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ABSTRACT A set-valued information system (SVIS) with missing values is known as an incomplete
set-valued information system (ISVIS). This article focuses on studying uncertainty measurement for an
ISVIS and the optimal selection of subsystems by means of Gaussian kernel. First, the distance between two
information values on each attribute in an ISVIS is put forward. Second, the fuzzy Tcos-equivalence relation
induced by a given subsystem is proposed based on Gaussian kernel. Next, some tools are used to measure
the uncertainty of an ISVIS. Moreover, effectiveness analysis is done from a statistical point of view. In the
end, the optimal selection of subsystems based on δ-information granulation and δ-information amount is
given. These results will help us comprehend nature of uncertainty in an ISVIS.

INDEX TERMS ISVIS, distance, Gaussian kernel, Tcos-equivalence relation, measure, effectiveness analy-
sis, optimal selection.

I. INTRODUCTION
Rough set theory as a mathematical tool for dealing with
inaccuracy and uncertainty in data analysis has been success-
fully applied to many fields [17]–[21], [25], [26]. From philo-
sophical point of view, rough set theory is established on the
assumption that each object in the universe is connected with
some information, expressed by means of some attributes
used for object description [18]. Accordingly, an informa-
tion system (IS) is a database that represents relationships
between objects and attributes. If the information values
of each object in an IS are sets, then this IS is called a
set-valued information system (SVIS). Some scholars have
studied SVISs. For instance, Yao [30] presented a set model
for SVISs with upper and lower approximations, moreover,
studied generalized decision logic; On the basis of knowledge
induction process, Leung et al. [10] discussed a rough set
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approach for selecting decision rules with minimum feature
sets in SVISs; Qian et al. [22] proposed a dominance relation
for SVISs.

Uncertainty is caused by the limited resolution and incom-
plete description of the data. Measures of uncertainty have
gradually become a significant research topic and given
rise to a large number of people’s attentions. Aiming at
uncertainty of IS, Shannon [24] introduced the concept of
entropy and discussed the uncertainty with entropy. Later,
Liang et al. [11] studied information granules and entropy
theory in ISs; Liang et al. [12] investigated several kinds
of entropy in incomplete ISs; Dai et al. [2] thought about
entropy measures in SVISs; Qian et al. [23] considered fuzzy
information entropy and granularity; Xu et al. [28] investi-
gated rough entropy in ordered ISs; Dai et al. [4] proposed
an extended conditional entropy in interval-valued decision
systems; Dai et al. [3] put forward θ -rough degree in IVISs on
the foundation of θ -similarity entropy; Dai et al. [5] explored
entropy and granularity measures in SVISs; Huang et al. [8]
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investigated uncertainty measures for intuitionistic fuzzy
approximation space; Huang et al. [9] gave uncertainty mea-
sures in interval-valued intuitionistic fuzzy ISs; Xie et al. [27]
took into account new method to measure the uncertainty of
interval-valued ISs; Zhang et al. [37] measured the uncer-
tainty of fully fuzzy ISs; Li et al. [13], [14] considered
uncertainty measurements in fuzzy relation ISs and covering
ISs.

An incomplete set-valued information system (ISVIS) is
a SVIS with missing values. An ISVIS itself has uncer-
tainty. How to measure its uncertainty is a crucial research
topic. This article will study this issue. The similarity degree
between two information values on a given attribute in an
ISVIS is constructed and the distance between two objects is
given. Fuzzy Tcos-equivalence relation is induced by a given
subsystem of an ISVIS by means of Gaussian kernel. The
uncertainty of a SVIS is measured. Effectiveness analysis is
done from the angle of statistics. Based on them, the optimal
selection of subsystems is given. The work process of the
article is shown in FIGURE 1.

The rest of the article is arranged as follows. In the second
section, we review some basic concepts about fuzzy sets and
fuzzy relations. In the third section, we construct the distance
degree between two information values on a given attribute
in an ISVIS and give the distance between two objects in an
ISVIS. In the fourth section, we study fuzzy Tcos-equivalence
relation by means of Gaussian kernel. In the fifth section,
we research relationships between two ISVISs and display
inclusion degree of IIVISs. In the sixth section, we measure
of uncertainty for a given ISVIS. In the seventh section,
we do effectiveness analysis from three aspects. In the eighth
section, we obtain the optimal selection of subsystems based
on the proposedmeasures. In the ninth section, we summarize
the article.

II. PRELIMINARIES
In this section, we briefly recall some concepts about fuzzy
sets, fuzzy relations and ISVISs.
U denotes a non-empty finite set and I expresses [0, 1] in

this article.
Put

U = {u1, u2, . . . , un}.

A. FUZZY SETS AND FUZZY RELATIONS
If F is a mapping defined by F : U → I , then F is a fuzzy
set on U .

In this article, IU indicates the family of all fuzzy sets on
U . ā denotes the constant fuzzy set on U for each a ∈ I .
|F | =

∑
u∈U

F(u) means the cardinality of F ∈ IU .

If R is a fuzzy set inU×U , then R is called a fuzzy relation
on U .
In this article, IU×U denotes the family of all fuzzy rela-

tions on U .
Given F ∈ IU and u ∈ U . Then F(u) indicates the

degree that u belongs to F . Similarly, given R ∈ IU×U and

u, v ∈ U . Then R(u, v) indicates the degree that (u, v) belongs
to R. Thus R(u, v) can be regarded as the degree of similarity
between u and v. In general, R is denoted by the following
matrix:

M (R) = (R(ui, uj))n×n.

Suppose R ∈ IU×U . R is said to be a fuzzy identity relation
on U if M (R) is an identity matrix, we indicate R = 4; R is
said to be a fuzzy zero relation onU ifM (R) = 0, we indicate
R = o; R is said to be a fuzzy universal relation on U if
R(ui, uj) = 1, we indicate R = ω.
Suppose R ∈ IU×U and u ∈ U . Then a fuzzy set [u]R is

defined as follows:

[u]R(v) = R(u, v), ∀‘v ∈ U .

[u]R can be viewed as the fuzzy neighborhood of the point
u on U under R.
Definition 1 [16]: A function T : I2 → I is called a

t-norm, if meets the conditions as follows:
(1) T (a, b) = T (b, a) (Commutativity);
(2) T (T (a, b), c) = T (a,T (b, c)) (Associativity);
(3) a ≤ c, b 6 d = T (a, b) 6 T (c, d) (Monotonicity);
(4) T (a, 1) = a (Boundary condition).
Definition 2 [38]: Let T be the t-norm. Suppose R ∈

IU×U . Then R is a T -fuzzy equivalence relation on U if it
meets the following conditions:

(1) R(u, u) = 1 (Reflexivity);
(2) R(u, v) = R(v, u) (Symmetry);
(3) T (R(u, v),R(v,w)) 6 R(u,w) (T -transitivity).
Proposition 3 [15]: Assume that f : U ×U → I satisfies

f (u, u) = 1 for all u ∈ U. Then u, v,w ∈ U,

Tcos(f (u, v), f (v,w)) ≤ f (u,w).

Corollary 4: Given R ∈ IU×U . If R is reflexive, then R is
Tcos-transitive.

B. ISVISs
Definition 5 [18]: Consider that U is an object set, A is

an attribute set, U and A are finite sets. Then the pair (U ,A)
is called an information system (IS), if each attribute a ∈ A
determines an information function a : U → Va, where Va =
{a(u) : u ∈ U} is the set of information function values of the
attribute a.
Let (U ,A) be an IS, given P ⊆ A, then an equivalence

relation on U can be defined as

ind(P) = {(u, v) ∈ U × U : ∀ a ∈ P, a(u) = a(v)}.

Definition 6 [18]: Assume that (U ,A) is an IS. Then the
pair (U ,A) is said to be an incomplete information system
(IIS), if there are u ∈ U and a ∈ A then a(u) is missing.

If (U ,A) is an IIS. Given P ⊆ A. Then a tolerance relation
on U can be defined as

sim(P) = {(u, v) ∈ U × U : ∀ a ∈ P, a(u)

= a(v)ora(u) = ∗ora(v) = ∗},
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FIGURE 1. The work process of the article.

where ∗ is a missing value.

Let (U ,A) be an IIS. For each a ∈ A,

V ∗a = Va − {a(u) : a(u) = ∗}.

Definition 7 [29]: Suppose that (U ,A) is an IS. Then
(U ,A) is referred to as a set-valued information system
(SVIS), if for any a ∈ A and u ∈ U, a(u) is a set.
If (U ,A) is a SVIS. Given P ⊆ A and θ ∈ [0, 1]. Then a

tolerance relation on U can be defined as

RθP = {(u, v) ∈ U × U : ∀ a ∈ P, s(a(u), a(v)) ≤ θ},

where s(a(u), a(v)) = |a(u)
⋂
a(v)|

|a(u)
⋃
a(v)| means the similarity degree

between a(u) and a(v).
Definition 8 [29]: Given that (U ,A) is an IS. Then

(U ,A) is called an incomplete set-valued information system
(ISVIS), if (U ,A) is both incomplete and set-valued.
If P ⊆ A, then (U ,P) is referred to as the subsystem of

(U ,A).
Example 9: TABLE 1 depicts an ISVIS (U ,A) with U =
{u1, u2, . . . , u10} and A = {a1, a2, . . . , a6}.

V ∗a1 = Va1 = {{L,M ,N }, {M ,N }}, V
∗
a2 = {{L,M}, {L,N }},

V ∗a3 = {{L,M}, {M ,N }}, V
∗
a4 = {{L,N }, {M ,N }, {N }},

V ∗a5 = {∅, {L,M ,N }}, V
∗
a6 = {{L,M}, {M}},

III. DISTANCE BETWEEN TWO OBJECTS IN AN ISVIS
Definition 10: Let (U ,A) be an ISVIS. Then ∀ u, v ∈ U,

a ∈ A, the distance between a(u) and a(v) is defined as

d(a(u), a(v)) =

0, u = v;

1−
1
|V ∗a |2

, u 6= v, a(u) = ∗, a(v) = ∗;

1−
1
|V ∗a |

, u 6= v, a(u) 6= ∗, a(v) = ∗;

1−
1
|V ∗a |

, u 6= v, a(u) = ∗, a(v) 6= ∗;

0, u 6= v, a(u) 6= ∗,
a(v) 6= ∗, a(u) = a(v);

1−
|a(u)

⋂
a(v)|

|a(u)
⋃
a(v)|

, u 6= v, a(u) 6= ∗, a(v) 6= ∗,

a(u) 6= a(v).
According to the above definition, the distance between

two objects in an ISVIS is defined as follows.
Definition 11: Suppose that (U ,A) is an ISVIS. Given P ⊆

A. ∀ u, v ∈ U , the distance between u and v in the subsystem
(U ,P) is defined as

dP(u, v) =
√∑
a∈P

d2(a(u), a(v)),

where d(u, v) = d(a(u), a(v)), a is a set-valued attribute.
Proposition 12: Assume that (U ,A) is an ISVIS. Given

P ⊆ A. Then ∀ u, v ∈ U ,

0 ≤ dP(u, v) ≤
√
|P|.

Proof: Obviously. �
Example 13 (Continued From Example 9): Given P =

{a1, a2, a3, a4}. Calculate dP(u1, u3) in TABLE 1.
By Definition 10, we have

d(a1(u1), a1(u3)) = 1−
|a1(u)

⋂
a1(v)|

|a1(u)
⋃
a1(v)|

=1−
2
3
≈ 0.3333;
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TABLE 1. An ISVIS.

d(a2(u1), a2(u3)) = 1−
|a2(u)

⋂
a2(v)|

|a2(u)
⋃
a2(v)|

=1−
1
3
≈ 0.6667;

d(a3(u1), a3(u3)) = 1−
|a3(u)

⋂
a3(v)|

|a3(u)
⋃
a3(v)|

= 1−
1
2
= 0.5;

d(a4(u1), a4(u3)) = 1−
|a4(u)

⋂
a4(v)|

|a4(u)
⋃
a4(v)|

= 1− 1 = 0.

Then

dA(u1, u3) =
√∑
a∈A

d2(a(u1), a(u3))

≈

√
0.33332 + 0.66672 + 0.52 + 02

≈ 0.8975.

IV. FUZZY Tcos-EQUIVALENCE RELATION BASED ON
GAUSSIAN KERNEL IN AN ISVIS
In this section, the fuzzy Tcos-equivalence relation induced by
a given subsystem of an ISVIS is given by means of Gaussian
kernel.

Gaussian kernel G(u, v) = exp(− ‖u−v‖
2

2δ2
) is used to com-

pute the similarity between two objects u and v, where ‖u−v‖
is the Euclidean distance between two objects u and v, δ is a
threshold. In this article, pick δ ∈ (0, 1].

Obviously, G(u, v) satisfies:
(1) G(u, v) ∈ [0, 1];
(2) G(u, v) = G(v, u);
(3) G(u, u) = 1.

Definition 14: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ ∈ (0, 1], denote

RGP (δ)(ui, uj) = exp(−
d2P(ui, uj)

2δ2
),

M (RGP (δ)) = (RGP (δ)(ui, uj))n×n.

Then M (RGP (δ)) is called the Gaussian kernel matric of the
subsystem (U ,P) with respect to δ.
Theorem 15: Let (U ,A) be an ISVIS. Given P ⊆ A and

δ ∈ (0, 1]. Then RGP (δ) is a Tcos-equivalence relation on U.
Proof: This holds by Corollary 4. �

Definition 16: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ ∈ (0, 1]. Then RGP (δ) is called the Tcos-equivalence relation
induced by the subsystem (U ,P) with respect to δ.
For any u ∈ U , a fuzzy set [u]R

G
P (δ) is defined as follows:

[u]R
G
P (δ)(v) = RGP (δ)(u, v), ∀ v ∈ U .

Algorithm 1 The Tcos-Equivalence Relation
Input: An ISVIS (U ,A), P ⊆ A and δ ∈ (0, 1].
Output: A Tcos-equivalence relation RGP (δ).

1 for i = 1; i ≤ |U |; i++ do
2 for j = |U | − 1; j > i; j−− do
3 d(a(ui), a(uj)) = 0;

4 for each a ∈ P do
5 d(a(ui), a(uj)+ = d2(a(ui), a(uj));

6 end

7 Compute dP(ui, uj) =
√∑
a∈P

d(a(ui), a(uj));

8 RGP (δ)(ui, uj) = exp(− d2P(ui,uj)
2×δ2

);
9 M (RGP (δ)) = (RGP (δ)(ui, uj))n×n;

10 Obtain RGP (δ).
11 end
12 end

[u]R
G
P (δ) can be viewed as the fuzzy neighborhood of the

point u on U with respect to δ in the subsystem (U ,P).
Example 17: (Continued from Example 9 ) In TABLE 1,

pick δ =
√
0.8, we have

Similarly,
Then RGA (δ) is the Tcos-equivalence relation induced by the

system (U ,A) with respect to δ.
Given P ⊆ A and δ ∈ (0, 1]. Then an algorithm on a Tcos-

equivalence relation RGP (δ) is designed as follows.

V. RELATIONSHIPS BETWEEN TWO ISVISs
In this section, we investigate relationships between
two ISVISs and display inclusion degree of IIVISs
below.
Definition 18: Let (U ,P) and (U ,Q) be two ISVISs. Given

δ ∈ (0, 1]. If for any u ∈ U, [u]R
G
P (δ) = [u]R

G
Q(δ), then

(U ,P) and (U ,Q) are called to be equivalent with respect
to δ. We write (U ,P) ≈δ (U ,Q).
Obviously,

(U ,P) ≈δ (U ,Q)⇔ RGP (δ) = RGQ(δ).

Definition 19: Assuming that (U ,P) and (U ,Q) are two
ISVISs. Given δ ∈ (0, 1].
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(1) (U ,Q) is called to depend on (U ,P) with respect to δ,
if for any u ∈ U, [u]R

G
P (δ) ⊆ [u]R

G
Q(δ), we write (U ,P) �δ

(U ,Q); (U ,Q) is known as to depend strictly on (U ,P) with
respect to δ, if (U ,P) �δ (U ,Q) and (U ,P) 6≈δ (U ,Q), we
write (U ,P) ≺δ (U ,Q).
(2) (U ,Q) is called to depend partially on (U ,P) with

respect to δ, if exists u ∈ U, [u]R
G
P (δ) ⊆ [u]R

G
Q(δ), we write

(U ,P) vδ (U ,Q); (U ,P) is known as to depend strictly on
(U ,Q), if (U ,Q) vδ (U ,P) and (U ,Q) 6≈δ (U ,P), we can
write (U ,Q) @δ (U ,P).
(3) (U ,P) is referred to be independent of (U ,Q), if for

each u ∈ U, [u]R
G
P (δ) * [u]R

G
Q(δ), we write (U ,Q) FGδ (U ,P).

Clearly, the following conclusions can be obtained.

(U ,Q) ≈δ (U ,P) ⇔ (U ,Q)�δ (U ,P) and

M (RG
{a1}(δ)) =



1.000 1.000 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000
1.000 1.000 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000
0.993 0.993 1.000 0.993 1.000 1.000 0.993 1.000 1.000 0.993
1.000 1.000 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000
0.993 0.993 1.000 0.993 1.000 1.000 0.993 1.000 1.000 0.993
0.993 0.993 1.000 0.993 1.000 1.000 0.993 1.000 1.000 0.993
1.000 1.000 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000
0.993 0.993 1.000 0.993 1.000 1.000 0.993 1.000 1.000 0.993
0.993 0.993 1.000 0.993 1.000 1.000 0.993 1.000 1.000 0.993
1.000 1.000 0.993 1.000 0.993 0.993 1.000 0.993 0.993 1.000


,

M (RG
{a2}(δ)) =



1.000 0.966 1.000 0.895 0.895 1.000 0.895 0.895 0.966 1.000
0.966 1.000 0.966 0.966 0.966 0.966 0.966 0.966 0.838 0.966
1.000 0.966 1.000 0.895 0.895 1.000 0.895 0.895 0.966 1.000
0.895 0.966 0.895 1.000 1.000 0.895 1.000 1.000 0.966 0.895
0.895 0.966 0.895 1.000 1.000 0.895 1.000 1.000 0.966 0.895
1.000 0.966 1.000 0.895 0.895 1.000 0.895 0.895 0.966 1.000
0.895 0.966 0.895 1.000 1.000 0.895 1.000 1.000 0.966 0.895
0.895 0.966 0.895 1.000 1.000 0.895 1.000 1.000 0.966 0.895
0.966 0.838 0.966 0.966 0.966 0.966 0.966 0.966 1.000 0.966
1.000 0.966 1.000 0.895 0.895 1.000 0.895 0.895 0.966 1.000


,

M (RG
{a3}(δ)) =



1.000 0.966 0.966 0.966 0.966 0.966 0.966 0.838 0.966 0.838
0.966 1.000 0.895 1.000 0.895 1.000 1.000 0.966 0.895 0.966
0.966 0.895 1.000 0.895 1.000 0.895 0.895 0.966 1.000 0.966
0.966 1.000 0.895 1.000 0.895 1.000 1.000 0.966 0.895 0.966
0.966 0.895 1.000 0.895 1.000 0.895 0.895 0.966 1.000 0.966
0.966 1.000 0.895 1.000 0.895 1.000 1.000 0.966 0.895 0.966
0.966 1.000 0.895 1.000 0.895 1.000 1.000 0.966 0.895 0.966
0.838 0.966 0.966 0.966 0.966 0.966 0.966 1.000 0.966 0.838
0.966 0.895 1.000 0.895 1.000 0.895 0.895 0.966 1.000 0.966
0.838 0.966 0.966 0.966 0.966 0.966 0.966 0.838 0.966 1.000


,

M (RG
{a4}(δ)) =



1.000 0.966 1.000 0.895 0.895 0.895 0.895 0.966 1.000 0.895
0.966 1.000 0.966 0.895 0.966 0.895 0.966 1.000 0.966 0.966
1.000 0.966 1.000 0.895 0.895 0.895 0.895 0.966 1.000 0.895
0.895 0.895 0.895 1.000 0.895 0.705 0.895 0.895 0.895 0.895
0.895 0.966 0.895 0.895 1.000 0.895 1.000 0.966 0.895 1.000
0.895 0.895 0.895 0.705 0.895 1.000 0.895 0.895 0.895 0.895
0.895 0.966 0.895 0.895 1.000 0.895 1.000 0.966 0.895 1.000
0.966 1.000 0.966 0.895 0.966 0.895 0.966 1.000 0.966 0.966
1.000 0.966 1.000 0.895 0.895 0.895 0.895 0.966 1.000 0.895
0.895 0.966 0.895 0.895 1.000 0.895 1.000 0.966 0.895 1.000


,
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(U ,P) �δ (U ,Q),

(U ,Q) �δ (U ,P) ⇒ (U ,Q) vδ (U ,P),

(U ,Q) ≺δ (U ,P) ⇒ (U ,Q) @δ (U ,P).

Theorem 20: Suppose that (U ,P) and (U ,Q) are two
ISVISs. If P ⊆ Q, then for any δ ∈ (0, 1], (U ,P) �δ (U ,Q).

Proof: Obviously. �
Suppose that (U ,A) is an ISVIS. Denote

6(U ,A) = {(U ,P) : P ⊆ A}.

Given δ ∈ (0, 1]. It is obvious that (6(U ,A),�δ) is a partial
order set.
Definition 21 [39]: Let (U ,A) be an ISVIS. Given δ ∈

(0, 1]. Assuming that a mapping Dδ : 6(U ,A) × 6(U ,A) →

[0, 1] is said to be the inclusion degree on 6(U ,A) with
respect to δ, if it satisfies the following conditions: for any
(U ,O), (U ,P), (U ,Q) ∈ 6(U ,A),

(1) 0 ≤ Dδ((U ,P)/(U ,O)) ≤ 1;
(2) (U ,O) �δ (U ,P) implies Dδ((U ,P)/(U ,O)) = 1;
(3) (U ,O) �δ (U ,P) �δ (U ,Q) implies

Dδ((U ,O)/(U ,Q)) ≤ Dδ((U ,O)/(U ,P)).
Definition 22: Assuming that (U ,P) and (U ,Q) are two

ISVISs. Given δ ∈ (0, 1], define

Dδ((U ,Q)/(U ,P))=
n∑
l=1

|[ul]
RGQ(δ)|∑n

i=1 |[ui]
RGQ(δ)|

χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)),

where

χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) =

{
1, if [ul]R

G
P (δ) ⊆ [ul]

RGQ(δ),

0, if [ul]R
G
P (δ) * [ul]

RGQ(δ).

Proposition 23: Dδ in Definition 22 is the inclusion degree
under Definition 21.

Proof: Suppose O,P,Q ⊆ A and δ ∈ (0, 1].
(1) Obviously, 0 ≤ Dδ((U ,Q)/(U ,P)) ≤ 1.
(2) Suppose (U ,P) �δ (U ,Q). Then, by Definition 19,

[u]R
G
P (δ) ⊆ [u]R

G
Q(δ). Thus, for each l, [ul]R

G
P (δ) ⊆ [ul]

RGQ(δ).
This result implies that

for each l, χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) = 1.

Thus, Dδ((U ,Q)/(U ,P)) = 1.
(3) Suppose (U ,P) �δ (U ,Q) �δ (U ,O). Then, by Def-

inition 19, [u]R
G
P (δ) ⊆ [u]R

G
Q(δ) ⊆ [u]R

G
O(δ). Thus, for each l,

[ul]R
G
P (δ) ⊆ [ul]

RGQ(δ) ⊆ [ul]R
G
O(δ).

By Definition 22,

Dδ((U ,P)/(U ,O))

=

n∑
l=1

|[ul]R
G
P (δ)|∑n

i=1 |[u]
RGP (δ)(ui)|

χ
[ul ]

RGP (δ) ([ul]
RGO(δ)),

Dδ((U ,P)/(U ,Q))

=

n∑
l=1

|[ul]R
G
P (δ)|∑n

i=1 |[u]
RGP (δ)(ui)|

χ
[ul ]

RGP (δ) ([ul]
RGQ(δ)).

If [ul]
RGQ(δ) 6⊆ [ul]R

G
P (δ), then [ul]R

G
O(δ) 6⊆ [ul]R

G
P (δ). This

result illustrates that

χ
[ul ]

RGP (δ) ([ul]
RGQ(δ)) = 0 implies χ

[ul ]
RGP (δ) ([ul]

RGO(δ)) = 0.

Thus,

Dδ((U ,P)/(U ,O)) ≤ Dδ((U ,P)/(U ,Q)).

M (RG
{a5}(δ)) =



1.000 0.572 1.000 1.000 0.572 0.572 0.966 1.000 1.000 0.572
0.572 1.000 0.572 0.572 1.000 1.000 0.966 0.572 0.572 1.000
1.000 0.572 1.000 1.000 0.572 0.572 0.966 1.000 1.000 0.572
1.000 0.572 1.000 1.000 0.572 0.572 0.966 1.000 1.000 0.572
0.572 1.000 0.572 0.572 1.000 1.000 0.966 0.572 0.572 1.000
0.572 1.000 0.572 0.572 1.000 1.000 0.966 0.572 0.572 1.000
0.966 0.966 0.966 0.966 0.966 0.966 1.000 0.966 0.966 0.966
1.000 0.572 1.000 1.000 0.572 0.572 0.966 1.000 1.000 0.572
1.000 0.572 1.000 1.000 0.572 0.572 0.966 1.000 1.000 0.572
0.572 1.000 0.572 0.572 1.000 1.000 0.966 0.572 0.572 1.000


,

M (RG
{a6}(δ)) =



1.000 0.572 0.572 1.000 0.966 0.572 0.572 0.966 1.000 0.572
0.572 1.000 1.000 0.572 0.966 1.000 1.000 0.966 0.572 1.000
0.572 1.000 1.000 0.572 0.966 1.000 1.000 0.966 0.572 1.000
1.000 0.572 0.572 1.000 0.966 0.572 0.572 0.966 1.000 0.572
0.966 0.966 0.966 0.966 1.000 0.966 0.966 0.838 0.966 0.966
0.572 1.000 1.000 0.572 0.966 1.000 1.000 0.966 0.572 1.000
0.572 1.000 1.000 0.572 0.966 1.000 1.000 0.966 0.572 1.000
0.966 0.966 0.966 0.966 0.838 0.966 0.966 1.000 0.966 0.966
1.000 0.572 0.572 1.000 0.966 0.572 0.572 0.966 1.000 0.572
0.572 1.000 1.000 0.572 0.966 1.000 1.000 0.966 0.572 1.000


,
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From the above, we know that Dδ is the inclusion
degree. �
It can be obtained that the inclusion degree has the ability

to quantify relationships by the theorem below.
Theorem 24: Assuming that (U ,P) and (U ,Q) are two

ISVISs. Given δ ∈ (0, 1],
(1) (U ,P) �δ (U ,Q)⇔ Dδ((U ,Q)/(U ,P)) = 1;
(2) (U ,P) FGδ (U ,Q)⇔ Dδ((U ,Q)/(U ,P)) = 0;
(3) (U ,P) vδ (U ,Q)⇔ 0 < Dδ((U ,Q)/(U ,P)) ≤ 1.
Proof: (1) ‘‘H⇒’’ is evident. We prove ‘‘⇐H’’. Suppose

|[ul]
RGQ(δ)| = ql,

n∑
l=1

|[ul]
RGQ(δ)| = q.

Then,

q =
n∑
l=1

ql .

Owing to Dδ((U ,Q)/(U ,P)) = 1, it can be obtained that
n∑
l=1

qlχ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) =

n∑
l=1

ql = q.

Then,

q(1− χ
[ul ]

RGQ(δ) ([ul]
RGP (δ))) = 0.

Consequently, ∀ l,

1− χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) = 0.

Thus, it can be obtained that ∀ l, [ul]R
G
P (δ) ⊆ [ul]

RGQ(δ).
By Definition 19, (U ,P) �δ (U ,Q).
(2) ‘‘H⇒’’. Owing to (U ,P) FGδ (U ,Q), it can be obtained

that [ul]R
G
P (δ) * [ul]

RGQ(δ). Then ∀ l,

χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) = 0.

By Definition 22, Dδ((U ,Q)/(U ,P)) = 0.
‘‘⇐H’’. Owing to Dδ((U ,Q)/(U ,P)) = 0, it can be

obtained that ∀ l, χ
[ul ]

RGQ(δ) ([ul]
RGP (δ)) = 0.

Then, ∀ l, [ul]R
G
P (δ) * [ul]

RGQ(δ). By Definition 19,
(U ,P) FGδ (U ,Q).

(3) The result can be obtained from (1) and (2). �

VI. MEASURING UNCERTAINTY IN AN ISVIS
Uncertainty of a given ISVIS is derived from uncertainty of
fuzzy relations. In this section, we put forward some tools to
measure uncertainty.

A. GRANULATION MEASUREMENT FOR AN ISVIS
Definition 25: Let (U ,A) be an ISVIS. Given δ ∈ (0, 1].

Suppose that Gδ : 2A→ (−∞,+∞) is a function. Then G is
called an δ-information granulation function in (U ,A) with
respect to δ, if G satisfies the following conditions:

(1) ∀ P ∈ 2A, Gδ(P) ≥ 0 (Non-negativity);
(2) ∀ P,Q ∈ 2A, if (U ,P) ≈δ (U ,Q), then Gδ(P) = Gδ(Q)

(Invariability);

(3) ∀ P,Q ∈ 2A, if (U ,P) ≺δ (U ,Q), then Gδ(P) < Gδ(Q)
(Monotonicity).
Definition 26: Suppose that (U ,A) is an ISVIS. Given P ⊆

A and δ ∈ (0, 1]. Then δ-information granulation of (U ,P)
with respect to δ is defined as

Gδ(P) =
1
n2

n∑
i=1

|[ui]R
G
P (δ)|.

Proposition 27: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ ∈ (0, 1]. Then

0 ≤ Gδ(P) ≤ 1.

If RGP (δ) = o, then G reaches the minimum value 0; if
RGP (δ) = ω, then G reaches the maximum value 1.

Proof: By Definition 26,

Gδ(P) =
1
n2

n∑
i=1

n∑
j=1

RGP (ui, uj).

Obviously, ∀ i, j, 0 ≤ RGP (ui, uj) ≤ 1.
Then

0 ≤
n∑
i=1

n∑
j=1

RGP (ui, uj) ≤ n
2.

Thus

0 ≤ Gδ(P) ≤ 1.

If RGP (δ) = o, then ∀ i, j, RGP (δ)(ui, uj) = 0 and so
Gδ(P) = 0.
If RGP (δ) = ω, then ∀ i, j, RGP (δ)(ui, uj) = 1 and

so Gδ(P) = 1. �
Theorem 28: Let (U ,A) be an ISVIS. Given P,Q ⊆

A and δ ∈ (0, 1]. If (U ,P) ≺δ (U ,Q), then
Gδ(P) < Gδ(Q).

Proof: Since (U ,P) ≺δ (U ,Q), we have (U ,P) �δ
(U ,Q) and (U ,P) 6≈δ (U ,Q).
So ∀ i, [ui]R

G
P (δ) ⊆ [ui]

RGQ(δ) and ∃ i′, GP(ui′ ) ( GQ(ui′ ).
Thus ∀ i, j, GP(x)(uj) ≤ GQ(x)(uj) and ∃ i′, j′,

[ui′ ]R
G
P (δ)(uj′ ) < [ui′ ]

RGQ(δ)(uj′ ).
Hence ∀ i, j,

RGP (δ)(ui, uj) ≤ R
G
Q(δ)(ui, uj)

and ∃ i′, j′,

RGP (δ)(ui′ , uj′ ) < RGQ(δ)(ui′ , uj′ ).

By Definition 26,

Gδ(P) =
1
n2

n∑
i=1

n∑
j=1

RGP (δ)(ui, uj),

Gδ(Q) =
1
n2

n∑
i=1

n∑
j=1

RGQ(δ)(ui, uj).

Hence Gδ(P) < Gδ(Q). �
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Theorem 29: Gδ in Definition 26 is an δ-information gran-
ulation function under Definition 25.

Proof: (1) Obviously, ‘‘Non-negativity’’ holds.
(2) Given P,Q ⊆ A. If (U ,P) ≈δ (U ,Q), then ∀ i,

[ui]R
G
P (δ) = [ui]

RGQ(δ).
By Definition 26, Gδ(P) = Gδ(Q).
(3) ‘‘Monotonicity’’ follows from Theorem 28. �

B. ENTROPY MEASUREMENTS FOR AN ISVIS
Definition 30: Let (U ,A) be an ISVIS. Given P ⊆ A and

δ ∈ (0, 1]. Then δ-rough entropy of (U ,P) with respect to δ
is defined as

(Er )δ(P) = −
n∑
i=1

|[ui]R
G
P (δ)|

n
log2

1

|[ui]R
G
P (δ)|

.

Proposition 31: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ ∈ (0, 1]. Then

−∞ < (Er )δ(P) ≤ log2 n.

Furthermore, if RGP (δ) = ω, then Er reaches the maximum
value log2 n; if R

G
P (δ) is reflexive, then

0 ≤ (Er )δ(P) ≤ log2 n.
Proof: (1) By Definition 30,

(Er )δ(P) =
n∑
i=1

1
n
log2

n∑
j=1

[ui]R
G
P (δ)(uj)

=
1
n

n∑
i=1

log2(
n∑
j=1

RGP (ui, uj)). ∀ i, j,

0 ≤ RGP (δ)(ui, uj) ≤ 1.

Then ∀ i,

−∞ < log2(
n∑
j=1

RGP (ui, uj)) ≤ log2 n.

This means that

−∞ <

n∑
j=1

log2(
n∑
j=1

RGP (ui, uj)) ≤ nlog2 n.

Thus

−∞ < (Er )δ(P) ≤ log2 n.

(2) Suppose RGP (δ) = ω. Then ∀ i, j, RGP (δ)(ui, uj) = 1.
Thus

(Er )δ(P) = log2 n.

(3) Suppose that RGP (δ) is reflexive. Then ∀ i, R(ui, ui) = 1.
So ∀ i,

1 ≤
n∑
j=1

RGP (δ)(ui, uj) ≤ n.

Thus ∀ i,

0 ≤ log2(
n∑
j=1

RGP (δ)(ui, uj)) ≤ log2 n.

Hence

0 ≤ (Er )δ(P) ≤ log2 n.

�
Proposition 32: Let (U ,A) be an ISVIS. Given P,Q ⊆ A

and δ ∈ (0, 1]. If (U ,P) ≺δ (U ,Q), then (Er )δ(P) <

(Er )δ(Q).
Proof: (1) Similar to the proof of Theorem 28, we obtain

that ∀ i, j,

RGP (δ)(ui, uj) ≤ R
G
Q(δ)(ui, uj),

and ∃ i′, j′,

RGP (δ)(ui′ , uj′ ) < RGQ(δ)(ui′ , uj′ ).

Then
n∑
j=1

RGP (ui′ , uj) <
n∑
j=1

RGQ(δ)(ui′ , uj).

So

log2(
n∑
j=1

RGP (ui′ , uj)) < log2(
n∑
j=1

RGQ(δ)(ui′ , uj)).

Thus

(Er )δ(P)

=
1
n

n∑
i=1

log2 |[ui]
RGP (δ)| =

1
n

n∑
i=1

log2(
n∑
j=1

RGP (δ)(ui, uj))

=
1
n

∑
i 6=i′

log2(
n∑
j=1

RGP (δ)(ui, uj))+
1
n
log2(

n∑
j=1

RGP (δ)(ui′ , uj))

≤
1
n

∑
i 6=i′

log2(
n∑
j=1

RGQ(δ)(ui, uj))+
1
n
log2(

n∑
j=1

RGP (δ)(ui′ , uj))

<
1
n

∑
i 6=i′

log2(
n∑
j=1

RGQ(δ)(ui, uj))+
1
n
log2(

n∑
j=1

RGQ(δ)(ui′ , uj))

=
1
n

n∑
i=1

log2(
n∑
j=1

RGQ(δ)(ui, uj))

=
1
n

n∑
i=1

log2 |[ui]
RGQ(δ)| = (Er )δ(Q).

Hence

(Er )δ(P) < (Er )δ(Q).

�
Theorem 33: (Er )δ in Definition 30 is an δ-information

granulation function under Definition 25.
Proof: (1) Obviously, ‘‘Non-negativity’’ holds.

(2) Given P,Q ⊆ A. If (U ,P) ≈δ (U ,Q), then ∀ i,
[ui]R

G
P (δ) = [ui]

RGQ(δ).
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(3) By Definition 30, (Er )δ(P) = (Er )δ(Q). ‘‘Monotonic-
ity’’ follows from Proposition 32.

�

C. INFORMATION ENTROPY FOR AN ISVIS
Definition 34: Suppose that (U ,A) is an ISVIS. Given P ⊆

A and δ ∈ (0, 1]. Then δ-information entropy of (U ,P) with
respect to δ is defined as

Hδ(P) = −
n∑
i=1

|[ui]R
G
P (δ)|

n
log2
|[ui]R

G
P (δ)|

n
.

Theorem 35: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ ∈ (0, 1]. Then

(Er )δ(P)+ Hδ(P) = log2 n.
Proof: By Definitions 30 and 34,

(Er )δ(P) = −
n∑
i=1

1
n
log2

1

|[ui]R
G
P (δ)|

,

Hδ(P) = −
1
n

n∑
i=1

log2
|[ui]R

G
P (δ)|

n
.

Then

(Er )δ(P)+ Hδ(P)

= −

n∑
i=1

1
n
log2

1

|[ui]R
G
P (δ)|
−

1
n

n∑
i=1

log2
|[ui]R

G
P (δ)|

n

= −
1
n

n∑
i=1

(log2
1

|[ui]R
G
P (δ)|
+ log2

|[ui]R
G
P (δ)|

n
)

= −
1
n

n∑
j=1

log2
1
n

= log2 n.

Thus

(Er )δ(P)+ Hδ(P) = log2 n.

�
Corollary 36: Let (U ,A) be an ISVIS. Given P ⊆ A and

δ ∈ (0, 1]. Then

0 ≤ Hδ(P) < +∞.

Besides, if RGP (δ) = ω, then H reaches the minimum value 0;
if RGP (δ) is reflexive, then

0 ≤ Hδ(P) ≤ log2 n.
Proof: This holds by Proposition 31 and Theorem 35.

�

D. INFORMATION AMOUNT OF AN ISVIS
Definition 37: Let (U ,A) be an ISVIS. Given P ⊆ A and

δ ∈ (0, 1]. Then δ-information amount of (U ,P) with respect
to δ is defined as

Eδ(P) =
n∑
i=1

|[ui]R
G
P (δ)|

n
(1−
|[ui]R

G
P (δ)|

n
).

Theorem 38: Let (U ,A) be an ISVIS. Given P ⊆ A and
δ = (0, 1]. Then

Gδ(P)+ Eδ(P) = 1.

Proof: By Definition 26, Gδ(P) = 1
n2

n∑
i=1
|[ui]R

G
P (δ)|.

By Definition 37, Eδ(P) =
n∑
i=1

1
n (1−

|[ui]
RGP (δ)
|

n ).

Then

Gδ(P)+ Eδ(P) =
1
n2

n∑
i=1

|[ui]R
G
P (δ)| +

n∑
i=1

1
n
(1−
|[ui]R

G
P (δ)|

n
)

=
1
n

n∑
i=1

(
|[ui]R

G
P (δ)|

n
+ (n−

|[ui]R
G
P (δ)|

n
))

=
1
n

n∑
j=1

n

= 1.

Thus

Gδ(P)+ Eδ(P) = 1.

�
Corollary 39: Let (U ,A) be an ISVIS. Given P ⊆ A and

δ ∈ (0, 1]. Then

0 ≤ Eδ(P) ≤ 1.

Furthermore, if RGP (δ) = ω, then E reaches the mini-
mum value 0; if RGP (δ) = o, then E reaches the maximum
value 1.

Proof: This holds by Proposition 27 and Theorem 38.
�

Example 40: (Continued from Example 17) Pick Bi =
{a1, a2, . . . , ai} (i = 1, 2, . . . , 6) and δ =

√
0.8.

By Definition 26,

Gδ(B1) =
1
102

10∑
i=1

|[ui]
RGB1

(δ)
| ≈ 0.9966,

Gδ(B2) =
1
102

10∑
i=1

|[ui]
RGB2

(δ)
| ≈ 0.9356,

Gδ(B3) =
1
102

10∑
i=1

|[ui]
RGB3

(δ)
| ≈ 0.8235,

Gδ(B4) =
1
102

10∑
i=1

|[ui]
RGB4

(δ)
| ≈ 0.6652,

Gδ(B5) =
1
102

10∑
i=1

|[ui]
RGB5

(δ)
| ≈ 0.4450,

Gδ(B6) =
1
102

10∑
i=1

|[ui]
RGB6

(δ)
| ≈ 0.3383.

By Definition 30,

(Er )δ(B1) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB1

(δ)
|

≈ 33.0555,
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(Er )δ(B2) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB2

(δ)
|

≈ 30.1812,

(Er )δ(B3) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB3

(δ)
|

≈ 25.0493,

(Er )δ(B4) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB4

(δ)
|

≈ 17.7807,

(Er )δ(B5) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB5

(δ)
|

≈ 9.6253,

(Er )δ(B6) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2

1

|[ui]
RGB6

(δ)
|

≈ 5.9907.

By Definition 34,

Hδ(B1) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB1
(δ)
|

10
≈ 0.0495,

Hδ(B2) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB2
(δ)
|

10
≈ 0.8986,

Hδ(B3) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB3
(δ)
|

10
≈ 2.3055,

Hδ(B4) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB4
(δ)
|

10
≈ 3.9846,

Hδ(B5) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB5
(δ)
|

10
≈ 5.1579,

Hδ(B6) = −
10∑
i=1

|[ui]R
G
P (δ)|

10
log2
|[ui]

RGB6
(δ)
|

10
≈ 5.2473.

By Definition 37,

Eδ(B1) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB1
(δ)
|

10
) ≈ 0.0343,

Eδ(B2) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB2
(δ)
|

10
) ≈ 0.6026,

Eδ(B3) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB3
(δ)
|

10
) ≈ 1.4513,

Eδ(B4) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB4
(δ)
|

10
) ≈ 2.2483,

Eδ(B5) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB5
(δ)
|

10
) ≈ 2.4441,

Eδ(B6) =
10∑
i=1

|[ui]R
G
P (δ)|

10
(1−
|[ui]

RGB6
(δ)
|

10
) ≈ 2.2183.

The results of these experiments are shown in FIGURE 2.

FIGURE 2. Uncertainty measurement for ISVIS with different subsystems.

It can be seen the truth that with the attribute subset
B ⊆ A growth, uncertainty measures of the ISVIS (U ,A)
show certain regularity, which are reflected in the following
truths:

1) Gδ and (Er )δ monotonically decrease with the increase
of number of attributes;

2) (Er )δ and Hδ are more sensitive than Gδ;
3) (Er )δ and Hδ are more sensitive than Eδ;
4) The difference among Gδ and Eδ are almost the same.
Thus, δ-rough entropy and δ-information entropy are more

suitable than δ-information amount and δ-information gran-
ulation for an ISVIS.

VII. EFFECTIVENESS ANALYSIS
In this section, effectiveness analysis is put forward from
three aspects.

A. DISPERSION ANALYSIS
Assume that X = {x1, . . . , xn} is a data set. Then its arith-
metic average value (resp. standard deviation, standard devi-
ation coefficient) is regarded as x (σ (X ), CV (X )), they are
defined as follows:

x =
1
n

n∑
i=1

x, σ (X ) =

√√√√1
n

n∑
i=1

(x − x)2, CV (X ) =
σ (X )
x
.

Example 41 (Continued From Example 40): Denote

XG = {Gδ(B1), . . . ,Gδ(B6)}, XEr ={(Er )δB1),. . . ,Er (B6)},

XH = {Hδ(B1), . . . ,Hδ(B6)}, XE = {Eδ(B1), . . . ,Eδ(B6)}.

Then

CV (XG) = 0.3487, CV (XEr ) = 0.4963,

CV (XH ) = 0.6838, CV (XE ) = 0.6040.

The results are shown in FIGURE 3.
So

CV (XH ) > CV (XE ) > CV (XEr ) > CV (XG).

Then dispersion degree of G reaches minimum.

VOLUME 8, 2020 212031



L. Chen et al.: Measures of Uncertainty for an ISVIS With the Optimal Selection of Subsystems

TABLE 2. The corresponding correlation between X and Y .

FIGURE 3. CV -values for measuring uncertainty of the subsystems.

From FIGUREs 2 and 3, the following results can be
obtained:

(1) (Er )δ andHδ have better performance tomeasure uncer-
tainty of an ISVIS if the monotonicity is only considered;

(2) (Er )δ has better performance to measure uncertainty of
an ISVIS if the monotonicity and dispersion degree are both
considered.

B. ASSOCIATION ANALYSIS
In statistics, Pearson correlation coefficient is a measure of
the strength of a linear correlation between two data sets.

Suppose that X = {x1, x2 . . . , xn} and Y = {y1, y2 . . . , yn}
are two data sets. Pearson correlation coefficient between X
and Y , denoted by r(X ,Y ), is defined as

r(X ,Y ) =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2
√

n∑
i=1

(yi − y)2
,

where x = 1
n

n∑
i=1

xi, y = 1
n

n∑
i=1

yi.

Obviously,

−1 ≤ r(X ,Y ) ≤ 1.

TABLE 3. r -values of measure values sets.

TABLE 4. The correlation between two measures.

The correlation between X and Y can be obtained accord-
ing to TABLE 2.
Example 42 (Continued From Example 40): Pearson cor-

relation coefficients are calculated as follows (see TABLE 3).
From TABLE 3, the following results are obtained (see

TABLE 4):

C. FRIEDMAN TEST AND BONFERRONI-DUNN TEST
To further explore whether the performance of each uncer-
tainty measurement with the six subsystems are significantly
different, Friedman test [6] and Bonferroni-Dunn test [1] are
given in this subsection.

Friedman test is a statistical test that uses the rank of
algorithms. Friedman statistic is defined as

χ2
F =

12N
k(k + 1)

(
k∑
i=1

r2i −
k(k + 1)2

4
)

where k is the number of algorithms, N is the number of data
sets, ri is the average ranking of the i-th algorithm. When
k and N are large enough, Friedman statistic follows the
chi-square distribution with k − 1 degrees of freedom. How-
ever, such Friedman test is too conservation, and is usually
replaced by the next statistic

FF =
(N − 1)χ2

F

N (k − 1)− χ2
F

.

The statistic FF follows the Fisher distribution with k − 1
and (k − 1)(N − 1) degrees of freedom. If the value of the
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TABLE 5. The ranking of uncertainty measurements for ISVIS with
different subsystems.

statistic FF is larger than the critical value of Fα(k−1,N−1),
it means the null hypothesis is rejected under the Friedman
test. Then the Bonferroni-Dunn test can be used to further
explore which algorithm is better in the statistical term. If the
average level of distance exceeds the critical distance CDα ,
then the performance of the two algorithms will be signifi-
cantly different. The critical distance CDα is denoted as

CDα = qα

√
k(k + 1)

6N
,

where qα is a critical value calculated by the qtukey function
in r and α is the significance level.
Example 43 (Continued From Example 40): We have

Gδ(B1) ≈ 0.9966, Gδ(B2) ≈ 0.9356, Gδ(B3) ≈ 0.8235,

Gδ(B4) ≈ 0.6652, Gδ(B5) ≈ 0.4450, Gδ(B6) ≈ 0.3383;

(Er )δ(B1) ≈ 33.0555, (Er )δ(B2) ≈ 30.1812, (Er )δ(B3)

≈ 25.0493,

(Er )δ(B4) ≈ 17.7807, (Er )δ(B5) ≈ 9.6253, (Er )δ(B6)

≈ 5.9907;

Hδ(B1) ≈ 0.0495, Hδ(B2) ≈ 0.8986, Hδ(B3) ≈ 2.3055,

Hδ(B4) ≈ 3.9846, Hδ(B5) ≈ 5.1579, Hδ(B6) ≈ 5.2473;

Eδ(B1) ≈ 0.0343, Eδ(B2) ≈ 0.6026, Eδ(B3) ≈ 1.4513,

Eδ(B4) ≈ 2.2483, Eδ(B5) ≈ 2.4441, Eδ(B6) ≈ 2.2183.

Below, we view the four uncertainty measurements for
ISVIS as four algorithms and demonstrate the statistical sig-
nificance by using Friedman test and Bonferroni-Dunn test.
(1) We give the ranking of the four measurements with six

subsystems, respectively (see TABLE 5).
(2) We conduct Friedman test to investigate whether the

performance of the four measurements are significantly dif-
ferent. Under the four measurements and the 6 subsystems,
FF follows the Fisher distribution with 3 and 15 degrees of
freedom. Note that the critical value F0.05(3, 15) is 3.287, and
FF = 10.517. Obviously, the value of FF is larger than the
value of F0.05(3, 15). This means that at the significant level
α = 0.05, it is evidence to reject the null hypothesis, which
means that the four uncertainty measurements are different in
the statistical significance.
(3) To further show the significant differences of the four

measurements, Bonferroni-Dunn test is introduced. For α =
0.05, we can easily calculate the corresponding critical dis-

tance CDα = 2.569×
√

4×(4+1)
6×6 = 1.915. FIGURE 4 shows

FIGURE 4. The performance of the four measurements under
Bonferroni-Dunn test.

the results with α = 0.05 on the four measurements. The
dots in FIGURE 4 indicate the average ranking of the four
measurements. The line segments in FIGURE 4 carves out
the scope of CDα . If the two roots partially overlap on the
y-axis, then there is no significant difference between these
two uncertainty measurements.

(4) From FIGURE 4, the following results are obtained:
1) a) The performance of Gδ is statistically different from

the performance of (Er )δ;
b) The performance of Eδ is statistically different from

the performance of (Er )δ .
2) a) There is no significant difference among Gδ , Eδ and

Hδ;
b) There is no significant difference between Hδ and Eδ .

VIII. OPTIMAL SELECTION OF SUBSYSTEMS BASED ON
UNCERTAINTY MEASURES
In the above section, we use relationships between two
ISVISs to study uncertainty measures, which naturally causes
a problem. When uncertainty measure reaches the optimal
value (i.e. the maximum or minimum value)? How to deter-
mine the corresponding subsystem (we call it the optimal
system)? In this section, the optimal selection of subsys-
tems based on δ-information granulation and δ-information
amount is obtained.
Definition 44: Let (U ,A) be an ISVIS. Given δ ∈ (0, 1].
(1) If there exists B1 ⊆ A such that Gδ(B1) = max{Gδ(B) :

B ⊆ A}, then (U ,B1) is called a maximum subsystem in
(U ,A) based on δ-information granulation;

(2) If there exists B2 ⊆ A such that Gδ(B2) = min{Gδ(B) :
B ⊆ A}, then (U ,B2) is called aminimum subsystem in (U ,A)
based on δ-information granulation.

The maximum subsystem and minimum subsystem in
(U ,A) are collectively called the optimal subsystems based
on δ-information granulation.
Theorem 45: Let (U ,A) be an ISVIS. Given δ ∈ (0, 1].
(1) If there exists a0 ∈ A such that Gδ({a0}) =

max{Gδ({a}) : a ∈ A}, then (U , {a0}) is a maximum sub-
system in (U ,A) based on δ-information granulation;
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(2) (U ,A) is a minimum subsystem in (U ,A) based on δ-
information granulation.

Proof: (1) By Theorem 28,

max{Gδ(B) : B ⊆ A} = max{Gδ({a}) : a ∈ A}.

Note that Gδ({a0}) = max{Gδ({a}) : a ∈ A}. Then

max{Gδ(B) : B ⊆ A} = Gδ({a0}).

Thus (U , {a0}) is a maximum subsystem in (U ,A) based
on δ-information granulation.
(2) By Theorem 28, ∀ B ⊆ A,

Gδ(B) ≤ Gδ(A).

This shows that

Gδ(A) = min{Gδ(B) : B ⊆ A}.

ByDefinition 44, (U ,A) is aminimum subsystem in (U ,A)
based on δ-information granulation.

�
Example 46: (Continued from Example 40) Pick δ =
√
0.8. Then

Gδ({a1}) = 0.9966,Gδ({a2}) = 0.9523,Gδ({a3}) = 0.9508,

Gδ({a4}) = 0.9336,Gδ({a5}) = 0.8225,Gδ({a6}) = 0.8573.

Gδ(A) = 0.3383.

Thus, (U , {a1}) is amaximum subsystem in (U ,A) based on
δ-information granulation, (U ,A) is a minimum subsystem in
(U ,A) based on δ-information granulation.
Definition 47: Let (U ,A) be an ISVIS. Given δ ∈ (0, 1].
(1) If there exists B1 ⊆ A such that Eδ(B1) = max{Eδ(B) :

B ⊆ A}, then (U ,B1) is called a maximum subsystem in
(U ,A) based on δ-information amount;
(2) If there exists B2 ⊆ A such that Eδ(B2) = min{Eδ(B) :

B ⊆ A}, then (U ,B2) is called aminimum subsystem in (U ,A)
based on δ-information amount.
The maximum subsystem and minimum subsystem in

(U ,A) based on δ-information amount are collectively called
the optimal subsystems based on δ-information amount.
Example 48: (Continued from Example 40) Pick δ =
√
0.8. Then the results are obtained by calculating as follows:

Eδ({a1}) = min{Eδ(B) : B ⊆ A} = 0.0343,

Eδ({a1, a3, a5, a6}) = max{Eδ(B) : B ⊆ A} = 2.4664.

Thus, (U , {a1}) is a minimum subsystem in (U ,A) based
on δ-information amount, (U , {a1, a3, a5, a6}) is a maximum
subsystem in (U ,A) based on δ-information amount.

IX. CONCLUSION
This article has measured the uncertainty of an ISVIS by
means of Gaussian kernel and given the optimal selection
of subsystems. Relationships between ISVISs have been
investigated. Four tools of measuring the uncertainty of an
ISVIS have been proposed. Effectiveness analysis about the
proposed measures has been done from the angle of statis-
tics. Based on δ-information granulation and δ-information

amount, the optimal selection of subsystems has been given.
In the future, we will examine applications of the proposed
measures for an ISVIS.
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