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ABSTRACT As a new type of transportation, electric vehicles (EV) can effectively adjust the supply and
demand balance of power systems using their vehicle-to-grid (V2G) characteristics. To better promote the
participation of EV resources in the energy market and interact with power systems, we propose a novel
framework of an electric vehicle aggregator (EVA) that can aggregate schedulable EVs within its jurisdiction
to provide auxiliary services for the power grid. Due to EV charging behavior’s uncertain nature, we employ
a probability mass function (PMF) based model to provide more accurate forecasts of future EV behaviors.
To reduce EVA operation costs and maximize the travel utility for EV users participating in this service,
we develop an EVA optimization schedule model that combines a day-ahead optimization schedule and real-
time optimization schedule. Finally, we create three case studies to verify the results of the proposed method.
Matlab is used to simulate and analyze each case study concerning uncoordinated charging, coordinated
charging while considering day-ahead optimization schedules, and an ensemble of coordinated charging
activities that consider the day-ahead optimization schedule and real-time optimization schedule. Through
comparative analysis, it is verified that the proposed strategy can effectively reduce EVAs’ operating costs
and meet the travel requirements of EV users. The impact of different degrees of error of EV plug-out
information on the proposed method is also analyzed.

INDEX TERMS Electric vehicles, vehicle-to-grid, electric vehicle aggregator, day-ahead optimization
schedule, real-time optimization schedule.

I. INTRODUCTION
Promoting EVs can accelerate fuel substitution and reduce
vehicle exhaust emissions, which are of great significance for
promoting energy conservation and emissions reduction and
preventing air pollution [1]–[4]. However, broad EV access to
the power grid will seriously affect the distribution network’s
stability and reliability [5]–[8]. Simultaneously, due to the
extremely high communication network and computational
complexity required by the dispatching agency for direct
dispatching of EVs, it is necessary to introduce the role of
an EVA to coordinate scheduling of EVs within the EVA
jurisdiction. In essence, an EVA is an electricity retailer that
provides charging operation services. According to the daily
charging demand of the EV fleet, the EVA bids for energy in
the day-ahead market. It implements a real-time scheduling
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optimization strategy based on day-aheadmarket transactions
to maximize its profit without affecting EVs’ charging tar-
gets [9]–[11]. Through aggregation, coordination, and control
of EVAs, EVs can effectively conduct positive interactions
with the power grid, play the role of peak shaving and valley
filling, and provide auxiliary services (AS) such as frequency
regulation (FR) and operating reserves [12]–[14].

In [15], based on the travel habits of EV users, a cloud
model is used to build a charging load curve and a range
of charging loads. Compared with Monte-Carlo methods,
the cloudmodel has higher prediction accuracy, but themodel
is only applicable within a specific boundary or facility. Also,
its applicability is focused on infrastructure planning for EVs.
The work presented in [16] uses different EV driving condi-
tions in conjunction with a deep learning algorithm based on
a modular recurrent neural network to predict EVs’ power
requirements. This method can optimize the power require-
ments of EVs and extend their driving distances. However,
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this model ignores the driving behaviors of EV users. The
work by [17] developed an EV load forecasting model that
considered the types of EVs, charging times, charging modes,
and other factors in a specific area and the model was also
used to analyze the different impacts of EV charging on
the distribution network for different seasons. The studies
mentioned above have all considered a combination of factors
such as state of charge (SoC), charging time, charging station
location, electricity price, and driver experience to model
EVs contributions to the grid. However, these models do not
consider factors related to the social characteristics of EV
users and economic factors. To implement an optimal charg-
ing infrastructure [18], the effects of the factors mentioned
above on EV charging demand using agent-based modelling
to predict EV charging’s electrical power demand are exam-
ined. The authors of [19] suggested an energy management
(EM) scheme using random forest methodology to predict EV
travel patterns to minimize the cost of energy consumption.
Although the above literature produced significant results,
all ignored the possibility of errors related to EVs’ charg-
ing behaviors. To address this, the work proposed by [20]
discusses a two-stage approximate dynamic programming
framework to determine the optimal charging strategy by
utilizing predicted short-term future information and long-
term estimations from historical data. In [21], the authors also
establish an intelligent traffic scene with optimal traffic-light
control to predict future driving-state information and driving
models of hybrid EVs (HEV). Combining each available
taxi’s historical charging events and real-time GPS trajec-
tories, the work in Reference [22] predicts a taxi’s current
operational state and recommends a suitable charging station
for each cab to minimize its charging time. To solve the
problem of EV range anxiety, the authors in [23] use location-
dependent environmental conditions and time-varying drive
system losses to estimate EV battery SoC and range.

Another critical aspect of EVA is participation in the spot
market, an essential part of the modern energy market. The
spot market generally consists of the day-ahead market and
real-time market to achieve a reliable connection between
dispatching operations and market transactions. EVAs can
use the properties of V2G to flexibly adjust the charge-
discharge process of electric vehicles to provide AS for the
power grid in real-time and improve both the reliability and
stability of the power grid. Therefore, it is of theoretical and
practical significance to study the decision-making problem
that enables EVAs to provide a suitable real-time scheduling
mode based on operation optimization constraints and link
EVAs with the current energy market to maximize revenue.
Considering the relationship between market price and bid-
ding price, [11] proposes an optimal bidding model for EVAs
to minimize electricity costs’ conditional expectations. The
authors in [24] perform cluster analysis for different types of
EVs and their travel times while combining market clearance
limits and EV charging load limits to build a two-level opti-
mal bidding strategy model for EVs aggregators to minimize
EVA costs. A mixed-integer linear programming model is

proposed by [25] and considers EV users’ driving behaviors
to reduce bid amounts and provide confidence to EV owners.
In [26], a stochastic optimization model for optimal bidding
strategies of EVAs in the day-ahead energy and ancillary
services markets is proposed with variable wind energy to
maximize conditional value at risk (CVaR) and minimize
EVA operation costs. The work by [27] offers an optimal
bidding strategy that uses a dynamic programming method
that considers Markov random prices and random AGC sig-
nals. The authors in [28] proposed an EVA bidding strategy
and an internal resource optimization model to maximize EV
benefits by utilizing competitors’ predicted bids. The authors
in [29] studied the problem in which an aggregator bidding
into the day-ahead energy market to minimize charging costs
while satisfying the flexible demand of EVs. In [30], a two-
level optimization architecture is established to develop an
optimal bidding strategy and charging management in a real-
time energy market to minimize EVA costs. A two-stage
stochastic optimization problem was developed by [31] to
maximize profits of a risk-averse EV aggregator for bids
on the day-ahead market in both the energy and frequency
containment reserve market. [32] proposed a DR technique to
manage V2G-enabled PEV electricity assignments to reduce
overall electricity procurement costs for retailer bidding in
the day-ahead market and real-time market.

The works above propose the use of EV characteristics
for V2G energy market participation. However, most of the
methods ignore the uncertainty in EV charging behavior
i.e., plug-in and departure time. It is prudent to consider the
uncertainties in EV behavior when predicting EV data for
optimal EVA operation.

The main contribution of this paper is to build an EVA
optimization framework for the power grid considering EV
uncertain characteristics and EVA technical constraints. The
objectives are as follows:

1) To develop an efficient EVA framework that captures the
technical constraints that arise as a result of EV integration
into the grid. We account for three types of input information,
namely, EV charging behavior information, electricitymarket
(EM) information, EVA operating performance information,
and also EVA performance analysis. Among these, EV charg-
ing behavior information considers the initial SoC, plug-in
time, and parking duration time. EM information refers to
the time of use (TOU) of the day-ahead market and of the
real-time market.

2) Use Monte-Carlo simulation to build EV charging
behavior PMF based on data acquired from the Federal High-
way Administration (FHWA) in the US.

3) Design of an optimal scheduling algorithm for a group
of EVAs using a convex model in conjunction with data such
as day-ahead energy market prices, real-time energy market
prices, and EV characteristics. This algorithm is designed to
minimize EVA operation costs without affecting the charging
requirements of EV users.

4) Given the available EV information, we evaluate the
EV final SoC PMF and EVA costs by using different EV
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plug-out error rates to analyze the performance of the EVA
optimization model.

The remainder of the paper is arranged as follows:
Section II presents the EVA framework. Section III describes
a joint optimization model for EV day-ahead markets and
real-time markets. Case study and simulation results are dis-
cussed in Section IV. Finally, Section V presents a summary
of the findings and conclusions.

II. THE EVA FRAMEWORK
A. DESIGNS CONSIDERATION FOR THE EVA
1) THE EVA PROPOSAL
In the power system, we mainly divide the demand load into
two types: rigid loads and flexible loads. Some demand loads
that do not have the potential to regulate electricity usage
are called rigid loads, such as refrigerators. Some demand
loads that can actively participate in grid operation control
and interact with the energy grid are called flexible loads,
and EVs are the most typical example. EVs can be regarded
simultaneously as both loads and distributed energy storage
devices. When grid demand is low, they are charged, and
when demand is high, they will feed power back to the energy
grid. Therefore, we can use their characteristics to provide AS
to the power system, such as FR and DR, which can reduce
the burden on the power grid and reduce costs for EV users
and operators. Therefore, various countries are vigorously
promoting the development of broad EV access. Although
massive EV resources can exert economic value in the energy
market, it is not realistic for EVs to participate in the energy
market alone as individual entities. The main aspects being
considered to design an EVA are as follows [33]:

• The cost of technology development

The energy market has relatively high technical require-
ments for V2G services, such as power flow and economics
and infrastructure costs, such as communication, measure-
ment, control systems, and related supporting technologies.
Although this provides ancillary services to the power grid,
it can seriously affect EV users’ enthusiasm for participating
in grid interactions.

• Market rules

Single EVs’ capacity and power are too small and are far
below the minimum size requirement (e.g., MW level) for
participating in the power system market. Thus, large num-
bers of EVs need to be aggregated to meet the requirements
of current market rules.

• Uncoordinated charging

The charging behavior of EVs is always managed accord-
ing to the travel requirements of EV users. Because the users
do not know EV charging characteristics, electricity price
information, or incentive policies for EVs, they cannot carry
out scientific and practical charging plans, whichwould cause
certain economic losses to themselves. Simultaneously, large
numbers of EVs carrying out uncoordinated charging into the
grid would also seriously affect power system stability.

FIGURE 1. EVA structure.

In summary, to promote the participation of EV resources
in the energy market and its interaction with the grid, a novel
type of commercial operational entity, EVA is needed to
provide AS to the grid. EVAs can act as an intermediary
mechanism to coordinate the relationship between large num-
bers of EVs and dispatching centers. EVAs can not only avoid
the impact of uncoordinated charging of massive numbers of
EVs on the power system but can also control EVs through
reasonable and effective regulationmethodswithout affecting
the travel demands of EV users. EVAs can also provide DR,
FR, and other grid ASs to the power system to satisfy the
respective interests of both EVAs and EV users.

2) EVA STRUCTURE
EVAs provide the bridge between EV users and the grid.
On the one hand, they are the providers and managers of EV
charging businesses while, on the other hand, they represent
EV interactions with the energy market. Fig. 1 demonstrates
an EVA structure that shows the information and energy
interactions among EV, EVA, and the grid operator.
• First and foremost, EVAs integrate EV user behaviors
such as the total number of EVs charging per hour
and the registration number of each EV, initial SoC,
plug-in time, parking duration time, and target SoC to
build an EV fleet. Since each EVA has a database of
EVs, as long as we know each EV’s registration num-
ber, the corresponding EV information can be obtained,
i.e., vehicle model, on-board charger capacity, and bat-
tery size. Simultaneously, EVAs also receive signals
from the power grid in real-time, such as hourly capacity
limits, TOUs, and FRs.

• Second, the EV fleet and grid information are used to
build an optimization algorithm to schedule each EV to
meet the requirements of EV owners and the grid.

• Finally, the data used by the optimization algorithm
is updated based on the current scheduling results for
future use in the next scheduling operation.

3) TECHNICAL CHALLENGES FOR EVA DESIGN
EVAs can effectively solve the problems brought by large
numbers of EVs participating in the energy market. They
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possess the technical conditions and economic advantages
of participating in the energy market in terms of scale and
structure, but many aspects must be considered [33].
• Data aggregation technology
After EVAs collect EV data, it is necessary to filter and

classify the data according to specific rules to obtain valuable
information to aggregate the EVs for the grid operator. Since
the scheduling process is based on this data, data processing,
clustering analysis, and other technologies are significant for
transforming the data into meaningful information for later
use.
• Prediction EV data technology
As a means of transportation, EVs present a significant

obstacle in providing auxiliary services to the power system
due to the uncertainty of their charging behaviors. Therefore,
EVAs need to consider using the information on user travel
patterns to model their availability.
• Control technology
The control technology is based on combining the dis-

patching response command information received from the
grid operator and aggregated EV information to dispatch
EVs. Simultaneously, this technology also needs real-time
corrections of prediction deviations and power deviations in
actual operations. This technology plays an essential role in
improving customer satisfaction and achieving the task of
power grid optimization.

B. FRAMEWORK OF THE EVA OPTIMIZATION MODEL
1) FRAMEWORK OF THE EVA OPTIMIZATION MODEL
Uncoordinated charging of large numbers of EVs increases
the burden of system operation and negatively impacts user
interests. EVAs provide a platform for the power grid and EV
users to share real-time EV parameters, electricity price infor-
mation, electricity demand, and other information. At the
same time, EVAs directly dispatch EV electricity consump-
tion behaviors which can cause schedules to be more rea-
sonable and practical, give full play to the potential of
schedulable resources under the premise of facilitating the
travel requirements of users, and actively participate in the
energy market to improve the system operational reliability
and minimize the charging costs of operators. Fig. 2 reflects
the framework of the EVA optimization model. The specific
process is as follows:
• Structure of an EVA virtual fleet
Based on the PMF of EV information such as initial SoC,

plug-in time, and parking duration time, the EVA predicts
the charging situation for the next day and builds a primitive
model, as shown in Fig. 3. The figure shows eight EVs with
charging times from t = 0 to t = 5, EV n

in,dur represents
the charging behavior of each car where n is an index of
EV number, in indicates plug-in time, and dur is the parking
duration time. Each EV n

in,dur has P
n
in,dur,idx which represents

hourly charge/discharge decision variable based on the park-
ing duration, where idx is charging/discharging time instance
within the parking duration. As an example, EV3’s plug-in

FIGURE 2. EVA optimization model.

FIGURE 3. Primitive EVA model.

time is t = 1, the connection period is four continuous-
time slots, and the decision variable is {P11,4,1, P

1
1,4,2, P

1
1,4,3,

P11,4,4}, which is the total charging requirement of each EV,
as shown in (1):

Snin,dur =
dur∑
idx=1

Pnin,dur,idx (1)

where Snin,dur is the total charging requirement for the n-th EV.
Xt represents the sum of charge/discharge power for each

period, as is shown in (2):

Xt =
N∑
n=1

t∑
in=0

Pnin,dur,idx (2)

Subject to

idx = t + 1− in, ∀t = T (3)

• Bidding process
The EVA formulates a day-ahead optimization scheduling

plan based on the EV information in the primitive model
and information from the day-ahead market to ensure that
it can meet all EVs’ travel requirements while minimizing
the operating costs of the EVA. Fig. 4 details the bidding
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FIGURE 4. Commencement of current and next bidding duration.

FIGURE 5. Bidding and real-time optimization time map.

process, which shows that bidding begins at t = 0:00 am and
lasts 24 hours. During the bidding period, hourly energy is
purchased based on the day-ahead power optimization sched-
ule obtained by the distribution system operator (DSO). It is
scheduled to be dispatched to each EV. Bidding is suspended
for subsequent hours until the next bidding time.

• Model predictive control (MPC)

Dynamic systems can employ the concept of MPC to
predict EV loads. However, in practice, most EVs will not
optimally charge/discharge as scheduled due to uncertainties.
If the amount of energy purchased is less than the required
energy, there is the need to purchase extra energy from
the DSO at a higher price to compensate for discrepancies.
Conversely, if the bidding energy is greater, it is required
to sell the surplus to DSO or other users at a lower price.
Therefore, given the above scenario, there is the need to
make corresponding adjustments to EV power dispatch on
time through the real-time market to reduce EVA costs.
Considering the shortcomings of the model described above,
we propose a real-time optimization scheduling method to
enable scheduling adjustments shown in Figure 5. The blue
shaded region indicates bidding time, and the bold black line
spans the bidding period, which is usually 24 hours. After
bidding, the optimal EV hourly power is scheduled to span
the period for which bidding has been made; the red depicts
this period dashed lines, however, real-time power scheduling
spans 48 hours. Other literature proposed a 24 hours base
period [34], [35] for real-time power scheduling, but in this
paper, we propose 48 hours to account for EVs that charge
beyond the 24 hours into the next day to provide a more
accurate EV schedule. There is also the option of extend-
ing the period to 96 hours or more, but this will increase
the computational time required by the algorithm and also
affect the accuracy of results. Once the EV power schedule

FIGURE 6. Flow chart for EV charging behavior PMF modeling.

FIGURE 7. Pseudocode.

is available, the schedule assigned to a particular instance in
time is dispatched to EVs in real-time as is shown in yellow
[Fig. 5]. The optimal hourly EV power schedule is executed
periodically in real-time for a duration of 48-hour to account
for EV’s with plug-in durations that span past the current
day. Prior periods for which dispatching has been executed
are marked in green and the white periods are the areas to
be optimized. The process iterates until the next day. Finally,
the performance of the EVA optimization model is analyzed
by using EV charging information.

2) MODELING EV CHARGING BEHAVIOR PMF
The modeling for the EV charging behavior is essential for
the day-ahead market in particular. In other literature, battery
charging and discharging behaviors are mainly modelled,
and the travel statistics of EV are ignored. This does not
accurately reflect the charging/discharging characteristics of
the vehicle-to-grid interaction. In this paper, a probabilistic
model is used to simulate charging behaviors. Based on the
current travel statistics and actual application of the vehicle,
the Monte-Carlo method is used to build the PMF of the
initial SoC, plug-in time, and parking duration time so that
the objects are described by the model are as realistic as
possible. The relevant flowchart and pseudocode are shown
in Figure 6 and Figure 7.
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TABLE 1. Fhwa vehicle data.

The model depicted in Figure 6 starts by obtaining
1,000,000 vehicles data from the FHWA. Information such as
vehicle ID, the number of trips begun by each ID, and each
trip, the start time and the end time, and mileage are extracted
from the data, which is shown in Table 1. Each set of vehicle
information obtained from the FHWA data is conditioned as
an EV experience by using the following steps.
Step 1: In this step, the traditional data are conditioned

by assigning EV brand and initial SoC. Each vehicle in the
FHWA data is randomly assigned an EV brand status follow-
ing the sale distribution in Table 2. An initial SoC status is
assigned to each vehicle based on a uniform distribution in
the range of 0.2 and 1.
Step 2: After the SoC for each vehicle has been obtained,

equation (4) is used to evaluate the remaining SoC after
the first trip. If the remaining SoC is less than minSoC,
the vehicle is reassigned to an initial SoC according to Step 1.
If the remaining SoC is greater than minSoC, the initial SoC,
remaining SoC after the first trip, and first trip information are
logged against the vehicle ID, and the next trip is evaluated.

SoCn
Tr = SoCn

Tr−1 −
dnTr
dnm

(4)

where when Tr is the trip number, [1,2,3,. . . ]; SoCn
Tr−1 is ini-

tial SoC of the n-th vehicle on the Tr-1-th trip; dnTr is travel
distance for the n-th vehicle on the Tr-th trip; dnm is the maxi-
mum driving distance of the n-th EV; SoCn

Tr is the remaining
SoC of the n-th EV after the Tr-th trip; and minSoC is the
minimum level of the battery for normal operation (this is
sometimes considered as a low battery state).
Step 3: From (4), the initial SoC for the current trip is

SoCn
Tr−1 and the remaining SoC of each vehicle after the

current trip is SoCn
Tr ; if applicable this is evaluated by use

of (4) considering the conditions below:

TABLE 2. EV Information.

• If the remaining SoC is greater thanminSoC, the remain-
ing SoC after the current trip and the current trip infor-
mation are logged against the vehicle ID, and the next
trip is then evaluated.

• If the remaining SoC is less than minSoC, (5) is uti-
lized to determine if the vehicle can meet the minimum
requirement for the current trip provided the vehicle is
charged after the first trip. If the remaining SoC after
(5) is still less than minSoC, this trip information is
discarded and the next trip is evaluated. If the remaining
SoC from (5) is greater than minSoC, the SoC after the
current trip and the trip’s information are logged against
the vehicle ID and the next trip is then evaluated.

SoCn
Tr = SoCn

Tr−1 +

StartTr∑
endTr−1

Pnmax × (StartTr − endTr−1)× η
Capn

(5)

where endTr−1 is the end time of the previous trip, StartTr
is the start time of the current trip, Pnmax is the maximum
charge power, η is charging efficiency, andCapn is the battery
capacity of the n-th vehicle.
Step 4: Step 3 is repeated until all trips in the FHWA

data for each vehicle are exhausted. The data obtained on
each vehicle after the process include vehicle brand, battery
capacity, initial SoC of each trip, and start time and end time
of each trip. A frequency histogram is used to build a PMF
for initial SoC, plug-in time, and plug-out time based on the
acquired information.
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III. FORMULATION
To reduce EVA operational costs, it is necessary to optimize
the day-ahead operation decision-making, that is, to flexibly
configure the day-ahead charge/discharge plan of the EVs
connected to the charging station in the jurisdiction. However,
due to the uncertainties in EV charging behaviors, discrepan-
cies exist between the predicted load and actual load. Thus,
there is also a corresponding discrepancy between the EVA’s
energy quantity and actual energy consumption. To address
this issue, we employ a joint optimization model for the
EV day-ahead market and real-time market to reduce EVA
operational costs caused by EVs’ uncertainties.

A. OBJECTIVE FUNCTIONS
1) OBJECTIVE FUNCTION 1: MINIMIZE THE TARGET
RESIDUAL ENERGY
Most of the existing charging and discharging strategies of
EVs assume that many EV users will not travel until the
next day after they arrive home. Still, in real life, there is a
high probability of travel after users have returned home [36].
In this case, if the remaining EV power is low, it is challenging
to meet the travel requirements of users, which will seriously
affect user travel convenience and enthusiasm for participat-
ing in optimal dispatching by the power grid. So, to address
this problem, the objective function is proposed as:

minO1 =

N∑
n=1

(1− F_SoCn)2 (6)

Subject to

F_SoCn
= SoCn

in +

dur∑
idx=1

Pnin,dur,idx × η

Capn
, ∀n ∈ N (7)

SoCn
t+1 = SoCn

t +
Pnin,dur,idx × η

Capn
∀n ∈ N , ∀t ∈ T (8)

t = idx − 1+ in, ∀t = T (9)

SoCn
min ≤ SoCn

t ≤ SoC
n
max ∀n ∈ N , ∀t ∈ T (10)

Pnmin ≤ Pnin,dur,idx ≤ P
n
max ∀n ∈ N , ∀t ∈ T (11)

where n is the index of EV number; N is the total number
of EVs; F_SoCn is the final charge level of the n-th EV;
SoCn

in is SoC of the n-th EV at the plug-in time; SoCn
t is

the SoC of the n-th EV at time t; Pnin,dur,idx is the hourly
charge/discharge power based on parking duration time of the
n-th EV; η is charging efficiency which is 0.9; Capn is the
n-th EV battery capacity; SoCn

max and SoCn
min are the max-

imum and the minimum SoCs of the n-th EV, respectively;
Pnmin and Pnmax are the maximum and the minimum charge-
discharge powers of the n-th EV, respectively.

B. OBJECTIVE FUNCTION 2: MINIMIZE EVA DAY-AHEAD
ENERGY MARKET COSTS
The day-ahead market plays an essential role in the energy
market framework. Each EVA can participate in day-ahead
market energy trading as a single decision-maker of energy

storage, sell power when the price is high, and purchase
power when the price is low. Based on the above charac-
teristics, we establish an objective function shown in (12),
to optimize the day-ahead optimization schedule to minimize
EVA day-ahead power purchase costs.

minO2 =

B∑
t=1

Xt × Pdt (12)

where B is the bidding duration, which is 24 hours; Xt is the
total required power at time t; Pdt is the day-ahead market
price at time t .

C. OBJECTIVE FUNCTION 3: MINIMIZE EVA REAL-TIME
ENERGY MARKET COSTS
Due to the uncertainty of EVs, there will often be an overlap
between bidding power and power demand. When the power
supply exceeds power demand, the surplus power is sold to
the grid at a lower price, and when power demand exceeds
the supply, more energy is purchased from the gird at a higher
price. This process increases the operational cost of the EVA,
and to mitigate excess EVA operational costs, an objective
function is expressed as:

minO3 =

R∑
t=1

|Et | × PR,t (13)

Et = Bt − At (14)

PR,t =


PR1,t Et > 0
0 Et = 0
PR2,t Et < 0

(15)

where R is a time duration of 48 hours, Bt is the bidding
power at time t , At is actual power consumption at time t ,
Et is the difference between bidding power and actual power
consumption, PR,t is real-time market penalty cost at time
t , PR1,t is the real-time market penalty cost at time t when
Bt > At , and PR2,t is the real-time market penalty cost at
time t when Bt < At .

Finding the optimal solution for (13) with linear program-
ming is not straightforward since this is a nonlinear system
and is not a continuously differentiable function. In nonlin-
ear programming, there are two optimal solutions, namely
a local and global optimum, and it can be challenging to
find the global optimum given the limited time available.
On the flip side, there is only one global optimum in convex
programming, and it can be found quickly. So, to remedy this
problem, a piecewise equation for (13) is considered to relax
the difficulties associated with non-linearities and help find
the optimal value of the solution more quickly and accurately.
(15) is decomposed into two piecewise functions, as shown
in (16):

minO3 =

R∑
t=1

St × PR1,t + Vt × PR2,t (16)

Subject to St = Bt − At ∀t ∈ T (17)

St ≥ 0 ∀t ∈ T (18)
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FIGURE 8. PMF for EV plug-in time for each time step.

Vt = At − Bt ∀t ∈ T (19)

Vt ≥ 0 ∀t ∈ T (20)

where St is the difference between bidding power and actual
power consumption when Bt ≥ AtBt > At and Vt is the
difference between bidding power and actual power con-
sumption when Bt ≤.

D. FINAL OBJECTIVE FUNCTION
In conclusion, to reduce EVA costs, it is necessary to simul-
taneously consider the bidding cost, real-time energy market
cost, and travel requirements of EV users. An ensemble of the
objective functions is expressed as:

minO = α × O1 + β × (O2 + O3) (21)

Subject to β � α, α, β > 0 (22)

whereO is EVA total cost,O1 is an objective function for EV
user travel requirements, O2 is an objective function for the
day-ahead market, O3 is an objective function for the real-
time market, α is the weight of O1, and β is the weight of
O2 and O3. Choosing α and β is critical as such, we used the
cross-validation method to obtain the parameters for α and β.

IV. CASE STUDY
A. PMF OF THE EV CHARGING BEHAVIOR
Suppose the assumption is made that driving behaviors are
the same for both EV and non-EV (conventional vehicle)
users. In that case, this paper uses conventional vehicle data
provided by the FHWA available online. The data include
travel (trip) start times, travel end times, travel distances, and
other travel information. As EVs’ use case will not deviate
from conventional vehicles, their travel behaviors will also
be the same. As such, we adopt conventional vehicle data as
the EV plug-in time and plug-out time while the initial EV
SoC is evaluated by using the available data.

Simulations in the MATLAB (R2019a version) environ-
ment are conducted with a PC having 16 GB RAM and an
Intel i-7 processor (3.0 GHz). Based on historical data from
the FHWA, we selected 1,000,000 different types of EVs to
predict charging behaviors, and the relevant information for
different EV types is shown in Table 1 and Table 2. According
to the flow chart in Fig. 4, a PMF model is constructed for
plug-in times, parking duration times, and initial SoCs of
EVs and is shown in figures 8 – 10. Fig. 8 shows the PMF

FIGURE 9. PMF of initial SoC for EV’s connecting to EVA at each hour.

for EV plug-in time for each hour. Fig. 9 shows the hourly
distribution of EV initial (Plug-in) SoC. From the figure, it
is evident that the EVA accepts new EV connections hourly
with varying SoC. For example, in the first graph, most EVs
connected to the EVA at time 0:00 am joined with initial
SoC of 0.5 with a probability of 14% and the figure shows
that the general initial SoC distribution is not normal as
depicted in the most article [15]–[17]. Fig. 10 details the
hourly distribution of EV parking duration. The figure shows
that the parking duration time for EVs plug into EVA at
each moment is different. For example, for EVs plugged-in
at 0:00 am, there is an 11% chance that the vehicles will
remain plugged-in for 9 hours before plugging out as most
EV user will drive to work at 9:00 am and at 9:00 am, there
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FIGURE 9. (Continued.) PMF of initial SoC for EV’s connecting to EVA at
each hour.

is a 23% chance that vehicles will remain plugged-in for
1-2 hours.

B. CASE STUDY FOR EVA PERFORMANCE ANALYSIS
Based on the EV charging behavior PMF shown in
Figures 8-10, we perform simulations with 500 EVs while
considering three cases as follows:

Case 1: Uncoordinated charging. All EV users charge their
EVs as soon as possible without considering TOU prices, and
the EVA also does not participate in the EM.

Case 2: Coordinated charging. The EVA participates in
the day-ahead market due to the uncertainty in EV charging
behavior. EVA performance under different plug-out error
conditions is also considered.

Case 3: Coordinated charging with the day-ahead market
and real-time market while considering various plug-out time
errors.

According to the cases discussed above, we analyze the
performance of the EVA based on operational costs and EV
final SoC distributions. Due to the constraint with the dataset
and the energy market in consideration being operated at the
hourly interval, and the dataset used has a high granularity
(hourly resolution), the departure time for EVs in our case
study is hourly intervals. Fig. 11 shows the day-ahead market
price for the energy market. We see that electricity prices are

FIGURE 10. PMF of EV parking duration time for each hour.

low between 0 am-6 am and are higher between 4 pm-9 pm.
In case 1, we assume that EVs’ uncoordinated charging price
is 1.5 times the day-ahead market price. In case 2, the day-
ahead market price is the same as depicted in Fig.11. In case
3, we assume that the cost of EVA electricity sales is $5 lower
than the day-aheadmarket price and that the price for electric-
ity purchases is $8 higher than that of the day-ahead market
price. For all EVs, we assume that the user’s expected final
SoCs are 100%.

1) CASE STUDY 1: UNCOORDINATED CHARGING
Fig. 12 shows the uncoordinated charging schedules of 30
EVs. In this figure, the x-axis is to time; the y-axis is the ID of
EV and EV charging power, which ranges from 0 to 20 kW;
and the gray boundary line indicates the parking duration
of each EV. For the uncoordinated charging schedule, we
assume that EV batteries are charged at the maximum current
at the onset of charging. As charging progress, the current is
gradually reduced until the battery is fully charged.

Due to uncoordinated charging, EV users ignore the charg-
ing price and charge EVs based on their requirements.
Figure 12 shows that the majority of EV users will charge
EVs from 3 pm to 8 pm even though the charging price during
this period is very high. This contributes to a daily cost of
$566.5, which significantly increases EVA operational costs.

Fig. 13 shows the EV final SoC distribution for uncoordi-
nated charging. From this figure, we can see that 93.8% of
EV users leave with 100% SoC and the remaining 6.2% of
EV users leave with final SoCs between 50% and 90%. From
the maximum driving distance information for EVs shown
in Table 1, it is evident that as long as an EV user does not
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FIGURE 10. (Continued.) PMF of EV parking duration time for each hour.

travel for long distances, there will be a sufficient SoC to
cover the EV user’s next trip. So, when EV user charging

FIGURE 10. (Continued.) PMF of EV parking duration time for each hour.

behaviors are uncoordinated, their travel requirements are
mostly meet.
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FIGURE 10. (Continued.) PMF of EV parking duration time for each hour.

2) CASE STUDY 2: COORDINATED CHARGING WHERE THE
EVA PARTICIPATES IN THE DAY-AHEAD MARKET
In this case, the EVA participates only in the day-ahead
market and uses EVs forecasted from net hourly charging

FIGURE 11. Day-ahead market prices for Oct 9-10, 2017 source: PJM
interconnection, LLC.

FIGURE 12. EV charging schedule for uncoordinated charging.

FIGURE 13. EV final SoC distribution for uncoordinated charging.

demand and day-ahead market price. These data are obtained
via the day-ahead optimization schedule to minimize the cost
of EVA energy purchases without affecting EV users’ travel
requirements. Due to uncertain EV user behavior, we simu-
late the EVfinal SoC PMF and EVA costs with different plug-
out time error rates to analyze the EVA optimization model’s
performance.

When comparing Fig. 12 and Fig. 14, we observe that
under uncoordinated charging, users only consider their
travel requirements and ignore charging costs; also, most EV
users charge EVs during periods of high electricity prices.
When users consider TOU, EVs will discharge at high elec-
tricity prices and charge at low electricity prices, reducing
the cost of the EVA. From Figure 14, it can be observed that
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FIGURE 14. EV charging schedule for case 2.

FIGURE 15. EVA cost for case 2 with different σ values.

although the plug-out time of most EVs is around t = 40,
most EVs stop charging at around t = 30. This is because
EVs’ charging cost gradually increases after t = 30; thus,
the optimal schedule avoids charging between t = 30 and
t = 40 to prevent a potential increase in operational costs for
the EVA.

Fig. 15 shows the EVA costs for case 2 with different
deviations (σ ) where σ represents the deviation of plug-out
time. A plug-out time deviation of 1 means EV users will
leave early or charge for an additional hour. When σ = 0, the
EVA cost is $336.7 and thus provides a 40.5% cost reduction
compared to case 1, and with an increase in σ , the EVA
cost also increases. Nevertheless, the EVA cost is always
lower than that for case 1. It can be seen that the day-ahead
optimization schedule can effectively reduce the EVA cost.

Fig. 16 shows the EVfinal SoC distributions for case 2with
different σ values. Fig.16-a) shows that approximately 89%
of EV users charge to 100% SoC, which is a 4.8% decrease
from case 1, and the final SoCs of the remaining 11% of EV
users SoC are between 40% and 90%. Fig. 16-b) to Fig. 16- d)
shows that with the rise in σ , the probability of EV final SoCs
reaching 100% decreases and that the lowest final SoC ranges
will decrease to approximately 20%; this situation poses a
challenge for EV users with a final SoCs of 20% for meeting
their travel requirements.

3) CASE STUDY 3: COORDINATED CHARGING AND THE
REAL-TIME ENERGY MARKET
For this case study, we use the day-ahead optimization sched-
ule and real-time optimization schedule to dispatch EVs at the

FIGURE 16. EV final SoC distribution for case 2 with different σ values.

same time to compensate for the additional costs caused by
the uncertainties in EV charging behavior. Also, we simulate
the EV final SoC PMF and EVA costs with different plug-out
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FIGURE 17. EVA cost comparison between case 2 and 3 with different σ

values.

FIGURE 18. Cost reduction of case 2 and case 3 with reference to case 1.

time error rates to analyze the performance of the EVA opti-
mization model.

When σ = 0, the actual EV charging information is the
same as that obtained via PMF and the dispatch results for
EVs are consistent with Figure 14. Figure 17 shows the EVA
cost comparison between case 2 and case 3 with different
σ values, and EVA costs increase with increased σ values.
For figure 17, we know that when σ = 0, the costs for
the case 3 and 2 are the same because when the actual EV
charging information is consistent with the predicted EV
charging information, the real-time optimization schedule’s
objective function is equal 0. When σ 6= 0, thus σ = 1,
σ = 2, or σ = 3, the rate of cost increase gradually, but the
cost of case 3 is lower than the cost of case 2. Figure 18 shows
the cost reduction rate obtained by comparing the costs of
case2 and case3 with the cost of case1. It can be seen from the
figure that the cost reduction rate of case3 is always greater
than that of case2. In effect, EVAs achieve operational cost
savings when considering EV dispatched via both the day-
ahead optimization and real-time optimization schedules.

Figure 19 shows EV final SoC distributions for case 3 with
different σ values. The figure depicts the probability of an EV
final SoC reaching 100%, which decreases with increased σ
values. When σ = 0, cases 2 and 3 show the same results
for dispatching EVs and the EVs final SoC distributions are
also the same. When σ 6= 0, the probability of EVs final
SoCs reaching 100% in case 3 is lower than for case 2, but the
minimum value of the final SoC for the remaining EV users is

FIGURE 19. EV final SoC distributions for case 3 with different σ values.

higher than for case 2, which can better meet the travel needs
of EV users.
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TABLE 3. Comparison of the proposed method with [8] and [36].

Finally, we provide comparison details on cost reduction
of uncoordinated charging and coordinated charging of the
optimization methods proposed in this paper and that of
methods proposed in [8], [36]. Our proposed method uses
an optimal scheduling algorithm for a group of EVAs using
a convex model in conjunction with data such as day-ahead
energy market prices, real-time energy market prices, and
EV characteristics which can minimize EVA operation cost
without affecting the charging requirements of EV users,
the method proposed in [8] uses the fuzzy rule to dispatch
the EVs parked at charging station, which can guarantee full
charging at departure time for each vehicle. Whereas the
method in [36] considers the day-ahead market and real-time
pricing by using sigmoid function to reduces the operation
cost by shift the peak load and valley load. Considering
the same number of vehicles, table 3 shows our proposed
method yields the highest EVA cost reduction of 28.5% in
comparison to 21.15% and 16.6% for the methods proposed
in [8] and [36], respectively.

V. CONCLUSION
This study presents a novel EVA framework that can reason-
ably dispatch EVs and provide auxiliary services to the power
grid. Also, we built a probability mass function (PMF) model
based on plug-in time, parking duration time, and initial
SoC information of EVs using the Monte-Carlo method to
model EV charging behavior. Finally, an EVA optimization
scheduling model that combines the day-ahead market and
real-time market was established to minimize EVA costs
without affecting EV user travel requirements.

Three case studies are conducted to verify the proposed
method using Matlab. Case 1 shows that uncoordinated
charging can generally meet users’ travel needs, but since
most EV users charge their EVs during times of high electric-
ity prices, EVA costs are very high. Case 2 shows that using
the day-ahead optimization schedule can reasonably dispatch
EVs to discharge at high electricity prices and charge at low
electricity prices. When σ = 0 and when compared with
case 1, EVA cost is reduced by 40% without affecting user
travel needs. However, when the actual EV charging informa-
tion contains deviations from our predicted information, this
will increase EVA costs and affect EV users’ travel needs.
In case 3 and when σ = 0, EVA costs, and EV final SoC
distribution results are the same, but when σ 6= 0, when
compared with case 1 and case 2, the cost of case 3 is lowest
and can better meet the travel needs of EV users at the same
time.

The proposed method achieves more significant cost
reductions from the verification results and is better at sat-
isfying EV user travel requirements than the other two cases.
Simultaneously, the uncertainty of EVs is fully considered,
which can effectively ensure the reliability and effectiveness
of the EVA optimization model. Future works that consider
permitting EVAs to participate in ancillary services such as
FR could help decrease EVA costs.
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