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ABSTRACT Over the past decade, a growing number of studies have investigated the relationship between
the structure and function of human brain by predicting the resting-state functional connectivity (rsFC)
from structural connectivity (SC). Yet how the whole-brain patterns of FC emerge from SC still remains
incompletely understood. Unlike previous studies, here we propose an alternative approach for addressing
this issue by predicting SC from rsFC. We first hypothesize that the functional couplings among brain
areas at rest are shaped at least in three phases temporally: the initial direct interplay between brain areas,
the communications within and between network modules, and followed by the indirect interactions ascribed
to indirect structural pathways.We then introduce a network deconvolution (ND) algorithm inspired from the
mechanism of cell differentiation, named CDA, to distinguish the direct dependencies from the functional
network followed by a weight trimming algorithm based on Euclidean distance kernel function for shrinking
the modular effects. Finally, we keep those region pairs with shorter shortest path length (SPL) together with
shorter Euclidean distance as the structural connections. We apply the model and the algorithms to three
intensively studied group averaged empirical connectome datasets with different parcellation resolutions
and the results demonstrate that the predicted intrahemispheric structural connections and the weights
distribution are highly consistent with the empirical SC derived from diffusion magnetic resonance imaging
(dMRI) and probabilistic tractography, thus strongly supporting the model and algorithms proposed.

INDEX TERMS Human brain mapping, brain connectivity, structure-function relation, network
deconvolution.

I. INTRODUCTION
Unravelling the relationship between the relatively static
anatomical topology and the diverse functional repertoire
of the human brain is highly crucial for understanding the
mechanisms of how brain cognition and diseases are devel-
oped [1]–[3]. Since the beginning of 1990s, diffusion MRI
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and functional MRI (fMRI) have become two emerging types
of in vivo noninvasive neuroimaging means for mapping the
connectivity of human brain [4], [5]. Diffusion MRI espe-
cially diffusion tensor imaging (DTI) and diffusion spectrum
imaging (DSI) are able to measure the number and density of
the anatomical white matter fiber tracts between brain areas
while the functional MRI is capable of recording the blood
oxygenation level-dependent (BOLD) signals that indirectly
reflect the true neural activities occurring in human brain.
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Both imaging modalities can be used to estimate one kind
of brain connectome rendered as a square symmetric connec-
tivity matrix [6]–[8]. The matrix inferred by dMRI is called
structural connectivit (SC) in which each entry refers to the
anatomical connection strength or density measured between
two brain regions, while the matrix estimated by fMRI is
termed functional connectivity (FC) in which each element
is usually obtained by computing the statistical correlation
between BOLD time series.

In the past decade, the relationship between SC and FC
has received increasing attention in the field of neuroscience.
Numerous statistical and computational modeling studies
have been conducted to uncover how SC gives rise to FC and
how FC emerges from SC by predicting FC from SC. Some
statistical studies suggested that FC can be predicted but to
a limited extent by some anatomical connectivity features
such as fiber length, fiber counts or physical distance between
brain regions [9]–[13]. For example, a study using SC to
predict FC [9] observed that the relationship between SC
and FC is robust when structural connections are present.
However, when direct SC is absent, the FC varies over a
wide range and could be accounted by indirect linkages
which were shown a significant predictor of FC, especially
for the visual cortices of each hemisphere. Another study on
macaque also supported this finding that the generation of FC
in the absence of direct SC can be determined by signal flows
via connections with common afferents mediated by a third
area [10]. The configuration of motifs, such as length2-SC
indirect patterns, revealed an important role of SC-FC rela-
tion. Note that the brain functional and structural networks
also have topological properties, such as modularity. Intra-
modular connections, which predominate in highly modu-
lar brain networks, are generally short distance. However,
between-modular connections are generally long-distance,
even though they can help achieve high global efficiency
of brain networks. Penalizing SC connections by a function
of distance was demonstrated efficient to simulate FC [12].
Others explored the relations using network topological fea-
tures such as shortest path, search information, path transitiv-
ity [14], [15], as well as unweighted degree product [16], [17].
While computational modeling approaches such as linear
and nonlinear neural mass models (NMM) tend to simulate
the neural dynamics among neuronal populations in human
brain [3], [9], [18]–[21], in which hundreds of differential
equations and tens of physiological parameters are involved,
making it a daunting task to find an optimal solution. More
recent studies relate SC and FC through machine learning
approaches such as matrix or spectral mapping [22], [23],
connectome embedding [24], temporal multiple kernel learn-
ing [25], and routing with linear programming [26], etc. The
key difference between machine learning based approaches
and traditional methods is that the machine learning based
approaches are able to highly capture the relation between
SC and FC from the connectome data directly, yet the model
parameters need to be retrained for different connectome
data. In fact, the fundamental role of how the whole-brain

pattern of FC particularly FC between region pairs with-
out direct anatomical link is shaped still remains fully
unknown.

Different from previous studies, here we present an oppo-
site approach to address this issue by predicting the SC from
rsFC. We first establish a FC model that allows for three
different types of effects including the direct dependencies
between neuronal populations, information exchange within
and between network modules, and the indirect interactions
via indirect pathways. We then build network inversion algo-
rithms to remove the indirect and modular effects from FC in
a reverse order and finally predict the structural connections
from the remaining connections with shorter shortest path
length and Euclidean distance. Finally, we test the model and
algorithms on three group averaged empirical connectome
datasets with different resolutions and the performances are
evaluated by comparing the predicted structural connections
with the empirical structural connections in terms of the
number of the correctly or falsely predicted links as well as
the weight distributions of the connections.

II. MATERIALS AND METHODS
A. CONNECTOME DATASETS
Three connectome datasets with different resolutions were
used for testing and assessing the proposed models and
algorithms.

The 90 ROIs (regions of interest) dataset was obtained at
Weill Cornell Medicine and employed in [18], [19], in which
the structural and diffusion MRI together with the resting-
state fMRI data were collected on 8 healthy adults and par-
cellated into 90 cerebral regions after diffusion tractography
processing. The structural connection weight between any
two regions was estimated by a weighted sum of fiber tracts
going between them and corrected by topological distance.
The functional connectome and the corresponding matrices
were obtained by computing the Pearson correlation between
BOLD time series derived from resting-state fMRI. Both
resting-state FC and SC matrices were averaged across the
8 individual participants. To be in common with the other
two datasets, we rearranged the lobe order as: frontal, parietal,
occipital, temporal, and subcortical.

The 246 ROIs dataset is a subset of the connectivity-
based brain imaging research database (C-BIRD) at Beijing
Normal University [27], which contains multi-modal MRI
data from 49 young healthy subjects. Informed consent
to all participants in the Institutional Review Board (IRB)
of the State Key Laboratory of Cognitive Neuroscience
and Learning of Beijing Normal University and approved
study was obtained. All participants agreed to share data
freely on the Internet in an anonymous form. In our study,
the human Brainnetome atlases of 246 brain ROIs was
used (http://atlas.brainnetome.org) [28]. This atlas composed
of 210 cortical and 36 sub-cortical subregions, which contains
the information on both anatomy and functional connections.
Probabilistic tracking was performed and the fiber direction
was determined according to the probability to obtain the
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structural connection of 246 ROIs. The structural connectiv-
ity matrix of each participant was obtained through PANDA
software (https://www.nitrc.org/projects/panda/), in which
rows and columns represent brain nodes, and element val-
ues represent connection probabilities between nodes. The
resting-state FC matrix was calculated using pair wise
Pearson’s correlation coefficients of BOLD time series
obtained from each brain area. Both rsFC and SC matrices
were averaged across the 49 individual participants.

The high resolution dataset with 998 ROIs has been exten-
sively studied in previous research [9], [14], [29], [30],
in which the structural and diffusion MRI together with
the resting-state fMRI data were collected on 5 healthy
right-handed male subjects. DSI was performed using a
diffusion-weighted single-shot echo planar imaging (EPI)
sequence. Following diffusion spectrum and T1-weighted
MRI acquisitions, the segmented gray matter was partitioned
into 998 ROIs. White-matter tractography was performed
with a custom streamline algorithm and fiber connectivity
was aggregated across all voxels within each of the 998 prede-
fined ROIs. The resting-state FC matrix was calculated using
pair wise Pearson’s correlation coefficients of BOLD time
series obtained from each brain area. Both rsFC and SC were
averaged across the 5 individual participants. Refer to [14]
and [29] for more details.

All the aforementioned connectivity matrices are symmet-
ric and arranged that the upper left and lower right quadrants
map the right hemisphere and left hemisphere of the brain
respectively, while the off-diagonal quadrants map the inter-
hemisphere between the two.

Because weak and non-significant links may represent
spurious connections in FC [31], therefore, we removed all
the connections whose strength were smaller than 0.1 and
the negative connections (the functional anticorrelations still
remain elusive) in FC. Furthermore, all self-connections
(diagonal elements in the FC matrix) were also excluded.

The three empirical group-averaged connectomes are
demonstrated in Fig.1.

B. MODEL OF FC
We start with the assumption that the observed resting-brain
functional network, Gobs, can be formulated as the sum of
at least three parts in temporal order of formation: the direct
network Gdir , the modular network Gmdl , along with the
indirect network Gind :

Gobs = Gdir + Gmdl + Gind (1)

where Gobs, Gdir , Gmdl , and Gind are fourM ×M symmetric
matrices, containing non-negative elements only.M indicates
the number of brain areas. The direct network, Gdir , stem-
ming from the relatively invariant anatomical structure, which
reflects the initial interplay among brain areas or neuronal
populations. The modular network, Gmdl , arising from the
communication within and between network modules, which
allows for local segregation and global integration. While the
indirect network,Gind , induced by the indirect paths between

FIGURE 1. The mean FC and SC connectomes of the three datasets.
(A) 90-ROI dataset, averaged across 8 individual participants. (B) 246-ROI
dataset, averaged across 49 individual participants. (C) 998-ROI dataset,
averaged across 5 individual participants.

brain areas, which can facilitate the signal transmission along
structural pathways.

DefineGdirm = Gdir+Gmdl as thewhole direct effects after
the modular effects set up. According to previous studies [9],
[14], [22], [23], the indirect effects on FC cannot be exclu-
sively attributed to the indirect paths of length 2, but there
is no denying that longer paths contribute less to the whole
FC. Here, for computational convenience, we suppose that
the indirect effects induced by the longer indirect paths are
approximately proportional to the direct effects, thus we can
model the indirect effects as

Gind ≈ αG2
dirm + (1− α)Gdirm (2)

where 0 < α < 1, indicating different contributions to the
whole indirect effects by indirect paths of length 2 and longer
paths.

Putting (1) and (2) together, we obtain,

Gobs = (2− α)Gdirm + αG2
dirm (3)

C. NETWORK DECONVOLUTION WITH CDA
Distinguishing the direct network Gdirm from the observed
network Gobs in (3) can be formulated as a network
deconvolution problem [32]. Obviously, there are no real
and analytical solutions to (3) due to its nonlinearity
and high dimensionality. Here, we formulate the network
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deconvolution problem as finding an optimal direct connec-
tion matrix by optimization.

Specifically, for a given direct connection matrix Gdirm,
we can obtain a prediction of the observed correlation matrix
from (3), denoted by Gpobs. Then network deconvolution pro-
cess can be converted into searching for an optimal sparse
direct connection matrix Gdirm, subject to

argmin
Gdirm

E(Gobs,G
p
obs)=

∥∥Gobs−Gpobs∥∥22+∥∥Gobs−Gpobs∥∥1
(4)

The Frobenius 2 - norm term in (4) measures how well the
direct connection matrix describes the observed connection
matrix, and here we define this as the sum of the square of all
the entries in the error matrix Gobs − G

p
obs:∥∥Gobs − Gpobs∥∥22 =∑

i,j

[
Gobs(i, j)− G

p
obs(i, j)

]2 (5)

whereas the 1 - norm term in (4) is used to expedite the
iteration process during optimization and defined by the sum
of the absolute value of all the entries in the error matrix
Gobs − G

p
obs:∥∥Gobs − Gpobs∥∥1 =∑

i,j

∣∣Gobs(i, j)− Gpobs(i, j)∣∣ (6)

It is not easy to find an global optimal direct connection
matrix Gdirm from (3) and (4) using the traditional gradient
descent algorithms due to the high dimensionality of the
problem andwill get even harder when the size of the network
increases. While bio-inspired optimization algorithms, such
as genetic algorithms (GAs) [33], particle swarm optimiza-
tion (PSO) [34], and ant colony optimization (ACO) [35],
etc., can only handle problems with dozens of dimensions.
It is worth noting that Zhong et al. [36] incorporated the
multi-agent concept into GAs and proposed a multiagent
genetic algorithm (MAGA) which can handle high dimen-
sional function optimization problems with 20-1000 dimen-
sions. However, the performance of MAGA worsens rapidly
when the dimensions of the solution space approaches 10000.
Normally, MAGA needs tens of thousands of iterations to get
the optimal solution even with 1000 dimensional functions.

Studies in developmental biology show that cell differenti-
ation is a fundamental and central process for shaping tissues
and organs with specific functions in our body. The resulting
morphogenesis involves several cellular behaviors such as
division, differential growth, migration, fusion, differential
adhesion, contraction, as well as apoptosis (programming
death) [37]. These behaviors allow for local cell-cell interac-
tions and gene regulations occurring under precise spatiotem-
poral coordination [38], [39]. Inspired by the developmental
mechanisms of cell differentiation at the microscale, in our
previous work, we developed a new biologically inspired
optimization algorithm for handling super-high dimensional
optimization problems [40], in which only four behaviors
were simply modeled and the algorithm can only be applied

to numerical function optimization. In this paper, we rede-
fine all the cellular behaviors mathematically and extend the
algorithm to matrix optimization cases because a matrix can
be simply symbolized as a cell. Additionally, the elements
in the matrix can be modeled and expressed by genes and
the matrix operations can be viewed as the morphological
changes of a cell, thus the matrix optimization process can be
realized by performing the behaviors of cell differentiation.
A number of child cells descended by their parent interact
with each other by regulating their internal gene expressions
to evolve generation by generation by way of exhibiting
different differentiation behaviors aforementioned. On the
basis of the principle of survival of the fittest, cells with
higher activity values will be more likely to continue to be
alive after each differentiation behavior, while those with
smaller activity values will die and be replaced by other
more robust cells. Therefore, the quality of the cells will be
better and better. After a certain number of evolving genera-
tions, the cell swarm will be smoothly differentiated towards
the best shape representing a global optimal solution to the
problem.

Consider C is a set of N cells, C = {cell1, cell2, · · · ,
cellN }, and define Cs as the stem cell of C . Where celli
(i = 1, 2, . . . ,N ) is the ith cell denoted by a n × n matrix
and celli−1, celli+1 are its two neighbors. Let Pmi,Pad , Pfu
and Pap, denote the probability of cell migration, differential
adhesion or contraction, fusion, and apoptosis during cell
development and differentiation, respectively; acti and agei
refer to the activity value and age of cell i, respectively.

1) CELL DIVISION AND GROWTH
Cell division is the first developmental behavior for nearly
all types of cells, particularly asymmetric mitosis, which
occurs autonomously and can be modeled by dividing each
cell asymmetrically into descendent cells distinct from their
parents [37].

Specifically, assume k is a random number within (1, n),
the division of a cell can be defined as dividing the mother
cell into two daughter cells:

celli = celli1 + celli2 (7)

where the first k rows of celli are duplicated into the corre-
sponding rows of celli1, the remaining n− k rows of celli are
copied into the corresponding rows of celli2, while the rest of
the rows in celli1 and celli2 are all set to be 0.

Then make the two daughter cells grow by replacing the
last n − k rows of celli1 and the first k rows of celli2 with
random values generated from the stem cell, Cs, respectively,
i.e. u(0,Cs), note that u(·, ·) is a uniform random number
generator and u(0,Cs) represents a random matrix.
For computational consideration, if the activity value of

either of the daughter cells is higher than their parent, the par-
ent cell will be replaced by the daughter cells with higher
activity value. Otherwise, the parent cell will remain to
live.
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2) CELL MIGRATION
Cell migration means the cells inside the tissue will
move from one location to another. Migration can be ran-
dom or towards a preferred direction. Here, we use two strate-
gies for modeling cell migration in CDA: directed migration
and randommigration. Directedmigrationmeans the cell will
move towards where the best cell (with the highest activity
value currently) in the current generation is located, while
random migration means the cell moves to some location
between its current location and the best cell randomly.

Specifically, for each celli, if u(0, 1) > Pmi, the cell will
perform directed migration strategy:

celli = cellbest + (celli − cellbest ) ·Mstepi · u(−1, 1) (8)

Otherwise, the cell will perform random migration
strategy:

celli = celli + (cellbest − celli) ·Mstepi · u(−1, 1) (9)

where cellbest is the best cell in the current generation,Mstepi
stands for the migration step length which is defined by,

Mstepi = acti/
N∑
i=1

acti (10)

where acti stands for the activity value of celli, which can be
defined by the objective function in (4).

3) CELL FUSION
Cell fusion indicates the cell will merge with the best cell
around its neighbors. There are also two strategies of cell
fusion, one is dominated by the cell per se, the other by the
best cell from its neighbors.

For each celli, if u(0, 1) < Pfu, the cell will perform the
following fusion strategy:

celli = cellbesti + (cellbesti − celli) · u(−1, 1) (11)

Otherwise, the cell will perform strategy:

celli = celli + (celli − cellbesti ) · u(−1, 1) (12)

where cellbest is the cell with maximum activity value among
its 4 neighbors: {celli−2, celli−1, celli+1, celli+2}.

4) CELL DIFFERENTIAL ADHESION AND CONTRACTION
Cell differential adhesion and contraction are crucial steps in
cell differentiation and defined by the gene networks. Cell
differential adhesion and contraction change the size and
shape of cells and then generate long-range forces between
the differentiated cells, and results in cell migration and
mechanical stresses on cells, which may trigger cell division,
growth, and death [39].

In CDA, cell differential adhesion and contraction are
modeled to change the values of each gene by increas-
ing or decreasing a small random value related to the stem
cell through heating or cooling the cell by changing the
temperature T .

For each celli, if u(0, 1) < Pad , the cell will perform the
following adhesion and contraction strategy:

celli = celli + u(−1/(T + 1), 1/(T + 1)) · Cs (13)

where T denotes the temperature, which will increase by
1 degree after each iteration, if it exceeds a predefined value
it will be reset to zero. At present, the predefined temperature
is set to be 100 degrees Celsius for CDA.

5) CELL APOPTOSIS
Cell apoptosis is also crucial in pattern formation and mor-
phogenesis, which can transform one pattern into another.
In CDA, wemodel cell apoptosis by just resetting some genes
in the cell to be zero or replacing them by a small value
generated randomly if the activity values of these genes are
still below some value after a certain number of generations.
The life span of a cell, 100, is chosen in the current CDA.

Specifically, for each celli, if its age exceeds the life span
and u(0, 1) > Pap, those genes with smaller activity values
will be set to zero; or if u(0, 1) < Pap, these genes will be
randomly generated using u(0, 0.1).

Based on the above description, the network deconvolution
algorithm based on CDA can be implemented by the follow-
ing steps:
Step 1: Initialize the cell swarm. Generally, in an evolu-

tionary algorithm, the initial population is usually created by
randomly assigning each gene to a binary or a real number.
While for CDA-ND, all theN initial cells are descended from
the stem cell, denoted by the observed functional network,
Gobs, i.e.:

celli = Cs −
i
N
· Cs, i = 1, 2, · · ·N (14)

It is worth noting that each cell represents a candidate solution
and can be specified by aM ×M matrix.
Step 2: Estimate the activity value of each cell, act(celli),

based on (4);
Step 3: For each cell, exhibit the division behavior

first, then followed by growth, migration, fusion, adhesion/
contraction, and apoptosis differentiation behaviors as well.
And then evaluate all the cells after each behavior by compar-
ing the activity values between the mother cells and the child
cells and keep the cells with higher activity values;
Step 4: Update the cell swarm and find the one with the

highest activity value, i.e., the best cell in the current genera-
tion t , cell tbest ;
Step 5: If act(cell tbest ) > act(cell t−1best ), leave the celltbest

in the next generation; otherwise cell tbest ← cell t−1best . This
step will ensure the CDA to converge to the global optimum
because the best solution is always maintained in the swarm;
Step 6: Decide whether it satisfies the termination crite-

rion or not. If the stopping criterion holds, the algorithm will
end, otherwise repeat from Step3.

The overview of CDA-ND is schematically illustrated in
Fig.2.
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FIGURE 2. Overview of CDA-ND. A number of child cells descended by
their parent interact with each other by regulating their internal gene
expressions to evolve generation by generation by way of exhibiting
different differentiation behaviors such as division, growth, migration,
fusion, adhesion, contraction as well as apoptosis (programming death).
From left to right: the parent cell (the original observed FC), three
snapshots of the initial child cells coming from the parent cell, cell
differentiation behaviors, and the optimal cell after CDA-ND (the
remaining direct connectivity after the indirect effects on FC matrix are
removed.

D. KERNEL-BASED WEIGHT TRIMMING (KWT)
The deconvolved direct correlation network Gdirm after net-
work deconvolution with CDA consists of two parts: the ini-
tial direct dependencies between brain areas and the modular
effects owing to the modular network structure. Studies on
network topology and properties of the anatomical connec-
tivity of human brain indicated that the brain structure shows
small-world characteristics, i.e., with high local clustering
coefficient and small average shortest path length, allow-
ing for local functional segregation and global functional
integration [2], [12], [29]. This can be evidenced by the
rich-club organization of the structural connectivity of the
human brain [41], in which many small group of mod-
ules clustered by short-range connections between cortical
region pairs are highly connected through hubs. The small-
world and modular structure of human brain network suggest
that there more likely exists an anatomical link between
region pairs with shorter physical distance while the proba-
bility of having a link between two distant regions is much
smaller. Thus, we can construct a Gaussian kernel matrix
based on Euclidean distance between brain areas and map
it onto the deconvolved direct network Gdirm after CDA to
hold the short-range and weaken the long-range connection
strength.

Specifically, for each region pair (i, j), we choose the
Gaussian kernel function as,

K (i, j) = e−
|D(i,j)|2

2σ2 (15)

where D(i, j) denotes the Euclidean distance between region
i and j, which can be estimated using the mean Talairach
coordinates of voxels comprising an ROI [9]; σ is a volume
parameter, controlling the size of the modules and varying
with the network size.

TABLE 1. List of the important acronyms.

Finally, the resulting direct network can be obtained by
kernel-based weight trimming (KWT), as follows,

Gdir = KGdirm (16)

III. RESULTS
Our results are verified by following: first, evaluating
the optimization algorithm–CDA by minimizing the error
between observed matrix (i.e., functional networks) and sim-
ulated observed matrix to find the optimal deconvolved direct
matrix on example datasets; second, validating the role of
the shortest path length (SPL) to reconstruct empirical SC by
showing the receiver-operating characteristic curves (ROC)
and the area under curves (AUC); third, verifying the pre-
dicted SC by checking both the rate of correctly predicted
connections and the similarity of connection strength with
the empirical SC; fourth, comparing proposed algorithm with
two existing methods by showing the prediction rates.

For convenience, we list the important acronyms used
in Table 1.

A. EVALUATION OF CDA
Before applying the proposed CDA to the empirical con-
nectome datasets. We first apply it to search for an optimal
symmetric matrix with 100×100 dimensions, which satisfies
(3), where α = 0.6. The simulated direct matrix and the
observed matrix are shown in Fig. 3 (A) and (B), respectively.

Some model parameters need to be predetermined before
the CDA works. The population size of cells, Nc, can usually
be chosen as 20-50. Themigration probabilityPmi determines
whether CDA exploits new locations between the current cell
and the current best cell or explores around the current global
best cell, whenPmi < 0.5, CDAmainly acts on searching new
solutions (exploitation). The fusion probability Pfu decides
how often the cells exchange their informationwith their local
best (within their neighbors). While the adhesion or contrac-
tion probability Pad ensures the diversity of cells, obviating
the premature of the algorithm and the apoptosis probability
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FIGURE 3. Applying CDA-ND algorithm to find an optimal symmetric
matrix with 100× 100 dimensions. (A) the simulated direct matrix. (B) the
simulated observed matrix. (C) the deconvolved direct matrix after
CDA-ND. (D) the convergence performance. The Pearson correlation
between the simulated direct matrix and the deconvolved direct matrix
is 0.9987.

Pap controls the death of genes in a cell if the age of a cell
with lower activity value exceeds its life span.

After a large number of tests, in our study, the parameters
of CDA are chosen as: N = 20, Pmi = 0.5, Pfu = 0.5, Pad =
0.2, Pap = 0.1, the life span of a cell is 100, the temperature
T is 100. Two termination criteria are exploited: (1) to ensure
each entry in the error matrix,, Gobs − Gpobs, is less than
10−5, then the total error calculated by (4) satisfies ε ≤
(M ∗ (M − 1) /2)×10−5, where M is the order of the matrix
to be optimized; (2) the maximal number of generations
exceeds a predefined number.

The optimal direct matrix after CDA is shown in Fig.3 (C)
and the convergence performance is shown in Fig.3 (D).
It can be seen that the deconvolution error drops down to the
predefined precision (0.0495) from 14.517 after 55,597 num-
bers of generations (Fig.3 (D), about 1.634 hours on a Dell
laptop computer with Intel (R) Core (TM) i7-7560 CPU @
2.40GHz, 16G memory, and Windows10 operating system).
The Pearson correlation between the simulated direct matrix
and the deconvolved direct matrix is 0.9987, indicating that
the simulated direct network with size 100×100 can be fully
distinguished from the observed functional network with the
proposed CDA.

We then apply the CDA to the empirical 90-ROI and
998-ROI datasets, respectively. The recordings of the con-
vergence curves for the 45 × 45 matrix optimization (RH,
90-ROI dataset) and 500 × 500 matrix optimization (RH,
998-ROI dataset) are shown in Fig. 4 (A) and (B), respec-
tively. It can be seen that the deconvolution error drops down
to 0.0017 from 5.77 after 10,000 numbers of iterations for
the 45× 45 matrix optimization (Fig. 4 (A), about 3 minutes
on the same Dell laptop computer), while from 258.38 to
5.76 after 20,000 numbers of iterations for the 500 × 500
matrix optimization (Fig. 4 (B), about 10 hours on the same

FIGURE 4. Two sample convergence curves of CDA–ND for the RH of the
90-ROI and 998-ROI datasets. (A) 45× 45 matrix optimization (RH,
90-ROI). (B) 500× 500 matrix optimization (RH, 998-ROI).

TABLE 2. Reconstructed results of the empirical SC for the three datasets
by log-weighted SPL and the number of steps.

Dell laptop computer ), showing the proposed CDA is able
to find an optimal matrix with size up to 500 × 500, i.e.
250,000 dimensions, after a certain number of iterations.

B. STRUCTURAL CONNECTION IDENTIFICATION
Note that Gdir represents the positive couplings between not
only the structurally connected brain regions but also some
regions that are indirectly structurally coupled, which could
be simulated by a neural mass model.Nevertheless, it is an
intractable issue to infer the true SC by inversion from a
neural mass model. Here we adopt an alternative way to build
the bridge between Gdir and the actual SC.
We find that the SPL together with the number of steps

along the shortest path between brain areas can highly cap-
ture the relation between both connected and unconnected
pairs of regions, including structural links showing negative
correlations. We validate this by extracting the SPL matri-
ces from the empirical SC matrices of the three datasets
and keeping those region pairs with shorter weighted path
length together with fewer steps along each shortest path.
Log-weighted length was chosen due to the log-normal dis-
tribution of the connection strengths [9], [29], [42]. We eval-
uate the reconstructed results using the ROC curves (Fig.5),
in which all the AUC value of the three datasets are close to 1,
meaning nearly all the intrahemispheric structural connec-
tions, including those connections with negative functional
correlations, can be correctly reconstructed when detecting
the same number of connections as the actual number of
connections within each hemisphere of the empirical SC. The
reconstructed results are assessed by true positive rate (TPR)
and false positive rate (FPR), as listed in Table 2, showing that
93.26%, 84.45%, and 91.7% of the mean intrahemispheric
links are correctly reconstructed for the 90-ROI, 246-ROI,
and 998-ROI datasets respectively.

C. SC PREDICTION
In what follows, we apply the model and algorithms to the
three empirical datasets to predict the structural links of the
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FIGURE 5. The performance evaluation of the reconstructed empirical SC using ROC curves for the three datasets by log-weighted SPL and the number of
steps. All the areas under curves (AUC) are close to 1, which suggests that the shortest path length together with the number of steps of the path can
strongly reflect the SC irrespective of whether the functional correlations between the connected node pairs are positive or negative.

right hemisphere (RH) and the left hemisphere (LH), respec-
tively. We do not evaluate the interhemisphere (IH) because
studies on dMRI suggested that the structural connections of
the IH are noisy and some structural connections might be
missed or falsely measured [43]–[47]. As the predicted SC
is weighted, we apply two methods to verify the quality of
the predicted SC. Firstly, we check the rate of correctly pre-
dicted links (prediction rate) by detecting the same number
of connections as the actual number of connections within
each hemisphere of the empirical SC and plotting ROC curves
under a range of continuous predicted SC thresholds. The
empirical structural network is binarized where connections
are either absent (strength is 0) or present (strength is positive)
before ROC analysis. A high prediction rate indicates that the
structural links are well distinguished from a dense connected
functional network regardless of the connection strength.
Secondly, to assess the connection strengths of the predicted
SC, we also graphically demonstrate the predicted connec-
tomes as compared with the empirical weighted SC for each
dataset, and the Pearson correlations which linearly depict the
strength similarity between the two are given as well. It is
worth noting that, in the current model, the optimal FCmodel
parameter α was determined as 0.6 after extensive tests across
all the three datasets, while the optimal kernel parameter σ
was chosen as 30 for the 90-ROI dataset and 15 for the other
two datasets with higher resolutions, respectively.

The prediction results are averaged with 5 runs and
compared among CDA alone, CDA followed by SPL
(CDA - SPL), as well as CDA followed by KWT and then
SPL (CDA-KWT–SPL) (Table 3). It can be seen that, com-
pared with CDA alone, the prediction rate of the RH and LH
are increased by 4.34% and 3.98% for the 90-ROI dataset,
2.88% and 3.35% for the 246-ROI dataset, and 6.44% and
7.22% for the 998-ROI dataset with CDA-SPL, respectively.
While with CDA- KWT –SPL, the prediction rate of the RH
and LH are raised by 18.79% and 13.58% for the 90-ROI
dataset, 7.09% and 6.7% for the 246-ROI dataset, and 14.83%
and 16.29% for the 998-ROI dataset respectively as compared
with CDA alone. The mean SC prediction rates are more than

TABLE 3. Comparison results of the prediction rates (%) for the three
datasets with the three methods.

91% for the 90-ROI dataset, 83% for the 246-ROI dataset,
and 74% for the 998-ROI dataset, respectively. These results
suggest that the indirect paths and the Euclidean distance
between brain areas are two contributing factors and play
different roles in yielding the whole brain FC at rest, while
the shortest paths with shorter lengths reflect the key features
of SC.

Furthermore, Fig.6 demonstrates the predicted intrahemi-
spheric SC connectomes in contrast to the corresponding
empirical connectomes for all the three datasets.

D. COMPARED WITH EIGEN-DECOMPOSITION
BASED (ED-ND) ALGORITHM
We further evaluate the performance of the proposed
CDA-ND in contrast to the ED-ND algorithm [30], [32] as
well as the FC thresholding (FC-TH) method [9], [11] in
terms of ROC curves, as illustrated in Fig.7. The results show
that the ED-ND approach outperforms the FC-THmethod for
the 90-ROI dataset, but both ED-ND and FC-TH methods
have the similar performance for the 246-ROI and 998-ROI
datasets. Whereas the performance of the proposed CDA-ND
approach far exceeds the other two methods across all the
three datasets.

IV. DISCUSSIONS
A. SUMMARY OF THE MAIN FINDINGS
This study aims to explore how the long-time averages
of the whole brain functional connectivity emerges from
the relatively invariant structural topology in the absence
of any external stimuli, which intrigues a growing num-

VOLUME 8, 2020 209933



Y. Wang et al.: Understanding the Relationship Between Human Brain Structure

FIGURE 6. Graphical demonstration of the predicted intrahemispheric SC in comparison with the corresponding empirical SC for the three datasets.
(A) 90 ROIs, Pearson correlation: (RH) R = 0.8926; (LH) R = 0.9169. (B) 246 ROIs, Pearson correlation: (RH) R = 0.8721; (LH) R = 0.8749 (C) 998 ROIs,
Pearson correlation: (RH) R = 0.7391; (LH) R = 0.7384. All correlations reported in this paper are P � 1e− 3. Abbreviations and meaning of the legend
names are as follows: SCemp denotes the empirical SC, SCpre refers to the predicted SC, RH/LH indicates the right/left hemisphere.

ber of researchers in neuroscience during the past decade.
Traditional approaches usually laid emphasize on predict-
ing FC from SC using various of computational models.
However, none of these models are able to completely cast
light on the nature of the phenomenon. There is still much
unknown for how the correlations emerged between regions
that are not directly structurally coupled. The key distinction
between our research and previous studies is that our study
shows how one might go in the other direction as opposed
to the prediction of FC, to uncover the structural connec-
tions from the resting-state fMRI correlations between brain
regions.

We first put forward a FC model in which the observed
whole resting-brain FC is formulated as the weighted com-
bination of direct dependencies and indirect dependencies
majorly owing to the indirect paths of length 2. Then we
introduce a bio-inspired network deconvolution algorithm as
well as a kernel-based weight trimming algorithm to search
for the best structural connections that produce the observed
fMRI correlations by minimizing the wiring strength and the
shortest path length.

The major finding of our study is that the predicted
structural connection strengths are well fit by lognor-
mal distributions (Fig.8). The predicted connection strength
ranges from 3.5476e-9 to 0.4635 for the 90-ROI dataset,
3.4087e-9 to 0.3438 for the 246-ROI dataset, and 3.1997e-5
to 0.3625 for the 998-ROI dataset, respectively, showing
that the connection strengths span several orders of mag-
nitude. Furthermore, the mean Pearson correlation between
the predicted intrahemispheric SC and the corresponding
empirical SC are 0.9048 for the 90-ROI dataset, 0.8735 for
the 246-ROI dataset, and 0.7388 for the 998-ROI dataset,
respectively. These results are highly consistent with the
empirical SC derived with dMRI and the probabilistic trac-
tography [9], [14], [17], [29], [45], [46]. The minimized
wiring cost together with the maximized efficiency (shortest
path length or shorter Euclidean distance between structurally
connected node pairs) provide strong accounts for supporting
the view that the human brain network is organized in a
tradeoff between wire cost and efficiency [48].

After CDA-ND, we found that more than 62% of the mean
intrahemispheric FCwas caused by the indirect effects for the
90-ROI dataset, 64% for the 246-ROI dataset, and 73% for the
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FIGURE 7. Performance comparison of the predicted intrahemispheric SC
for the three datasets with the three different ND approaches using ROC
curves. (A) Prediction performance of the three methods for the 90-ROI
dataset. (B) Prediction performance of the three methods for the 246-ROI
dataset. (C) Prediction performance of the three methods for the 998-ROI
dataset. From left to right: the right hemisphere, the left hemisphere.
Abbreviations and meaning of the legend names are as follows: FC-TH
means thresholding the FC matrix directly; ED-ND refers to the
eigen-decomposition based network deconvolution algorithm [32];
CDA-ND indicates the proposed CDA based network deconvolution
algorithm. ROC: receiver-operating characteristic. AUC: Area under Curve.
Note that both ED-ND and CDA-ND algorithms have a control parameter,
the optimal values are set as: for 90-ROI dataset, β = 0.9 (ED-ND), σ = 30
(CDA-ND); for 246-ROI and 998-ROI datasets, β = 0.1 (ED-ND), σ = 15
(CDA-ND).

998-ROI dataset, respectively. While after KWT, we found
that the modular effects remain relatively steady, accounting
for ∼24% of the whole FC for the 90-ROI dataset, ∼29%
for the 246-ROI dataset, and ∼20% for the 998-ROI dataset,
respectively. Finally, our findings indicated that only a small
fraction of FC directly reflects SC, accounting for ∼14%
of the mean intrahemispheric FC for the 90-ROI dataset,
∼7% for the 246-ROI and 998-ROI datasets, respectively,
indicating that the higher the resolution of parcellation is, the
smaller the direct effects influenced by SC.

The main methodological contributions of our work are
the integration of indirect effect and modular effect in the
contributing factors of shaping FC to uncover SC; and the
utilization of new method CDA to search optimal results,
leading to several benefits. First of all, the indirect effect is
mainly attributed to the length2-paths, therefore, providing
a simple representation in the model of FC which reduces
computing and time complexity. Besides, SPL, the minimum
path distance, is used to remove the indirect effect further,

providing new insight and methodology to uncover SC. The
modular effect, described by physical distance, is trimmed via
a Gaussian kernel, suggesting a possible relationship between
network topology and functional network. The integration of
above effects not only helps to shed light on how much they
contribute to generating FC but can offer a way of comparison
between the two by removing effects one by one. The second
benefit of our method is the possibility to apply the CDA to
other optimization studies, especially for the high-dimension
solution. CDA has been demonstrated efficient with the result
of low deconvolution error and good performance when the
dimensions of the solution space are 500 × 500 = 250,000,
compared with other optimization algorithms [33]–[36].

B. COMPARISONS WITH RELATED METHODS
So far, systematic comparisons of structural connectivity and
resting-state functional connectivity have gained significant
success in using the observed dMRI structural strengths to
predict the resting-state fMRI correlations, including cor-
relations between regions that are not directly structurally
coupled. One previous research evidenced that the fMRI
correlations can be better predicted by the topology of the
shortest (and presumablymost efficient) structural paths [14].
The results showed that both search information (accessi-
bility of a path) and path transitivity (the density of local
detours along a path) along the shortest path can predict the
strength of FC among both connected and unconnected node
pairs well. Here our study showed that the presence of FC
between brain regions cannot be exclusively attributed to the
shortest paths. A large portion of FC is induced by indirect
paths, particularly by two-step paths linking two brain areas
rather than the local detours along the path. Furthermore, the
shortest paths can highly capture the anatomical structure
of the human brain (Fig.5), indicating that there is more
likely a direct structural link between two regions with shorter
shortest path length even though the functional correlation
between the two regions is relatively weak or even negative.

In a study by Feizi and colleagues [32], they also formu-
lated the inference of the direct relationship from the observed
correlations as a network deconvolution problem and derived
a closed-form solution based on eigen-decomposition. Mean-
while, Robinson et al [30] presented the similar solution
based on linear neural field theory and applied it to the
determination of effective brain connectivity from FC. The
eigen-decomposition based network deconvolution (ED-ND)
models the observed correlation as the combination of direct
and indirect dependencies owing to transitive effects of corre-
lations of all indirect pathswith arbitrary length, and therefore
the solution can be solved analytically with infinite-series
sums. However, their results can be achieved only on condi-
tion that the largest absolute eigenvalue of the direct connec-
tion matrix is strictly less than one, otherwise the observed
correlation matrix needs rescaling. Unfortunately, it does
not apply to the human brain networks. In fact, the human
brain functional network is much more intricately organized,
in which the observed functional correlations are related not
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FIGURE 8. Distributions of the negative logarithm of the predicted structural connection strengths between region pairs for the three datasets.
The predicted connection strengths range from 3.5476e-9 (-log10 (3.5476e-9) = 8.4501) to 0.4635 (-log10 (0.4635) = 0.3340) for the 90-ROI
dataset, 3.4087e-9 (-log10 (3.4087e-9) = 8.4674) to 0.3438 (-log10 (0.3438) = 0.4637) for the 246-ROI dataset, and 3.1997e-5 (-log10 (3.1997e-5)
= 4.4949) to 0.3625 (-log10 (0.3625) = 0.4407) for the 998-ROI dataset, respectively.

only to the indirect effects by transitivity but also to the
modular effects owing to the modularized network topolog-
ical structure. To address such a daunting issue, we pro-
posed a bio-inspired network deconvolution algorithm based
on the mechanism of cell differentiation for distinguish-
ing the direct dependencies from the observed functional
correlations. Results on all the three connectome datasets
demonstrate that the CDA-ND far outperforms the ED-ND
in predicting the human brain SC from FC (Fig.7).

In addition, it should be noted that our findings revealed
different statistical results on the ratio of each component
to the whole FC in contrast to previous studies [21], [49],
in which FC was simulated from increasingly computational
models. Our approach obtained the statistical results through
removing each type of effect from the whole FC. Moreover,
our study also showed that the establishment of the indirect
effects on FC rests on the modular effects rather than the
anatomical connectivity directly.

C. LIMITATIONS AND FUTURE WORK
Although the modeling approach and the network deconvolu-
tion algorithms proposed in this paper have shown promising
results, they also have some limitations. First, the rela-
tionship of FC and SC is so complex that there are still
many unresolved challenges and open debates. Some studies
even challenged the point that the structural and functional
connectivity are related in a straightforward manner. For
example, O’Reilly and colleagues [50] demonstrated rela-
tively intact interhemispheric functional connectivity in a
macaque brain in the absence of major commissural fibers;
Uddin et al. [51], [52] partly characterize residual func-
tional connectivity between two hemispheres in a complete
commissurotomy patient. All these findings indicate that the
mechanisms shaping the relationship between structure and
function especially the FC between distant cortical regions
still remain open issues. Therefore, the proposed FC model
may not fully capture the relationship between the direct and
indirect effects of the functional network. However, it can be
improvedwithmore insights gleaned from both empirical and
theoretical findings.

Secondly, the performance of our approach is prone to the
accuracy of the fMRI data acquisition and dMRI tractogra-
phy. More noise may be produced by fMRI and dMRI for
datasets with higher resolutions.

In addition, the negative functional correlations were not
considered in the current study since the mechanism of anti-
correlations still remains elusive.

However, it is worth highlighting that the proposed
CDA-ND algorithm is promising although it takes longer
time when dealing with large-scale network. In fact, the CDA
really works when tackling super high dimensional opti-
mization problems. To our best knowledge, an optimization
algorithm that can find an optimal solution globally in a
nonlinear space with at least 250,000 dimensions has never
been reported before and it will find more unexpected appli-
cations in revealing direct dependencies for some other types
of complex networks.

In the future, we will apply the proposed model and algo-
rithms to optimize some noisy or falsely measured as well as
to infer some missed interhemispheric structural connections
measured with dMRI, which will produce a better human
brain structural map in combination with the current diffusion
MRI tractography.

D. CONCLUSIONS
We present an opposite approach to investigating the
structure-function relationship by predicting SC from rsFC.
Our method relied on one presupposition–the direct anatom-
ical links, indirect pathways, and module topology interact
with one another forming temporally dependent FC. Based
on CDA optimization, we demonstrated that empirical SC
can be reliably predicted, provided that both SPL and dis-
tance kernel function (i.e, KWT) constraints are set in the
deconvolution process. The indirect length2-paths and mod-
ule interplay are found to account for a large proportion effect
with above 60% and 20% of intrahemispheric FC across
three datasets, respectively. The direct SC, on the contrary,
is suggested to play a small role (less than 10%) in shaping
intrahemispheric FC. By analyzing the different contributing
factors, our study leads to a better understanding of how
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the underlying anatomy configures functional networks and
points out the importance of different effects.
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