m∑
i=1

vixij,

j = 1, 2, · · · , n;

ur , vi, ur , vi ≥ ε, r = 1, 2, · · · , s, i = 1, 2, · · · ,m

(18)

If η0 = 1 or η0 = 0, the objective function considers
only one attitude, which is one of the two special cases of
the decision makers’ preference.

IV. RANK OF THE INTERVAL EFFICIENCY
Since the performance of a DMU is assessed as inter-
val efficiency, we need effective and useful methods to

rank and compare efficiencies. Let A = {Ai = [θLi ,
θRi ]|i = 1, 2, · · · , n} be the set of the interval efficiencies of
DMUs, where Ai = [θLi , θ

R
i ] is the interval efficiency of

the ith DMU. In Wang et al.’s (2007) study, the Hurwicz
criterion approach (HCA) was used to compare and rank
interval efficiencies. The definition of HCA is as follows.
Definition 4 [13]: Let Ai = [θLi , θ

R
i ]i = 1, 2, · · · , n be

the interval efficiency and α the DM or assessor’s level of
optimism (0 ≤ α ≤ 1). Then, the Hurwicz index value of Ai
is defined as

H (Ai) = αθUi + (1− α)θLi

The DM or assessor’s attitude toward risk can be indicated
by the parameter α. Therefore, the DM can choose different
values of α to evaluate the interval efficiency for an over-
all perspective. For Definition 4.1, the size of the Hurwicz
index value determines the ranking order of the interval effi-
ciency. In other words, Ai is said to be superior to Aj when
H (Ai) > H (Aj).
For HCA, we have the following two theorems:
Theorem 5: Let Ai = [θLi , θ

R
i ] and Aj = [θLj , θ

R
j ] be two

interval efficiencies. If H (Ai) = H (Aj), then θLi ≤ θLj <

θRj ≤ θ
R
i or θLj ≤ θ

L
i < θRi ≤ θ

R
j .

Proof: Supposing that the conclusion is not established,
we consider the following three cases.
Case 1: for θRj ≤ θ

L
i orθ

R
i ≤ θ

L
j : clearly, H (Ai) 6= H (Aj),

which is contradicted by the conclusion.
Case 2: for θLi < θLj ≤ θ

R
i < θRj : H (Ai) = αθRi + (1 −

α)θLi < αθRj + (1 − α)θLj = H
(
Aj
)
, and therefore, it is

contradicted by the conclusion.
Case 3: for θLj < θLi ≤ θ

R
j < θRi : the proof is similar to

that of Case 2.
Therefore, we have that, if H (Ai) = H (Aj), then θLi ≤

θLj < θRj ≤ θRi or θLj ≤ θLi < θRi ≤ θRj . This completes
the proof. �
Theorem 6 [13]: Let Ai = [θLi , θ

R
i ] and Aj = [θLj , θ

R
j ]

be two interval efficiencies. If θLi ≤ θLj and θRi ≤ θRj , then
H (Ai) ≤ H (Aj).
Theorem 5 shows that if H (Ai) = H (Aj), then Ai ⊆ Aj,

that is, θLi ≤ θLj < θRj ≤ θRi , or Aj ⊆ Ai, that is,
θLj ≤ θ

L
i < θRi ≤ θ

R
j .

V. NUMERICAL EXAMPLES
In this section, we provide two examples to illustrate the
applications, advantages, and good discriminating power of
the models presented in this paper.
Example 1: This example is taken from Entani et al.

(2002) [7] and addresses the DEA efficiency evaluation of ten
DMUs, where each DMU has two inputs and one output. The
data set is shown in Table 1, where all inputs are normalized
to one for simplicity.
Table 2 shows the CCR efficiency, the interval efficiency

obtained by Wang et al., and the interval efficiency obtained
by the interval DEA models based on incentive compat-
ibility. In order to indicate the priority of the DMU, the
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TABLE 1. Data for 10 decision-making units with one input and two
outputs.

TABLE 2. Relative efficiencies for the 10 decision-making units with one
input and two outputs.

symbols ‘‘∼’’ and ‘‘�’’ are used to indicate ‘‘is identical to’’
and ‘‘is superior to,’’ respectively. It is clear from Table 2 that
DMU A1, DMU A5, and DMU A10 are DEA efficient. The
ranking of the 10 DMUs by CCR efficiencies is DMU A1 ∼
DMU A5 ∼ DMU A10 � DMU A7 ∼ DMU A9 � DMU
A8 � DMU A3 � DMU A6 � DMU A4 � DMU A2. The
CCR efficiency cannot discriminate the DMUs fully when the
number of efficient DMUs is more than one. Wang et al. [13]
used the model to assess the interval efficiency of each DMU
under the premise that all the efficiencies of DMUs are within
the range of interval [θCCRADMU, 1]. As a comparison, we used
the interval DEA model based on incentive compatibility in
Eq. (14) developed in this study to re-evaluate the problem.
We recalculated the interval efficiency of each DMU and
obtained the worst relative efficiency of the ADMU, which
is considered as the lower bound efficiency of all DMUs
instead of θCCRADMU. From the data in Table 2, we can con-
clude that the interval efficiency of every DMU achieved by
using the model in Eq. (12) is wider than that by using the
model in Eq. (6). In particular, most of the lower bounds of
interval efficiency are lower than θCCRADMU. Meanwhile, we also
can compute the worst relative efficiency of the ADMU as
0.0815, which is much lower than θCCRADMU (0.2174). Then,
we obtain that the new widest interval efficiency of all DMUs
is [0.0815, 1]. In addition, the number of DMUs with the
same interval efficiency is reduced, for example DMU A1
and DMU A10 have the same interval efficiency when the
model represented by Eq. (8) is implemented, but they are
different from each other when that represented by Eq. (12) is
implemented, and it can be found that the interval efficiencies

TABLE 3. Hurwicz criterion approach and similarity ranking of the
10 decision-making units.

TABLE 4. Input and output variable values.

of all DMUs are completely different when the new model is
implemented, and therefore, we can differentiate and rank the
DMUs better.

Table 3 shows the ranking of the DMUs when the method
proposed in Section 4 is used. For α = 0.5, the DM is
risk-neutral and the ranking order of the 10 DMUs is DMU
A5 � DMU A7 � DMU A10 � DMU A9 � DMU A1 �
DMU A3 � DMU A8 � DMU A6 � DMU A4 � DMU A2;
for α = 0.7, the DM can be considered a risk-seeking type,
and the ranking order of the 10 DMUs is DMU A5 � DMU
A1 �DMU A7 ∼DMU A10 �DMU A9 �DMU A3 �DMU
A8 �DMUA6 �DMUA4 �DMUA2; forα = 0.36, theDM
is risk-averse, and the ranking order of the 10 DMUs is DMU
A5 �DMU A7 �DMU A1 ∼DMU A9 �DMU A10 �DMU
A3 � DMU A8 � DMU A6 � DMU A4 � DMU A2. The
above three levels of optimism reflect the different rankings
of the 10 DMUs according to the different DMs’ attitudes.
Example 2: The data in Table 4, taken from Schefczyk, M

(1993) [22], covered 14 major international passenger carri-
ers for the year 1990 (one of airlines was excluded because
it transported only cargo). The variables are as follows. x1 =
aircraft capacity in ton kilometers; x2 = operating cost; x3 =
non-flight assets (all assets not already reflected in x1), e.g.,
reservation systems, facilities, current assets; y1 = passenger
kilometers; and y2 = non-passenger revenue.

Table 5 shows the interval efficiencies of DMUs com-
puted by using four models. The first three of these models
are those of Wang et al. [13], Azizi and Adjirlu [8], and
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TABLE 5. Comparison of different interval efficiencies of the four models.

TABLE 6. Ranking of the 14 airlines.

Chen [15]. They are called bounded DEA, in which the effi-
ciency of every DMUmust be restricted in some range. Wang
[13] considered that the range must be [θCCRADMU, 1]; however,
some researchers did not agree with this view, but deemed
that θCCRADMU as the lower bound efficiency did not confirm the
actual situation. For example, in the models of both Aziz and
Adjirlu [8] and Chen [15] the relative efficiency of the IDMU
and the ADMUwas combined to give the new lower bound of
all DMUs. As a result, the lower limit efficiency of eachDMU
is sometimes too small, or even close to the zero when these
models are used, as shown in Table 5. Therefore, it seemed
that it was not meaningful to discuss the interval efficiency.

In this study, considering the individual differences of
DMUs, we set the boundary of efficiency as a relative bench-
mark, and propose the new interval DEA model based on
incentive compatibility to make the limit of each DMU be
as close as to the relative benchmark. From Table 2, we can
also conclude that the lower limit of interval efficiency of
every DMU is higher than that in the models of Azizi and
Adjirlu [8] and Chen [15]. Meanwhile, the widest interval
efficiencies of all the DMUs are as follows: (0.0102, 1.0000)
for Azizi and Adjirlu’s model, (0.0030, 1.0000) for Chen’s
model, and (0.0264, 1.0000) for the model proposed in this
paper, represented by Eq. (14). This results will be more
conducive to distinguish the lower efficiency limit of DMUs,
and achieve reasonable sequencing.

Now, we rank theDMUs by the interval efficiency obtained
by the model represented by Eq. (12) in this paper.

In Table 6, we show the ranking of the 14 major inter-
national passenger carriers fully with the interval efficiency,
where the rank in the second column of the table is based
on the results from HCA (α = 0.5). Clearly, the interval
efficiency is better than the CCR efficiency according to the
ranking of the DMUs, and can provide an overall evaluation.

VI. CONCLUSION
In this paper, the interval efficiency of DMUs was addressed,
which can show the best and worst relative efficiency under
the same constraint conditions. The interval efficiency also
can evaluate DMUs more comprehensively. As compared
with the traditional DEA model, for measuring the interval
efficiency, the interval DEA model based on incentive com-
patibility proposed in this paper can give a more realistic and
convincing evaluation. This is reflected in the following two
aspects.

(1) the model considers two attitudes taken by the DMU
during the process of evaluation, which is more in
accordancewith the actual situation, and second, it cites
the incentive compatibility to describe the relation-
ship of the two attitudes during the evaluation process
from different perspectives. The results presented in
this paper show that the lower limits of DMUs do not
always attain θCCRADMU.

(2) In this paper, Considering the individual differences of
decision-making units, we think that the boundary of
efficiency is relative, and there may be some situations
in which the decision-making unit can not be realized,
so we need to make it closer to the efficiency limit
through certain incentive mechanism. the lower bound
of the interval efficiency are computed by measuring
the worst relative efficiency of the ADMU, which is
between the results of bounded DEA models from the
optimistic or pessimistic points of view.

Finally, the interval efficiency can allow a more com-
prehensive assessment of DMUs than the traditional DEA
efficiency, and therefore, it is expected to be more widely
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applied in even more varied spheres. It is especially note-
worthy that, although the interval model in this paper based
on incentive compatibility is an input-oriented DEA model,
it also can be constructed in output-oriented form. Further-
more, the improvedmodel with the optimistic expectation can
be considered with returns to scale. The model can also be
extended with interval numbers or fuzzy numbers. Because
of space limitations, this is omitted in this paper.
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