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ABSTRACT As a valuable topic in wireless communication systems, automatic modulation classification
has been studied for many years. In recent years, recurrent neural networks (RNNs), such as long short-term
memory (LSTM), have been used in this area and have achieved good results. However, these models often
suffer from the vanishing gradient problem when the temporal depth and spatial depth increases, which
diminishes the ability to latch long-term memories. In this paper, we propose a new hierarchical RNN
architecture with grouped auxiliary memory to better capture long-term dependencies. The proposed model
is compared with LSTM and gated recurrent unit (GRU) on the RadioML 2016.10a dataset, which is widely
used as a benchmark in modulation classification. The results show that the proposed network yields a higher
average classification accuracy under varying signal-to-noise ratio (SNR) conditions ranging from 0 dB to
20 dB, even with much fewer parameters. The performance superiority is also confirmed using a dataset with
variable lengths of signals.

INDEX TERMS Automatic modulation classification (AMC), recurrent neural networks (RNNs), hierar-
chical recurrent structure, long-term memory.

I. INTRODUCTION
Automatic modulation classification (AMC) is the process of
deciding the modulation to be used by transmitter, based on
observations of the received signal. It is becoming increas-
ingly important in cooperative communications, especially
since the advent of the software-defined autonomous radio
[1]. Furthermore, AMC plays an crucial role in many appli-
cations, such as the identification of interference signals and
jammers, tracking the activities of specific users [2]–[5].

An automatic modulation classifier can be defined as a
system that automatically identifies the modulation type of
the received signal, given that the signal exists and that its
parameters are distributed in a known range. This needs
a universal modulation recognizer capable of classifying a
comprehensive list ofmodulation schemes. Quite a few schol-
ars have presented a variety of excellent approaches, which
can be roughly divided into two categories: likelihood-based
(LB) approaches and feature-based (FB) approaches [6]. LB
methods are based on the likelihood function of the received
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signal, wherein the decision is made by comparing the likeli-
hood ratio against a threshold [2]. Even though LB methods
usually exhibit high accuracy and minimize the probability
of mismatches, such methods suffer from high latency or
require complete priori knowledge like the clock frequency
offset. LB approaches are also prone to mismatching when
applying the theoretical system model to the actual scene. FB
approaches usually extract certain features from the received
signals; then, selected classifiers are used to classify dif-
ferent modulation signals [6]. Traditional feature methods
mainly include instantaneous time features, statistical fea-
tures (moments, cumulants, and cyclostationarity), and trans-
form features. These features, with an efficient classifier for
AMC, have achieved satisfactory performances.

In recent years, deep neural networks have received much
attention in many application domains, such as computer
vision [7], natural language processing [8] in which recur-
rent neural networks (RNNs) occupy an extremely important
position in sequence processing and classification because
they are efficient feature extractor and classifier. In most
cases, the features extracted by the neural network are more
effective than those extracted manually. Moreover, manually
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extracting features from data may cause the loss of infor-
mation that is necessary for the classifiers [9]. Therefore,
many researchers try to use deep neural networks such as
convolutional neural networks (CNNs) and long short-term
memory (LSTM) [10] for AMC problems.

CNNs exploit spatially local correlation by enforcing a
local connectivity pattern between neurons of adjacent layers.
CNNs share weights among all neurons in a particular feature
map and each neuron is connected only to a subset of the
input. This helps to reduce the number of parameters in the
whole system and makes the computation more efficient.
Despite its great achievements in spatial feature extraction,
CNNs do not perform well in modeling time-series changes.
To learn the changes in time series, error signals must travel
for a long temporal distance when backpropagating through
time. The difficulties arising from the large temporal lengths
of RNNs are significantly alleviated by LSTMs [11]. How-
ever, training LSTMs to work deep in both time and space
still poses a challenge, and there are shortcomings, which
hinder the learning of long-term temporal changes, such as
the vanishing gradient problem.

In this paper, we propose a modified hierarchical recurrent
neural networks with an grouped auxiliary memory (GAM-
HRNN). We use a hierarchical structure by stacking the
layers with shortcut connection from grouped auxiliary mem-
ory(GAM [11]) to each layer. Recurrent structures such as
LSTM, gated recurrent unit (GRU) [12], and update gate
recurrent neural network (UGRNN) [13] can be used in
HRNN. The contributions of this paper are as follows: firstly,
we develop a new recurrent-model-based deep learning solu-
tion, wherein the experimental results show high accuracy on
a standard dataset compared with LSTM, GRU, Recurrent
highway networks (RHNs) [14] and recurrent highway net-
works with grouped auxiliary memory (GAM-RHNs) [11].
Secondly, even with fewer parameters, the model achieves
comparable and decent results. Thirdly, we explore the norm
of gradients of the mentioned models during the training pro-
cess. Finally, we find that the proposed model also provides
an advantage when dealing with signals of unfixed lengths.
The rest of the paper is organized as follows. Section II intro-
duces related studies. Section III formulates the problem and
introduces the standard and modified datasets. We introduce
the LSTM model, GRU model and RHNs in Section IV and
explains our GAM-HRNN in Section V. Section VI presents
the experiments and analysis, and Section VII concludes the
paper.

II. RELATED WORKS
In this section, a brief introduction of the works using tradi-
tional methods is provided first. Then, we review the work
that relates to our method in detail.

A. TRADITIONAL METHODS
Traditional methods can be primarily divided into two cate-
gories: LB and FB approaches. Chavali et al.used LB algo-
rithms for modulation classification in fading non-Gaussian

channels [15]. Then, they modeled the additive Gaussian
noise with a Gaussian mixture distribution model. FB meth-
ods use instantaneous time features, statistical features, trans-
form features, and other features, including constellation
shape. Yuan et al. [16] developed an algorithm using wavelet
transform and pattern recognition for analog and digital mod-
ulation classification.Wavelet transformwas used to estimate
the symbol rate of the received signals to separate analog
signals from digital signals. Ananthram et al. proposed a
method based on elementary fourth-order cumulants [17].
The cumulant-based classification is particularly effective
when used in a hierarchical scheme. In [18], the authors
used various statistical moments of the signal amplitude,
phase, and frequency with a fuzzy classifier; their technique
performed well at low signal-to-noise ratios (SNRs).

Researchers also used artificial neural networks (ANNs)
as a classifier. In [19], a common ANN achieved good
performance dealing with analog and digital modulation-type
classification. Although ANN had achieved success in mod-
ulation recognition, its overdependence on sample train-
ing data and easily settling into a local optimum solution
restricted its performance and application. In [20], the authors
proposed a hierarchical support vector machine(SVM)-based
structure and used higher order moments and cumulants for
AMC. It improved the performance of the recognizer effi-
ciently. Aslam et al. [21] explored the use of genetic program-
ming (GP) in combination with K-nearest neighbor (KNN)
for AMC.KNNwas used to evaluate fitness of GP individuals
during the training phase. As we can see, each FB method
had its own advantages, and all traditional machine learning
methods, such as KNN, SVM, and ANN, had been used
as a classifier. As mentioned previously, in many domains,
the features learned automatically were more effective than
those extracted manually. The separation of the feature
extraction and classifier always led to information loss. This
led researchers to consider deep neural network methods.

B. DEEP NEURAL NETWORK METHODS
With the experimental conditions generally standardized,
many researchers used deep neural network methods, which
mainly included CNNs and LSTMs for the AMC problem
and achieved excellent performance. Deep neural network
methods depend on sample training data. O’Shea et al. built
the RadioML 2016.10a dataset in 2016 [22], and achieved a
good performance on it with a simple CNNmodel. Peng et al.
indicated that their proposed CNN-based model achieved
good accuracy without the necessity of manual feature selec-
tion compared with SVM for AMC [23]. They also used
two famous CNN-based models, AlexNet and GoogLeNet
for AMC and converted complex signals into data formats
in a grid-like topology, e.g., images that facilitated the use
of prevalent deep neural network models and frameworks for
classification [24]. The experiments indicated that CNNmod-
els show a significant performance advantage and application
feasibility. Teacher and student networks were used to shrink
the size of the model, with a slight accuracy decrease in [25].
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Huang et al. used compressive CNN for modulation classifi-
cation [5]. Furthermore, CNN models were also used to clas-
sify themodulation types in an orthogonal frequency-division
multiplexing system, wherein the modulation classification
accuracy was limited [26].

Temporal dependencies are important in AMC prob-
lems, and an LSTM can learn those features effectively.
Rajendran et al. proposed an LSTM for AMC on the standard
RadioML 2016.10a dataset, without requiring expert features
like higher order cyclic moments [27]. The simple LSTM
model yielded an average classification accuracy of approx-
imately 90%, under varying SNR conditions, ranging from
0 dB to 20 dB, which will be compared herein. They showed
that an LSTM-based model can learn good representations of
the time-domain sequences for the AMC problem. However,
the forget bias of the model should be set to 1.0 manually, and
to achieve high accuracy, many parameters were necessary.
Pascanu et al. presented the methods for constructing deep
RNNs [28]. Simply increasing the recurrence depth yielded
RHNs [14], which settled the vanishing gradient problem in
spatial depth to some extent, but the representation capabil-
ity was low. For hierarchical structure, each layer had its
own states, which promoted the variety and improved the
representation capability of the model. However, LSTM also
faced problems that degraded its performance, for example,
the vanishing gradient problem as the model grew deeper in
both time and space. In [29], neurons in the same layer are
independent of each other and they connected across layers.
Hu and Zheng tried to modify the memory update method of
LSTMnetwork and achieved good results on prediction tasks.
[30] Tensorized LSTM are employed to model the temporal
patterns and an adaptive shared memory was used to help the
networks learn the relatedness among tasks in [31].

Combining the CNN with LSTM in parallel mode and
serial mode achieved better performance compared with
independent networks [9]. Huang et al. applied a few data
augmentation methods, such as rotation, flip, and Gaussian
noise, on the RadioML Dataset. Their experiments showed
that the rotation method yielded the best accuracy [32], and
needed fewer data to achieve relatively good results. For the
convenience of application, exploring lightweight networks is
also very important for AMC problems. Wang et al. proposed
a pruning method for networks and obtained a model with
fewer parameters and comparable accuracy [33].

III. PROBLEM FORMULATION AND DATASET
INTRODUCTION
A. COMMUNICATION SIGNAL FORMULATION
Consider digital modulation as an example. At the receiver
side, the received signal y(t) can be formulated as follows:

y(t) = x(t) ∗ c(t)+ n(t). (1)

Here, x(t) is the modulated signal from the transmitter,
c(t) represents the time-varying impulse response of the
transmitted wireless channel. n(t) denote the additive white
Gaussian noise. The generation of x(t) is shown in Fig. 1,

FIGURE 1. Generalized modulation system.

TABLE 1. Modulation parameters.

The modulating signal and carrier signal are mixed to obtain
the modulated signal x(t), which is formulated as follows:

x(t) = <(v(t)Acexp(j2π fct))

= Aca(t)cos(2π fct + φ(t)) (2)

Here, v(t) denotes the modulating signal, Ac represents the
amplitude of the carrier, and fc denotes the carrier frequency.
The aim of AMC is to use the received signal y(t) tomaximize
the value of P(x(t) ∈ Ni|y(t)), where Ni is the ith category of
all the modulation types.

B. DATASET INTRODUCTION
1) STANDARD DATASET
The standard RadioML 2016.10a dataset [22] consists
of 11 modulations: 8 digital and 3 analog modulations, with
4 samples/symbol and a sample length of 128 samples. All are
widely used in wireless communications systems globally.
Radio channel effects are relatively well-characterized. Real-
istic non-ideal effects, such as thermal noise, oscillator drift,
symbol timing offset, sample rate offset, carrier frequency
offset, and phase difference, are reflected in the data. These
parameters are shown in Table 1.

2) VARIABLE LENGTH SEQUENCES
To explore the model’s ability to handle the modulation
of different parameters with variable lengths, we used the
RML2018.01a, which was first used in [34] to obtain variable
length signals. In this dataset, each sequence had 1024 sam-
ples, with SNR ranging from −20 dB to 30 dB. We took the
first 11 modulation types in the dataset. Then, we randomly
selected the sequences to split them into lengths of 128, 256,
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FIGURE 2. Long short-term memory.

and 512 with SNR ranging from −20 dB to 20 dB. The
number of samples was 99,000 in both the training and testing
sequences.

IV. RELATED MODELS
NOTATION
Boldface letter are used for vectors and matrices;1 denotes
vectors of ones. σ denotes the sigmoid activation func-
tion, tanh denotes the hyperbolic function, and � represents
element-wise multiplication.

A. LONG SHORT-TERM MEMORY
LSTM is one of the most popular models of RNNs. It was
first proposed by Hocreiter and Schmidhuber in 1997 [10].
The case idea of LSTM is to protect the integrity of messages
with the control of writingmemories. LSTMuses threemech-
anisms to achieve this: write control, read control, and forget
control. Write control uses some units to cancel out some
useless information, read control cancels out the irrelevant
information, and forget control selectively forgets the least
relevant old information. The mechanisms are realized by
three gates shown in Fig. 2, and formulated as follows:

it = σ (Wiht−1 + Uixt + bi). (3a)

ot = σ (Woht−1 + Uoxt + bo). (3b)

ft = σ (Wf ht−1 + Uf xt + bf ). (3c)

Candidate values:

C̃t = tanh(WCht−1 + UCxt + bC ). (4)

Drop the useless information and add new information:

Ct = Ct−1 � ft + C̃t � it . (5)

ht = ot � tanh(Ct ). (6)

LSTM first gives the candidate write C̃t , then uses the
forget gate and input gate to update the state. Finally, it uses
the output gate to provide the output of the model. However,
LSTM still has problems, such as write conflicts and read
conflicts [10]. This hinders the model from keeping the mem-
ory for long time steps.

FIGURE 3. Gated recurrent unit.

B. GATED RECURRENT UNIT
GRU, which was first introduced by Chung et al. in 2014,
is another popular model of RNNs [12]. GRU explicitly links
the state, coordinates the writes, and forgets, as presented
in Fig. 3. The formulation is as follows:

rt = σ (Wrst−1 + Urxt + br ). (7a)

zt = σ (Wzst−1 + Uzxt + bz). (7b)

s̃t = tanh(Ws(rt � st−1 + Usxt + bs)). (8)

st = zt � st−1 + (1− zt )� s̃t . (9)

Instead of performing selective writes and selective forgets,
GRU foregoes some expressiveness and selectively over-
writes by setting the forget gate equal to 1 minus the write
gate. The update gate zt is the same as the forget gate from
the prototype LSTM, ft and the input gate is calculated by
1 − zt . This works because it turns st into an element-wise
weighted average of st−1 and s̃t , which is bounded if both
st−1 and s̃t are bounded. GRU is an alternative to the LSTM,
but GRU outperformed LSTM on nearly all tasks except
language modeling with the naive initialization [35]

C. RECURRENT HIGHWAY NETWORK
Recurrent highway network (RHN) was first proposed
in 2017 by Zilly et al [14]. Many Sequential processing
tasks require complex nonlinear transitions from one step to
the next, and recurrent neural networks with deep transition
functions remain difficult to train, even when using LSTM
networks. RHN extends the LSTM architecture to allow step-
to-step transition depths larger than one. It can use generic
RNN structures such as UGRNN, LSTM, and GRU for the
networks.

For example, as mentioned above, LSTM receives ct−1 and
ht−1 from its last time step to compute the current ct−1 and
ht−1 and hands over them to the next time. However, as shown
in Fig. 11, when we use a LSTM kernel for an L-layer RHN
model, c1t and h1t are initialed to zero for the first layer and
xt is the input of the first layer. For the second layer, the c2t−1
and h2t−1 are taken from the last layer (c1t and h

1
t ) at the same

current t. Then, c2t and h
2
t are calculated and delivered to the
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FIGURE 4. Recurrent Highway Neural Networks.

next layer. At the last layer, cLt and hLt are passed to the next
time. The following is the detailed formulation (LSTM used
as an example):

c`t = h`−1t−1 � f`t + C̃`t � i`t . (10a)

h`t = o`t � tanh(C
`
t ) (10b)

where ` denotes the current ` layer. In a general way,

sLt = HKERNEL×L(st−1, {x̃`t
L
`=1) (11)

V. HIERARCHICAL RECURRENT NEURAL NETWORKS
WITH GROUPED AUXILIARY MEMORY
In this section, we propose an HRNN with grouped auxil-
iary memory named GAM-HRNN. The main body of the
model was built with a hierarchical structure using the generic
kernel mentioned above. Shortcut reading blocks used the
output of the last layer as the key to read from the auxil-
iary memory to obtain information as the input to the next
layer. The details are presented in Fig. 5. Group auxiliary
memory (GAM) denotes the auxiliary module. K represents
generic RNN structures, such as LSTM, GRU, and UGRNN.
Input x, previous states, and auxiliary memory were first
written into GAM. The memory module mt was partitioned
equally into N groups, which is favorable for dealing with
long short-term information, and each of these groups is a
length vector S (The structure of GAM is shown in Fig. 6.):
mt = (m1

t , · · · ,m
N
t ),m

i
t ∈ RS (1 ≤ i ≤ N ),Nm = S × N .

We denote the softmax over groups activation as ζS×N :
RNm 7→ RNm .
Update mt :

mt = (1− awt )�mt−1 + awt � (US×Nmt ). (12a)

awt = Gw(hwt ; ζS×N ) ∈ R
Nm . (12b)

hwt = A(Whs1t−1 + Uhxt )+ bh (12c)

rt = σ (Wrs1t−1 + Urxt + br ) (12d)

mt = tanh(Wm[rt � s1t−1, xt ]+ bm) ∈ RN (12e)

Here, s1t−1 denotes the state of the first layer, the mt
serves as a ‘candidate’ state for the calculation, Gw(·) is an
attentional mechanism implemented using the softmax over
groups activation ζ , which can be defined as follows:

at =

a1t
...

aNt

 = ζS×N (qt ) = ζS×N (
q1t
...

qNt

), (13a)

ait = softmax(qit ) ∈ R
S , i = 1, 2, · · · ,N . (13b)

Note that Nm = S ×N , each ai,jt (1 ≤ i ≤ N , 1 ≤ j ≤ S) in at
is between 0 and 1, and

1
S · N

N∑
i=1

S∑
j=1

ai,jt =
1
S
. (14)

A is an affine transformation. hwt is the vector for writing,
and will be reused by R1 through the shortcut connectivity.
The duplicating matrix US×N ∈ RNm×N in (12a) is given by

US×N =

U1
...

UN

 ∈ RNm×N (15a)

Ui =
[
ui,1 · · · ui,N

]
∈ RS×N (15b)

ui,j =

{
1, i = j
0, i 6= j

∈ RS (15c)

in which 1 ≤ i ≤ N , 1 ≤ j ≤ S
Then, we updated st . This can comprise generic layers of

RNN structures, such as LSTM, GRU, and UGRNN.

s`t = K `(s`t−1, x̃
`
t ). (16a)

x̃`t = [R`(mt ,
˜h`t ), s

`−1
t ].

= [VS×N (ar`t �mt ), s`−1t ] (16b)

˜h`t =

{
hwt , ` = 1
s`−1t , ` > 1

(16c)

ar`t =

{
G1
r (h

w
t ; ζS×N ), ` = 1

G`r (s
`−1
t ; ζS×N ), ` > 1

(16d)

Here, [·] denotes the concatenation of the elements in it,
the VS×N is defined as the transpose ofUS×N given in (15a),K
denotes generic RNN kernels. The reading blocks uses ˜h`t as
the key to get useful information from GAM. In (16c), when
` > 1, previous state sl−1t−1 can be an alternative key for the
reading blocks.

In the networks, information is sparsely written in the
GAM based on the group mechanism and delivered to the
next time step directly. This means that only a very limited
portion of states in the GAM is overwritten in each time
step. Thus, the information can be efficiently maintained.
Subsequently, for each layer, the required information is also
read from GAM sparsely using the new state of the current
layer as the key. Finally, the required information is sent to
the next layer, along with the output of the previous layer.
In the backpropagation view, the networks offer a shortcut
for the error signals that back-propagate in both temporal and
spatial dimensions.

VI. EXPERIMENTS AND DISCUSSION
In this section, we evaluate the performance of the proposed
model on both RadioML2016.10a dataset and the variable
length dataset. As shown in Table 1, we equally divided
the standard data set into training and testing sets with the
data in IQ format. Using the IQ data, we derived the ampli-
tude sequence and phase vector. The amplitude vectors were
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FIGURE 5. Diagram of the proposed hierarchical recurrent neural network with grouped auxiliary
memory architecture. Concatenating all the input of a block if there is a ◦ at the place of input.

FIGURE 6. Grouped auxiliary memory module.

L2 normalized and the phase vectors, which were in radians,
were normalized between -1 and 1. Finally, we obtained a
R2×128 matrix for a single signal sequence. A single group
of amplitude and phase was given to the model for each
timestep. Details are shown in Fig. 7.
For all the models, we used the Adam optimizer [36] with

a minibatchsize of 400 vectors. The learning rate was set to
0.001.Weights were initialized via the Xavier uniform initial-
izer [37], and themodels were implemented using Tensorflow
[38]. The standard backpropagation through time algorithm
was used for the RNN’s training. For all the models, dropout
of 0.2 was used for each layer. For LSTM, we initialized
the forget gate bias to 1.0. This implied that we encouraged
the LSTM to write the information into memory at the start.
For the GAM–RNN model, a 2 × 20 size was set to GAM,
while the size of vector for writing(hwt in (12c)) was 20.
We also added a dropout of 0.3 for the auxiliary module.
GAM-HRNN used 128 units for each layer. And different
number of units for each layer were used for different models
to keep the parameters of all models are roughly the same. For

FIGURE 7. Architecture of the whole network with the input rule. RNN
denotes the models mentioned above, and FC represented full-connected
networks.

independently RNN(IndRNN), the recurrent weight is con-
strained in the range of |un| ∈ (0, T

√
2) [29], where T repre-

sents the time steps of the sequence. Furthermore, we denoted
the GAM-HRNN model with the kernel of GRU as GAM-
HRNN-GRU, and this notation was used for all other models
with kernels. The initialized forget bias of 1.0 was not used
for the GAM-HRNN-LSTM model.

A. CLASSIFICATION ACCURACY ON STANDARD RadioML
2016.10a DATASET
The classification accuracies of all SNRs are presented
in Fig. 8 and Fig. 9. The number of model parameters with
average accuracy for an SNR range from 0 dB to 20 dB
are shown in Table 2. As we can see, 2-layer GAM–GRU
exhibited the best accuracy for all SNRs compared to other

VOLUME 8, 2020 213057



K. Zang, Z. Ma: AMC Based on Hierarchical RNNs

FIGURE 8. Classification accuracy for the proposed 1-layer models at
different SNRs.

FIGURE 9. Classification accuracy for the proposed 2-layer models at
different SNRs.

models, and the 2-layer GRU and LSTM models obtained
similar results on the dataset. All the models have insuffi-
cient capability for classifying the modulation types at low
SNRs. At -18 dB (the lowest SNR), the accuracy is nearly
1
11 , which illustrates that the model returns an almost random
category for this SNR (there were a total of 11 categories
of various modulation types). The proposed 2-layer GAM-
HRNN-GRU model achieved an average accuracy of 92.2 %
in the SNR range from 0 dB to 20 dB, with fewer model
parameters than the 2-layer LSTM model. Simultaneously,
the single-layer GAM-HRNN-GRU obtained 91.6% average
accuracy with fewer parameters than the LSTM, which is
a positive aspect when considering practical applications.
Meanwhile, the accuracy of single-layer GAM-HRNN-GRU
is about 8% better than that of the single-layer LSTM. For
RHNmodels, the two-layer RHN-GRUmodel achieved accu-
racy that was slightly lower than that of the two-layer GRU.
The two-layer RHN-LSTM achieved the worst accuracy,
which indicates that the recurrent highway structure was not

TABLE 2. Average accuracy for SNR ranges from 0dB to 20dB results.

suitable for this work. The results showed that the hierarchical
structures were more efficient than the RHN structures for
this problem. Accuracy of 2-layer GAM-HRNN-GRU was
higher than that of 2-layer GAM-RHN-GRU with about the
same parameters and GAM-HRNN-GRU was more stable. .
In summary, simple RNN models, such as LSTM or GRU,
could not achieve excellent accuracy, which was probably
due to long-termmemory problems. TheGAM-HRNNmodel
provided the best results, as GAM could efficiently utilize the
temporal features of the sequence and then latch information
for a long time period. Furthermore, the hierarchical structure
with reading shortcuts was more efficient.

We also present confusion matrices at three SNRs to fur-
ther explain the performance of the proposed model. The
results showed that at -8 SNR (Fig. 10.), the model can
gradually return the correct category, but the accuracy was
still low for practical application. The model shows excellent
performance when the SNR is greater than 0 dB (Fig. 11.);
nonetheless, the model could not separate AM-DSB and
WBFM signals very well, even at high SNRs (Fig. 12.). This
is mainly due to the small observation window (0.64 ms of
modulated speech per example) and low information rate
with frequent silence between words [39]. Distinguishing
between QAM16 and QAM64 also suffered from short-time
observations over only a few symbols. However, once the
constellations were of higher order and shared common
points [39], the proposed model performed well. At the three
SNRs, compared with QAM16 and QAM64, we could find
that the order of the modulation type is an influential factor
for the accuracy of the classification. This was true for all
investigated methods.

B. GRADIENTS ANALYSIS
To further explain the memory mechanism in GAM-HRNN,
we analyzed the gradient changing curves in the training pro-
cess. The key to being able to learn long-term dependencies is
in the control ∂L

∂st
, which implies keeping the gradients within

an appropriate range. In RNNs, the gradient suffers from the
vanishing problem in both temporal and spatial dimensions.
To further explain the experimental results, we compared ∂L

∂st
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FIGURE 10. Confusion matrix of 2-layer GAM-HRNN-GRU model on
RadioML dataset at -8dB signal-to-noise (SNR).

FIGURE 11. Confusion matrix of 2-layer GAM-HRNN-GRU model on
RadioML dataset at 0dB signal-to-noise (SNR).

for 1-layer GAM-HRNN-LSTMs and 1-layer LSTM in the
training process. The forget biases of LSTM were initialized
to 0 for both models.

Curves are presented in Fig. 13. At the beginning of the
training, gradients norms of GAM-HRNN-LSTM were at
an acceptable level. After 300 updates, GAM-HRNN-LSTM
still maintained an appropriate value of gradients along the
timesteps, but LSTM suffered from a gradient vanishing
problem. Hence, the GAM module can adaptively maintain
the gradients at a suitable level for the RNN model. This was
good for the training process and the model would eventually
obtain a satisfactory result.

C. MODIFIED DATASET
We further evaluated the model on the modified variable
length dataset. ForAMCmodulation classification, the ability

FIGURE 12. Confusion matrix of 2-layer GAM-HRNN-GRU model on
RadioML dataset at 18dB signal-to-noise (SNR).

FIGURE 13. Gradients norm of 1-layer models with hidden states at the
beginning of training and after 300 updates (U300 means after
300 updates).

of the model to deal with variable length signals with dif-
ferent parameters was also important. In this subsection,
we evaluate 2-layer GAM-HRNN-GRU and 2-layer LSTM
on the variable length dataset. The details of the dataset are
presented above. The configurations of the models were the
same as that in subsection A. The models were trained for
SNRs ranging from -20 dB to 20 dB, and input sample lengths
varied from 128 to 512 samples. The results are presented
in Fig. 14.

At low SNRs, both models had poor capability to
return the correct criterion for the dataset. With the
increases in SNRs, the proposed model performed bet-
ter than LSTM at all lengths. The accuracy increased as
the data obtained by the model accumulated because the
model could learn temporal dependencies from the infor-
mation. Moreover, this requires the ability of the model to
retain memory for a long time, which is critical for this
problem.
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FIGURE 14. Accuracy of variable length of signals of 2-layer
GAM-HRNN-GRU and LSTM.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a recurrent structure named
GAM-HRNN for AMC problem. Subsequently, we evaluated
the GAM-HRNN model on the standard and variable length
datasets. Experiments verified that the proposedmodel exhib-
ited excellent performance on this problem. And our 1-layer
model can also give competitive result and beat other models
of 2 layers with much fewer parameters. The model had
sufficient ability to handle variable length signal inputs with
different parameters. We also emphasized on the importance
of maintaining the gradient within an appropriate range in the
training process for obtaining good results.

There are some limitations to the proposed model. The
proposed model has insufficient capability to deal with inputs
at low SNRs. In addition, the parameters can be further
reduced by modifying the structure of the model or using
some pruning methods.
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