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ABSTRACT Aiming at the new requirements of masked face poses classification during the epidemic
outbreak, this paper proposes an efficient transfer learning approach combined skip-connected structure
to improve the accuracy of masked face poses classification in the absence of masked face poses data.
We have worked on the following two aspects: 1) According to the features transition of the convolutional
neural networks, we propose an efficient transfer learning approach and opt for a more appropriate source
domain to solve the problem that the specificity of features in the pre-trained deep networks will damage
the performance when transferring to the target domain. First, a semisynthetic masked face poses dataset is
constructed to replace ImageNet as the source domain, which can reduce the span of transfer and improve
the pertinence of transfer learning. Second, the shallow networks which contain the general features are
frozen while the deep networks which contain the specific features are retrained and the entire networks
are fine-tuned afterwards. It optimizes the specific features in the source domain when transferring, and
promoted transfer learning more effectively; 2) To further improve the overall accuracy by improving the
accuracy of masked face pose classes with subtle differences, a skip-connected structure is proposed to fuse
general features containing rich detailed information in the shallow networks into the classifier. Experiments
on AlexNet and VGG16 show that the proposed method has certain advantages, and the overall accuracy
can reach 96.43% and 99.29% at the final respectively.

INDEX TERMS Masked face pose classification, transfer learning, skip-connected structure, detailed feature
and semantic feature, deep learning.

I. INTRODUCTION

Since the worldwide outbreak of the novel coronavirus
(COVID-19), mankind is suffering from a serious disaster
and all fields are making their efforts to fight against the
epidemic [1]. Al (artificial intelligence) technologies based
on deep learning make many contributions [2], [3], such
as face mask detection [4], COVID-19 diagnosis [5]-[8],
outbreak forecast [9], and drug research [10], etc. Al provides
support with its strong capabilities of information processing
and is expected to contribute to epidemic analysis and control,
medical care, and vaccine research, etc.
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In recent years, face pose estimation has become one
of the important topics in the field of face information
research [11]-[13] with the continuous development of com-
puter vision and intelligent analysis technology. Face pose
estimation is a key technology in the field of human behavior
analysis, human-computer interaction, and motivation detec-
tion, etc. And it has a wide range of application prospects.
Because of the COVID-19 epidemic, wearing a mask in
public areas has become a common phenomenon and this
trend is rising. Therefore, the study of masked face pose
estimation has become a new challenge and has important
practical significance.

The basic approaches for face pose estimation were com-
prehensively summarized in the literature [14], and there are
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many novel proposed methods recently. Wang et al. proposed
anovel tree-based neural network architecture which embeds
the relationship of the continuity in pose intervals [15];
Li et al. combined the task-simplification mechanism and
anchor-guided estimation method into one unified learning
framework to estimate the face poses [16]; Lee er al. pro-
posed a fast and accurate estimation algorithm based on the
convolutional random projection forest [17], etc. Although
these methods achieve great results, they will be affected
more or less if the object is a masked face because there lost a
lot of face information when wearing a face mask. In general,
the appearance-based methods and the model-based methods
are the main categories. Among them, the feature regression
method in appearance-based methods has certain advantages
and has little demand for face key points or auxiliary infor-
mation. The key to this type of method is to construct the
mapping relationship between image space and pose space.
Especially, the face pose estimation methods based on CNN’s
(convolutional neural networks) [18] have achieved success
in low-resolution images with noise, occlusion, and motion
blur [17], [19]-[24]. But the lack of sufficient labeled data
is a major obstacle that restricts deep learning methods. Due
to the impact of COVID-19 epidemic, a large amount of
face data collection cannot be achieved temporarily. How to
effectively achieve the masked face pose estimation with a
small amount of data has become the focus of this paper.

Transfer learning is an outstanding method in the field of
few-shot learning. Transfer learning, which studies how to
transfer the knowledge learned from the source domain to the
target domain, can solve new problems faster and better with a
small amount of data and low cost [25]. Transfer learning is an
effective method when lacking data, and it has achieved many
results in the research of face pose estimation [26]-[29].
These successes motivate us to use transfer learning to solve
the problem in this paper.

As the CNNs gradually go deeper, the acquired information
transitions from detailed features, such as color blobs and
texture feature to complex semantic features. And the seman-
tic features in deep networks show specificity [30], which
have particular contributions to the specified tasks in the
specific data domain. Therefore, the performance of the pre-
trained model in the source domain will be impaired when
transferring to the target domain which has different data dis-
tribution from the source domain. So we make improvements
to solve this problem in two aspects: the source domain and
the transfer learning strategy.

ImageNet is a commonly used source domain which has
a wide data distribution and can provide rich features to be
learned. The networks pre-trained on ImageNet are trans-
ferred to the target domain to solve new problems, and
there are many successful research results in cancer diag-
nosis [31], defect detection [32], SAR target detection [33],
and other fields lacking massive data. But ImageNet is not
the best source domain if considering the data distribution
between the source domain and the target domain. Trans-
ferring from a source domain with similar data distribution
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and the same task is more efficient because it can reduce the
span between the two domains and improve the specificity of
transfer [27], [34], [35].

In addition to opting for a more appropriate source domain,
an efficient transfer approach can make transfer learning
more effective. The traditional transfer learning approach is
widely used, but academics have put forward many improved
methods on this basic method recently. Wang et al. [36]
increased the width and depth of the penultimate classifi-
cation layer; Tasfia et al. [37] added an enhancement layer
before the classification layer; Zhao et al. [38] proposed
a method that transfer learning with the fully pre-trained
model; Shermin et al. [39] retained the pre-trained classifica-
tion layer and appended a layer after it, then fine-tuned the
additional layer and the classifier. Although many transfer
methods are proposed, few academics consider improving
the transfer learning effect from the characteristic feature
transition of CNNss.

Besides, due to existing the subtle differences of inter-class
in the face pose images, we find that the accuracy of masked
face pose classes with minor differences is lower. The valid
information, which can distinguish such minor differences,
exists in the local details of the image [40]. So the detailed
information is more important than the semantic information
to the classes with subtle differences [41]. But a large amount
of detailed information is lost in the deep networks with the
transition. To make full use of the image details lost in the
deep networks, a skip-connected structure is proposed to fuse
the features in the shallow and deep networks.

In this paper we make several contributions:

1) We analyze how features in the shallow and deep
networks influence the accuracy of masked face pose
classification in the transfer learning process. And we
optimize the specific features in deep networks from
two aspects: improving the pertinence of the source
domain and retraining the specific features. Besides,
we analyze the sensitivity of the classes with subtle
differences to the detailed information, and the overall
accuracy was further improved by increasing the use of
detailed information.

2) We construct a semisynthetic masked face pose dataset
that has the similar data distribution and the same task
with the target domain to replace ImageNet as the
source domain. The accuracy and generalization ability
of the model are improved by reducing the transfer span
and improving the transfer pertinence.

3) According to the features transition from general to
specific, we propose a transfer learning approach that is
to freeze the shallow convolution parts while retraining
the deep convolution parts and fine-tuning the entire
networks to recover the co-adaptability between the
layers afterwards. It achieves transfer learning more
effectively by retaining the general features and opti-
mizing the specific features.

4) A skip-connected structure is proposed to send the
general features in shallow networks into the classifier.
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FIGURE 1. Structure of a CNNs used for classification of K classes.

The detailed features lost in the deeper networks are
fully used through the proposed structure. The accuracy
of masked face pose classes with subtle differences is
effectively improved, and the overall accuracy is further
improved.

Il. METHODOLOGY

A. CONVOLUTIONAL NEURAL NETWORKS

CNNs, a well-known deep learning framework, is widely
used in the field of computer vision. The research about
CNNs can be traced back to the 1990s [42], but it has
attracted much attention when Krizhevsky et al. [43] achieved
amazing success in the 2012 LSVRC (the ImageNet Large
Scale Visual Recognition Challenge). It is constructed by
convolutional layers, pooling layers, fully connected layers,
and activation function. Fig. 1. gives the structure of CNNs.
The features are extracted by a series of alternately stacked
convolutional layers and pooling layers, which contain low-
level features, such as color blobs and texture features, and
high-level semantic features from shallow to deep. And the
fully connected layers is a classifier which integrates the
features extracted from the last convolutional layer.

With the development of CNNs, many outstanding archi-
tectures have been proposed. AlexNet [43], which only con-
tains five convolutional layers, three pooling layers, and three
fully connected layers, was proposed by Krizhevsky et al in
2012. AlexNet has excellent classification ability and is still
one of the classic and practical architectures so far. Besides,
VGG16, which contains five convolution modules, five pool-
ing layers, and three fully connected layers, was proposed
by the computer vision group of Oxford University in 2015.
AlexNet and VGG16 are commonly used as the base architec-
ture of transfer learning due to their efficient network struc-
ture and excellent performance. They have similar structures
(five layers/blocks) but one is shallower and another is deeper,
so we can observe the effectiveness of proposed methods in
two different depths. Besides, the proposed strategy discussed
on the typical architecture can get more general results.

B. TRANSFER LEARNING DEFINITION

Transfer learning is an outstanding method in the few-
shot learning field, which uses the knowledge learned from
the source domain to solve new problems in the target
domain [44]. Here we give some definitions, the domain
is represented as D = {x, P(X)}, where xrepresents the
feature space, P(X) represents the marginal distribution of
X = {x1,x2,---xy} € x, X € R, i = 1,2,...n Given
a specific domain, a task is represented as I' = {Y,f(-)},
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FIGURE 2. Schematic diagram of the traditional transfer learning.

Where Yrepresents the label space and f'(-) represents a target
prediction function. A task I" is learned from the training data
(xi,yi), xi € X,y; € Y. The transfer learning is defined
as: Given a source domain Dg and source task ['s, a target
domain Dr and target task I'7, the knowledge acquired from
the source task I's on the source domain Dy is used to solve
the new task I'7 on the target domain Dy, where Ds # D
and/or I's # I'r.

C. PROPOSED TRANSFER LEARNING STRATEGY
1) PROBLEMS OF TRADITIONAL TRANSFER LEARNING
METHOD AND SOLUTIONS IN THIS PAPER
The traditional method of transfer learning is to freeze the
pre-trained convolutional base as a feature extractor and
remove the existing classifier firstly, then add and train a new
classifier on the target domain, Fig. 2. shows the traditional
transfer learning process. Such a transfer learning method is
clear and easy to implement, but it ignores the feature tran-
sition mechanism of CNNs. With the continuous deepening
of networks, the extracted features gradually transition from
detailed features, such as color blobs and texture features to
abstract and semantic features. The features in the shallow
networks are general but the semantic features in the deep
networks are specific when transferring [30]. The semantic
features make particular contributions to the specified tasks in
the specific data domain, which means they are more suitable
for solving specific tasks than general features. The semantic
features that are specific to the source domain will inevitably
hurt the transfer effect if the entire convolutional base is
transferred to the target domain without any improvements.
Optimizing the features in deep convolution parts is one
of the important improvements to enhance the transfer effect
and there are three solutions. The first solution is not to trans-
fer the deep convolution parts of the pre-trained model and
train these parts from scratch on the target domain; the second
solution is to opt for a more appropriate source domain which
has a similar data distribution and the same task as the target
domain; the third solution is to retrain the deep convolution
parts of the pre-trained model on the target domain. Among
them, the first solution cannot achieve a great effect, because
the ability of CNNs’ feature extraction is severely damaged
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when the amount of training data is too small. In this paper,
we combine the second and the third solutions to propose
a new solution, which is opting for a more pertinent source
domain and retraining the deep convolution parts on the target
domain. The following will be discussed in detail.

2) IMPROVEMENT OF PERTINENCE OF

THE SOURCE DOMAIN

ImageNet, which contains about 15 million pictures and
22,000 classes, is commonly used as the source domain. Ima-
geNet can provide sufficient and extensive data. The subset
of ImageNet used in the ISLVRC contains about 1.33 million
images in 1,000 classes, covering common objects such as
faces, cars, and pedestrians, as well as a large number of
rare objects [45]. Although ImageNet can provide rich data,
its data distribution and tasks are not consistent with the
target domain. ImageNet is relatively extensive whereas the
target domain is specific. Therefore, ImageNet lacks perti-
nence during transferring, and the task in the target domain
cannot be solved specifically. Besides, Kornblith pointed out
in the literature [46] that transferring a model pre-trained on
ImageNet to a small dataset lacks adaptability and cannot
achieve a good effect, especially in fine-grained image clas-
sification tasks. So the transfer effect will be not efficient if
the model is pre-trained on ImageNet in the task of masked
face poses classification.

In order to improve the pertinence of transfer learning,
we construct a semisynthetic masked face pose dataset as the
source domain. The semisynthetic dataset has a highly similar
data distribution and the same task to the real dataset which
is the target domain. The semisynthetic dataset reduces the
span between the source and target domain, and overcomes
the inadequate performance of the model pre-trained on Ima-
geNet in fine-grained image classification task. By improving
the pertinence of the source domain and reducing the span of
transfer, the effect is improved.

3) A NEW TRANSFER LEARNING METHOD

A more appropriate source domain is one aspect of improving
the transfer effect, and an efficient transfer learning method
is another. An efficient transfer learning method can further
improve the model effect. As discussed above, the features
in shallow networks are general and the features in deep
networks are specific. The general features can be easily
transferred to the target domain, and adapt to the target
domain without damaging the model performance. However,
the specific features only promote model performance in the
specific data domain with specific tasks. When transferring
between two different domains, the features specific to the
source domain can inevitably damage the performance of
the model that is transferred to the target domain. In this
paper, the specificity of features in the deep networks is
optimized by retraining these specific features on the target
domain. Due to the similarity of data distribution between the
semisynthetic and real masked face pose dataset, retraining
in the target domain can be more easily complicated and the
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specificity of features in deep networks can be optimized
to a large extent. Besides, there is a close co-adaptability
between the convolutional layers. The freeze operation breaks
the co-adaptability between the frozen part and unfrozen part.
So the entire networks need to be unfrozen and fine-tuned to
recover the co-adaptability after retraining.

Our experiments are on AlexNet/VGG16 architecture,
which has five convolutional layers/blocks. We hierarchically
freeze the convolution layers/blocks from shallow to deep
for transfer learning. The experiment results show that the
effect of freezing the first two convolutional layers/blocks
is the best. Fig. 3. shows the schematic diagram of the
proposed method. First, we transfer the entire convolutional
base which is pre-trained on the semisynthetic dataset, and
freeze the shallow convolutional parts (Convl and Conv2
layers/blocks). Then, we retrain the deep convolutional parts
(Conv3, Conv4, and Conv5 layers/blocks) on the basis of pre-
trained parameters. Finally, we unfreeze and fine-tune the
entire networks to recover the co-adaptability between layers.

D. PROPOSED SKIP-CONNECTED STRUCTURE

Effective transfer learning strategy is an important means to
improve the accuracy, but we find that the further improve-
ment of the overall accuracy is subject to the accuracy of the
masked face pose classes with subtle differences. There are
existing subtle differences in inter-class, resulting in difficult
distinction and low accuracy. Therefore, improving the accu-
racy of pose classes with subtle differences is another key
point to improve the overall accuracy.

For fine-grained image classification, the local detailed
information has an excellent ability to distinguish such subtle
differences of the inter-class. So detailed information is more
important than semantic information to distinguish the minor
differences, and classification can be effectively performed
with the help of local detailed information. Making full use of
the local detailed information of CNNs is an important means
to improve the accuracy. With the deepening of the networks,
the features extracted by CNNs gradually transition from
the spatial details, such as color blobs and textures features
to the high-level semantic features. Fig. 4. shows a part of
features visualization results, which are extracted by VGG16.
It can be seen intuitively from the results that the features in
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shallow networks contain more detailed information, whereas
the features in deep networks are more abstract, especially
the last convolutional layer has the strongest and the most
abstract semantic information. Based on the information the-
ory, we know that the amount of information that an image
conveys can be expressed by the image entropy. Given f (x, y)
as an image with k grayscale, the probability of i grayscale is
pi, the entropy of an image is:

k—1
H=—7) p;log(p) (1)
i=0

where H is the entropy, p; is the probability withi (i = 1 ~ k)
grayscale, k = 255.

The entropy is larger, the more detailed information is
conveyed, and vice versa. An image with a larger entropy con-
tains more detailed information, whereas a smaller entropy
means more detailed information is lost and the semantic
information is more highlighted. Fig. 5. is the information
entropy curve of the features extracted by VGG16. It can
be seen that as the convolutional layers/blocks are gradu-
ally deepened, the entropy is continuously decreased. So the
deeper the network, the more detailed information is lost.
A large amount of spatial information is lost, resulting in the
lack of detailed features in the MLP (Multi-Layer Perceptron,
the fully connected classifier). Besides, it can be seen from
the curve that the entropy of Conv2 is the largest, indicating
that it contains the most detailed information. A large amount
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of detailed information is acquired and retained by multiple
convolution kernels in the shallow networks. To compensate
for the local detail information lost in the deep networks
and make it full use, we design a skip-connected structure to
solve this problem. The network structure diagram is shown
in Fig. 6. The features in the shallow networks Conv2 and
the features of the last layer of Conv5 are flattened and
sent into the MLP together. The detailed features and the
semantic features are merged. Therefore, the problem of low
accuracy in the classes with subtle differences is solved by
supplementing detailed information, and the overall model
accuracy rate is further improved.

Ill. DATASET GENERATION

To simulate the masked face pose images more realistically,
we make the semisynthetic data by superimposing the general
face pose images and the mask images. The general face
poses dataset comes from the CAS-PEAL-R1 dataset [47]
created by the Institute of Computer Technology, Chinese
Academy of Sciences. And the subset of this dataset in the
yaw direction is used in this paper. Fig. 7. shows the pro-
duction process. There is a large amount of background and
non-face parts in the general face pose images. Considering
these factors may affect the performance, we use a face
object detector to preprocess the general face pose images
to filter out the background and non-face parts firstly; then
we appropriately perform scaling, rotation, and deformation
operations on the mask images to enrich the diversity of
mask images; finally, the images of each general face pose
and the mask images in the corresponding pose are superim-
posed to complete the generation of the semisynthetic data.
The semisynthetic dataset constructed in this paper includes
images of 1040 people wearing masks in seven poses in the
yaw direction (—67°, —45°, —22°, 0°, +22°, +45°, +67°),
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(a) (b)

FIGURE 8. The display of face pose images collection. (a) lllustration of
the acquisition configuration, ¢ is about 22.5°. (b) Setup of the
photographic room.

-67° -45° -22° ° +22° +45°  +67°

Semisynthetic
Data

Real Data

FIGURE 9. The display of the semisynthetic and real masked face pose
samples. the first row is semisynthetic samples, the second and third
rows are real samples, there are 7 pose classes in the yaw direction.

each pose has 1040 samples, a total of 7280 pictures, and the
size is 200 x 240px.

Due to the impact of the COVID-19 epidemic, we cannot
collect a large amount of face data temporarily. In order to
keep the pose consistent with the semisynthetic data, we build
an image acquisition environment as shown in Fig. 8. And we
collect images of 57 people wearing masks in corresponding
poses.

The collected face images still include a large amount of
background and non-face parts, so the face target detector
is also required to preprocess the images firstly. Secondly,
considering people wearing glasses, the constructed dataset
includes faces with glasses and faces without glasses. The real
face pose dataset constructed in this paper includes 114 sam-
ples in each class, the image size is 200 x 240px, and there are
798 samples in total. The sample examples of the constructed
semisynthetic dataset and the real dataset are shown in Fig. 9.

IV. EXPERIMENTS AND ANALYSIS

A. DATA PREPARATION AND EXPERIMENT SETTINGS

1) DATA PREPARATION

The semisynthetic dataset includes the masked face pose
images of 1040 people in 7 different poses, a total of 7280
images. 5180 images are used as the training samples, and
the remaining 2100 images are used as the testing sam-
ples. The real dataset includes the masked face pose images
of 57 people in the same pose, a total of 798 images. And
658 images are used as the training samples, and the remain-
ing 140 images are used as the testing samples. The image
size is uniformly resized to 128 x 128px to meet the input
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requirements of the networks, and the data enhancement
operations such as brightness transformation, noise addi-
tion, and blurring are randomly performed on the images to
enhance the generalization ability of the model. The added
noise is salt and pepper noise and Gaussian noise with a
mean value of 0 and a variance of 0.002; the brightness is
transformed to 0.5 times and 1 times as the original; the mean
blur filter is used for the blur operation.

2) EXPERIMENT SETTINGS

In addition, training skills and methods are also impor-
tant. The experiment adopts the stochastic gradient descent
method (SGD) as the training algorithm, the momentum is set
to 0.9, the weight decay is set to 0.0005; we use the variable
learning rate method to make the error convergence more
stable. The learning rate is reduced to 1/10 of the original
when the iteration reaches 2/3 of the training epoch; batch
size is set to 16; and the loss function is the cross entropy. The
epochs of training from scratch on the semisynthetic dataset
are set to 50, and the initial learning rate is 0.005. The epochs
of transfer training on the real dataset are set to 10, the initial
learning rate is 0.0008. And the epochs of fine-tuning are set
to 5, the initial learning rate is 0.0001.

The hardware and software experimental platform is PC,
the operating system is Windows10, the CPU is Core
17-9750H with 8GB memory, the GPU is NVIDIA GeForce
GTX 1650 with a 4G memory. The code is written in Python
and is based on the Pytorch deep learning framework.

B. RESULTS AND ANALYSIS

The overall accuracy (OA), which is the percentage of all
the correctly classified samples and can represent the overall
performance of a model, is used to evaluate the performance
of different methods, the OA is defined as:

K
OA = — x 100% 2)
N

where N is the number of testing samples, K is the number
of samples that are correctly classified.

1) SOURCE DOMAIN EXPERIMENTS AND ANALYSIS

First, the experiments based on AlexNet and VGG16 are
designed to verify the superiority of transfer learning on the
semisynthetic dataset.

We set up the following controlled methods: the net-
works are trained from scratch on the semisynthetic dataset
without transfer learning. AlexNet-TSS (AlexNet, training
from scratch on the semisynthetic dataset) and VGG16-TSS
(VGG16, training from scratch on the semisynthetic dataset);
the networks pre-trained on ImageNet do the transfer learn-
ing on the real dataset. AlexNet-TITR (AlexNet, training
on ImageNet and transfer learning on the real dataset),
VGG16-TITR (VGGL16, training on ImageNet and transfer
learning on the real dataset); And the networks pre-trained on
the semisynthetic dataset do the transfer learning on the real
dataset (what we propose). AlexNet-TSTR (AlexNet, training
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TABLE 1. Overall accuracy of different methods.

Methods OA(%)
AlexNet-TSS 41.43
AlexNet-TITR 68.45
AlexNet-TSTR(Ours) 79.29
VGG16-TSS 67.86
VGGI16-TITR 80.84
VGG16-TSTR(Ours) 90.16

on the semisynthetic data and transfer learning on the real
dataset), VGG16-TSTR (VGG16, training on the semisyn-
thetic dataset and transfer learning on the real dataset), all
methods are tested on the real dataset in the same environ-
ment. The experimental results are shown in Table 1.

From Table 1, we can see that:

1) compared with the transfer learning method (-TITR and
-TSTR) and the none transfer learning method (-TSS),
the OA of the methods with transfer learning is higher.
The reason why the -TSS method has a lower OA is
that there are existing differences of data distribution
between the real data and the semisynthetic data, espe-
cially the masked part of semisynthetic images lacks
the same rich and changeable style as the real data.
Using transfer learning, whether the source domain
is ImageNet or the semisynthetic dataset, the OA can
be significantly improved. So the model generaliza-
tion is enhanced through transfer learning in the real
scenarios.

2) The effect of transfer learning from semisynthetic
dataset (-TSTR) is better than that from ImageNet
(-TITR) because the semisynthetic masked face pose
dataset as the source domain has more pertinence to
the target domain. Even if there is a little difference
between the real data and the semisynthetic data, both
datasets are similar and have the same task. Besides,
the model pre-trained on ImageNet lacks adaptability
when transferring to a small dataset, especially in fine-
grained image classification tasks such as face pose
image classification.

3) Both efficient networks AlexNet and VGG16 have
excellent performance in the -TSTR method. But
the OA of VGGI6 is higher than AlexNet because
VGG16 has a more complex network structure which
can extract more diverse and complex features. There-
fore, the effect of VGG16 is better than AlexNet.

2) TRANSFER LEARNING METHOD EXPERIMENTS

AND ANALYSIS

We discuss the proposed transfer learning method on the
basis of using the semisynthetic dataset as the source domain.
The model that needs to be transferred is divided into two
parts: the convolutional base and the MLP. The MLP can
be directly transferred to the target domain for training and
fine-tuning without any modification because the source task
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FIGURE 10. The results display of different methods with the
hierarchically frozen training.

has the same number of classifications as the target task. The
convolutional base is used as a feature extractor and we focus
on studying its performance.

We set up the following controlled methods by hierarchi-
cally freezing convolutional layers/blocks (Convl, Conv2,
Conv3, Conv4, Conv)): transfer learning method (-TL);
transfer learning with fine-tuning method (-FT); transfer
learning with random weight method (-RW); and trans-
fer learning with fine-tuning and random weight method
(-RW- FT). The -TL method is that the parameters of the
convolutional layers/blocks that need to be frozen are fixed,
the remaining unfrozen part and the MLP are retrained on
the target domain; the -FT method (ours) is based on -TL
method, which is to unfreeze and fine-tune the entire net-
works after the -TL method; the -RW method is also based
on the -TL method, but the difference is that the frozen
part can keep the pre-trained parameters while the unfrozen
part are set to random parameters; the -RW-FT method is
to unfreeze and fine-tune the entire networks after the -RW
method.

Fig. 10. shows the experimental results, we can see that:

1) From the four curves in the upper half of Fig. 10.,

it can be seen that all the methods in which Conv1 and
Conv?2 are frozen while Conv3, Conv4 and Conv5 are
retrained can achieve the best effect (the yellow dot).
And as the number of frozen layers/blocks increases,
the effect gradually decreases. Convl and Conv2 are
almost well transferred to the new domain, indicat-
ing that the features of the first two layers/blocks are
general and have a positive effect on new tasks; the
performance decreases when the layer/block is frozen
to Conv3, and the decrease is more significant when
the layer/block is frozen to Conv4 and Conv5. This is
because the features in Conv3, Conv4 and Conv5 are
little general but more specific, the features that are
specific to the semisynthetic dataset lack adaptation
in the real dataset. The method, which is to freeze
Convl and Conv2 while retraining Conv3, Conv4 and
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Conv5, can optimize the specific features to adapt to
the real dataset.

2) From the comparison of the red curve with the blue
curve and the black curve with the rose red curve,
we know that the -FT method is superior to the -TL
method. The OA of the -FT method is 3.43~16.83%
higher than the -TL method. The networks are divided
into the frozen part and the unfrozen part, and the
freezing operation breaks the co-adaptability exist-
ing between the convolutional layers. So the entire
networks need to be unfrozen and fine-tuned after
training the deep convolutional parts. Recovering the
co-adaptability can further improve the performance of
the networks.

3) From the comparison of the four curves in the upper
half and the four curves in the lower half, it can be
seen that the network performance is damaged severely
when the unfrozen part is reset with random param-
eters. In particular, the OA is dramatically decreased
when the first three layers are frozen. Setting the net-
works with random parameters is equivalent to training
these parts from scratch on the new dataset. When the
training dataset is small, the ability of feature extraction
is not established and the convolution base cannot get
rich and robust features. So the network performance is
greatly decreased; Comparing the brown curve with the
green curve and the purple curve with the yellow curve,
it can be seen that the fine-tuning can hardly improve
the performance. This is because the co-adaptability
between the frozen part and the unfrozen part does not
exist when the unfrozen part is not fully trained; the OA
has a certain degree of rebound when only Conv5 is
reset to random parameters and can achieve the highest
when the entire networks are frozen. This phenomenon
also shows that retaining pre-trained weights has a
positive effect on performance during transferring and
training from scratch on a small dataset cannot get a
good result.

3) SKIP-CONNECTED STRUCTURE EXPERIMENTS
AND ANALYSIS
We can see from Table 2, the OA of the -FT method based on
AlexNet (AlexNet-FT) can reach 86.42%, and that of VGG16
(VGG16-FT) can reach 95.71%. But we are curious about
how the accuracy of each pose class, so we give the accuracy
of each class (CA) to evaluate the accuracy of each masked
face pose class in different methods. The CA is defined as:
K;
CA = — x 100% 3)

1

where N; is the number of testing samples of class i, K; is
the number of correctly classified samples of class i, i =
1,2,..7.

In our further research, we find that the CA of classes with
subtle differences is lower. Fig. 11. shows that whether it
is based on AlexNet or VGG16, the CA in attitudes +45°
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TABLE 2. Overall accuracy of different methods.

Methods OA(%)
AlexNet-FT 86.42
AlexNet-SF 59.17
AlexNet-FT-FF(Ours) 96.43
VGGI16-FT 95.71
VGG16-SF 77.72
VGG16-FT-FF(Ours) 99.29
100 -
75 1
S
7 50 -
o
25 A
0 -
-67° -45° 220 0° 220 +45° +67°

Pose Classification
B AlexNet-FT ™ AlexNet-FT-FF(Ours) ®VGG16-FT ®VGG16-FT-FF(Ours)

FIGURE 11. Each classification accuracy of different methods.

and £22° is lower than that of +67° and 0°. AlexNet has
a simpler structure than VGG16, its CA decreases more
significantly. The face images in attitudes £67° and 0° are
obviously different from other poses, whereas the face images
in attitudes £45° and +22° have subtle differences to be
hardly distinguished, so the CA in +45° and £22° is lower.
It can be seen from Fig. 12. that the £45° and +22° attitudes
are easily misclassified as similar attitudes. For example,
(a) in Fig. 12. shows that there are 13 correctly classified
as —45° attitude, 5 samples are incorrectly classified as the
—22° attitude and 3 samples are incorrectly classified as
the —67° attitude, the total number of test samples of —45°
attitude was 20. The further improvement of the OA is subject
to the CA of classes with subtle differences, so solving this
problem is the key to further improving the OA.

As mentioned in section D of the methodology, detailed
information is more important than semantic information, and
the local detailed information can effectively improve the
accuracy of classification. We supplement the lost detailed
information into the MLP by the skip-connected structure.
The designed networks are AlexNet-FT-FF (AlexNet-FT with
Feature Fusion) and VGG16-FT-FF (VGG16-FT with Fea-
ture Fusion).

Fig. 11. shows that the CA in +45° and £22° attitudes
are improved by the skip-connected structure (AlexNet-FT
and VGG16-FT). The accuracy of the classes with subtle
differences is increased by 5%-25%, the improvement of
AlexNet is more obvious. By comparing (a) with (b) and
(c) with (d) in Fig. 12, we know that the misclassification
in attitudes +45° and +22° is obviously decreased. The
skip-connected structure effectively solves the problem of
low accuracy in the classes with subtle differences. From
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FIGURE 12. Confusion matrices for the different methods. (a) is in the
first column of the first row (AlexNet-FT method). (b) is in the second
column of the first row (AlexNet-FT-FF method). (c) is in the first column
of second first row (VGG16-FT method). (d) is in the second column

of second first row (VGG16-FT-FF method).

the OA of AlexNet-FT-FF and VGG16-FT-FF in Table 2,
it can be seen that the overall performance of the net-
works with skip-connected structure is improved. The OA
of VGG16 increases from 95.71% to 99.29%, an increase
of 3.58%; the OA of AlexNet increases from 86.42% to
96.43%, an increase of 10.01%. The enhancement of AlexNet
is more obvious, although AlexNet does not have the same
excellent structure as VGG16. Therefore, the results prove
the effectiveness of the skip-connected structure and the
performance can be further improved by the skip-connected
structure.

From the above theories and experiments, we know that
face pose classification is sensitive to detailed informa-
tion such as textures features, Gabor filters, color blobs,
etc. Fusing the detailed features into the MLP can effec-
tively improve the performance of the network. This makes
us wonder if we can get the same good result by just
sending the Conv2 features into the MLP? We set up
two networks, AlexNet-SF (AlexNet with shallow features)
and VGG16-SF (VGG16 with shallow features) to verify
what we guess. Specifically, only the Conv2 features of
AlexNet or VGG16 are sent to the MLP, and the features
of Conv5 are discarded. Fig. 13. shows the training pro-
cess. Fig. 13 shows that the performance of the model
without Conv5 features is severely damaged whether in
AlexNet or VGG16. The training curve of AlexNet-FT-FF
and VGG16-FT-FF can converge well, and the models
achieve high accuracy at about 500 iterations. However, the
convergence curves of AlexNet-SF and VGG16-SF are more
twists and turns. The models seem difficult to converge and
get a low accuracy at the final. Table 2 shows that the OA of
AlexNet-SF is 59.17%, and the OA of VGG16-SF is 77.27%,
which is severely decreased compared to AlexNet-FT-FF
and VGG16-FT-FF. So we can summarize that although the
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FIGURE 13. Convergence of networks training process. (a) is based on
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general detailed information is beneficial to the classes with
subtle differences, performance will be severely damaged
if high-level semantic information is discarded. The results
show that the general detailed features are sensitive to the
classes with subtle differences, but the high-level semantic
features are also important to the classification.

V. CONCLUSION

The focus of this paper is that we propose an efficient trans-
fer learning strategy combined skip-connected structure to
fulfill the new requirements for masked face pose classi-
fication in the absence of data. In our work, we analyze
how features in the shallow and deep networks influence the
accuracy of masked face pose classification in the transfer
learning process firstly. Then we make improvements in
the source domain and the transfer learning approach for
solving the specificity problem. In the comparative exper-
iment, it is proved that the semisynthetic dataset as the
source domain can improve the pertinence of transfer learn-
ing. Besides, the proposed transfer learning approach can
optimize specific features by retraining them on the target
domain. Finally, we propose a skip-connected structure to
send detailed features in the shallow networks into the MLP,
which further improves the overall accuracy by effectively
improving the accuracy of the classes with subtle differ-
ences. The experimental results illustrate the importance of
feature fusion and the effectiveness of the skip-connected
structure.
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The method proposed in this paper effectively achieves
masked face pose estimation, but it is specific to the masked
face objects. In the future, it may be a common phenomenon
that faces with and without masks coexist in public areas
because of the improvement of people’s awareness of health.
Therefore, it is practical to propose a general and efficient
method of face pose estimation. In future work, we aim to
study the pose estimation method that is suitable for the
objects of faces with and without masks together.
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