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ABSTRACT In this paper, an online adaptive control strategy is proposed for the accurate trajectory
tracking of quadrotor unmanned aerial vehicles (UAVs) under time-varying model uncertainties and external
disturbances. A robust sliding mode controller was developed for the outer-loop position subsystem to
guarantee robust tracking performance even under disturbance. For the inner-loop attitude subsystem,
an online adaptive controller was designed, which integrated the fuzzy and SMC into one unified system.
Critically, its parameters were simultaneously identified and adjusted in real-time. These sub-control systems
were then integrated into a unified closed-loop system. Its uniform stability was then analyzed and strictly
proofed. Case studies demonstrated the effectiveness of our proposed strategy, along with its superior control
performance when compared with several commonly used methods.

INDEX TERMS Quadrotor UAVs, nonlinear control, fuzzy system, slidingmode control, trajectory tracking.

I. INTRODUCTION
Recently, quadrotor unmanned aerial vehicles (UAVs) have
seen increased and extensive use across various areas, includ-
ing the military, agriculture, search and rescue, fire-fighting,
environmental protection, and personal entertainment. The
popularity of UAVs has been due to their security and maneu-
verability. Comparedwith helicopters and fixed-wingsUAVs,
the quadrotor possesses many significant advantages, such
as vertical take-off and landing capacities, strong maneuver-
ability, simple mechanical structure, and low cost. Moreover,
the flexible design performance of both its size and specifi-
cation allows quadrotors to be rapidly adapted to the require-
ments of a given industry [1], [2]. Despite these benefits,
the desirable trajectory tracking performance of the quadrotor
is always affected by uncertain internal and external nonlin-
earities in the actual flight environment. It is difficult to obtain
an accurate model of the system, since the quadrotor is a
typical dynamic nonlinear system with strongly coupled and
underactuated characteristics, along with unexpected model
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uncertainties caused by airframe vibration and air resistance.
Furthermore, wind gusts and payload variation usually lead to
multi-frequency disturbances and chattering during the actual
flight, all of which influence tracking accuracy and flight
stability of the quadrotor. This is especially true for the elec-
tromechanical actuators. With these problems in mind, it has
become greatly important to design an efficient controller
with satisfactory trajectory-tracking accuracy and robust per-
formance for quadrotors under such model uncertainties and
external disturbances [3]–[6].

With regard to these problems, significant amount of
research has been devoted to achieving better performance for
the trajectory tracking of quadrotors. Different strategies have
been proposed, including proportional-integral-derivative
(PID), the backstepping method, sliding mode control, fuzzy
algorithm, and the adaptive control method [7]–[12].

Initially, linear control algorithms such as single loop or
multi-loop PID and linear quadratic regulator (LQR) were
widely applied to control the quadrotor. This was because
they had advantages in both simplicity and practicabil-
ity [13], [14]. These algorithms performed reasonably well
when the aircraft worked in actual operating conditions. For
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instance, a PID cascade control of the quadrotor for trajectory
tracking with small acceleration was proposed in [14]; its
tracking performance was shown to be excellent for low
velocities. However, the fitting effect and control accuracy
of these algorithms for nonlinearities were unsatisfactory.
This was mainly because many of the controllers proposed
in these previous studies were based on models and required
almost a full knowledge of its dynamics. In turn, this led
to a heavy dependence on the model’s accuracy. Additional
work sought to address this limitation by using an increasing
number of nonlinear control methods in quadrotors, which
were somewhat effective [15].

As a commonly used nonlinear algorithm, the backstep-
ping algorithm allows for online control performance by
using a reverse design method [10], [11]. However, the strict
requirement on the model’s structure remains a large restric-
tion for this algorithm. Due to its outstanding properties of
fast responsivity, disturbance insensitivity, and independent
features in the model’s structure [16], many researchers have
concentrated their studies on using and introducing the slid-
ing mode control (SMC) into quadrotor control. By design-
ing different sliding equations, the SMC converges to a
uniform, asymptotical stability at exponential speed. Impor-
tantly, this approach has been effective in trajectory tracking
and random disturbance response [9], [17]–[19]. In [17], a
robust second order sliding mode controller (SOSM) was
proposed with good transient performance on the altitude
tracking of the quadrotor. When combined with the SMC,
the limitations of the backstepping method were overcome.
In [9], a backstepping sliding mode controller (Integral
BS-SMC) was designed to improve the system’s robustness
against external disturbances. However, there were still sev-
eral defects in the actual application of the SMC, includ-
ing convergence time, the robust term, and high frequency
chattering [20]–[23]. Several solutions, such as super twisting
algorithm (STA) [24], have been proposed to address such
defects [25]–[27], and strong robustness was introduced to
overcome both internal and external parametric perturbations.
In [24], STA was applied to a quadrotor to ensure robustness
against bounded disturbances and its finite time convergence
was proved bymeans of amajorant curve. Two different kinds
of two-slidingmode control algorithmswere proposed in [26]
by bounding the model dynamics with positive functions.
This approach led to a reduction in the chattering effect.
However, the STA had some shortcomings related to the
strength of disturbances. For instance, the traditional linear
STA cannot deal with strong disturbance near the origin,
while the nonlinear STA is not able to endure a linearly grow-
ing perturbation the introduction of discontinuous. Besides,
the introduction of robust terms also triggered high-frequency
dynamic system errors, which was extremely dangerous for
the electromechanical actuators.

Since the built-in gyroscope of the quadrotor is highly
sensitive to the attitude acceleration variable of the air-
frame, real-time calculations are often necessary to overcome
the system dynamics and environmental changes. In this

context, an increasing number of intelligent control strate-
gies have attracted considerable research interest and have
been introduced into the trajectory tracking system of the
quadrotor [18], [28], [29], [39], [40]. This is especially true
for hybrid controllers combined with fuzzy control algo-
rithm. By introducing human experience into the controlling
process, these intelligent algorithms guarantee an accurate
approximation to the model’s uncertainties [30]–[34]. When
combined with an adaptive strategy, the intelligent control
system allowed for real-time regulation of system parameters
according to its actual state [35]–[37]. In [18], an adaptive
fuzzy gain-scheduling sliding mode control (AFGS-SMC)
was proposed for unmanned quadrotors; this was done to
regulate attitude parametric uncertainties. In [31], a hierarchi-
cal control strategy was proposed for positional and attitude
tracing of quadrotors. This approachwas based on the double-
loop integral sliding mode control (IntSMC) along with the
adaptive radical basis function neural networks (RBFNNs).
In [37], a nonlinear adaptive controller was proposed for
orientation and translation tracking of the quadrotor using the
adaptive nonsingular fast terminal SMC (ANFT-SMC).

Despite these advances, there remain several limitations
in these past works: (1) A consideration of system-wide
perspective is lacked, and only parts of the control loop were
studied, i.e., the altitude subsystem or the attitude subsystem.
(2) There are few studies on considering both internal uncer-
tainty and external disturbances. (3) When time-varying and
nonlinear dynamics of the system is very strong, only using
online modeling or online control is often difficult to achieve
a satisfactory performance.

Aiming to these challenges, in combinationwith the advan-
tages of both adaptive fuzzy control and a robust second
order sliding mode algorithm, we propose a novel online
adaptive control strategy for quadrotor UAVs in trajectory
tracking against dynamic model uncertainties and external
disturbances. The virtual variable method was used to effec-
tively decouple the relationship between the inner-loop atti-
tude control and the outer-loop position control. Detailed
contributions of this paper are highlighted as follows:
• Based on the first-order tracking error, a robust sliding
mode controller was proposed for the outer-loop posi-
tion subsystem to alleviate external disturbances and
guarantee robust tracking performance.

• An adaptive nonlinear sliding mode controller was
designed for the attitude subsystems by integrating the
fuzzy system and robust sliding mode control into a
unified framework, in which the parameters were simul-
taneously identified and adjusted in real-time.

• These sub-control systems were then integrated into a
unified closed-loop system and the uniform stability
of overall system was theoretical analyzed and strictly
proved.

• Case studies demonstrated the effectiveness of our pro-
posed strategy, along with its superior control perfor-
mance when compared with several commonly used
methods.
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FIGURE 1. Coordinate systems for quadrotor UAVs.

The rest of this paper is organized as follows: Section 2
presents the dynamic model of the quadrotor and the control
problem existing in the quadrotor UAVs. Section 3 proposes
the online adaptive control strategy, while Section 4 describes
the use of several comparison and trajectory tracking sim-
ulations to verify the effectiveness and robustness of the
elaborated control strategy.

II. MODELING AND PROBLEM DESCRIPTION
Assumed that the quadrotor UAV is rigid, and the centroid
of mass is concentrated in the geometric center. As shown
in Fig.1, the body-frame coordinate system and the geo-
graphic coordinate system are defined for the modeling pro-
cess. The body-frame coordinate system (b system) is affixed
and connected with the centroid, while the coordinate sys-
tem rotates following the rotation of the quadrotor. In the
geographic coordinate system, i.e. the inertial/ navigation
coordinate system (named n system), the x-axis refers to the
North (N), the y-axis to the East (E), and the z-axis to the earth
(G). Suppose that θ , ϕ, ψ represent the pitch, roll, and yaw
angles in the body-frame coordinate, respectively, and x, y, z
represent the position of the centroid in the inertial coordinate
system.

According to Newton mechanics and the Newton-
Lagrange equation, dynamic equations of the quadrotor with
respect to the inertial coordinates can be generally expressed
as [4]–[6], [12]



φ̈ =
Iy − Iz
Ix

θ̇ ψ̇ +
1
Ix
U2 +

Ir
Ix
θ̇ωsum −

K1l
Ix
φ̇

θ̈ =
Iz − Ix
Iy

φ̇ψ̇ +
1
Iy
U3 −

Ir
Iy
φ̇ωsum −

K2l
Iy
θ̇

ψ̈ =
Ix − Iy
Iz

φ̇θ̇ +
1
Iz
U4 −

K3l
Iz
ψ̇

ẍ =
U1

m
(cosφsinθcosψ + sinφsinψ)−

1
m
Kaxẋ

ÿ =
U1

m
(cosφsinθsinψ − sinφcosψ)−

1
m
Kayẏ

z̈ =
U1

m
cosφcosθ − g−

1
m
Kazż

(2-1)

where l represents the distance from centroid to propeller
shaft, ωsum = −ω1 + ω2 − ω3 + ω4, d is the resistance
coefficient, b is the lifting coefficient,ωi(i = 1, 2, 3, 4) repre-
sents the angular velocity of each propeller, Ir is the inertial
moment of propeller. Ix , Iy, Iz are the moment of inertia. g

denotes the acceleration of gravity, Kax,Kay,Kaz represent
the rotation resistance coefficient matrix of each propeller.
ẋ, ẏ, ż are the translational velocity of the quadrotor in the
inertial coordinate system. U1 represents the control input of
four independent control channels (altitude, roll, pitch, and
yaw).

In the actual flight, the lift of the quadrotor is mainly
produced by the rotation of propellers. Firstly, according to
the gravity of the aircraft, the rotation speed of each propeller
is obtained by reverse calculation, so that the aircraft obtains
the basic lift through four propellers to offset its own gravity.
Then, based on the basic thrust, the controller mainly focuses
on the incremental and decremental adjustment, whichmeans
that speed of four motors is adjusted according to the devia-
tion between the target point and current position.

As shown in Eq. (2-1), the rotational information φ̈, θ̈ , ψ̈
is related to U2, U3, U4, respectively; similarly, the position
acceleration ẍ, ÿ, z̈ is related to U1, m, φ, ψ , θ . The follow-
ing practical problems may result in the model and control
difficulties: (1) different forms of wind gusts in the actual
flight environment, i.e., abrupt, high-frequency, whirlwind
etc., which will influence the robustness of the controller; (2)
the airframe vibration caused by external factors such as air
resistance, which may result in model uncertainties.

As the control loops shown in Fig. 2, when tracking the tar-
get trajectory, the outer-loop position controller will call the
corresponding algorithm based on the input target trajectory
and the real position information to control the quadrotor’s
angle. This transfers the output regular velocity deviation to
the inner-loop attitude controller. The inner-loop then adjusts
the attitude of the aircraft according to this deviation, after
which it transfers the thrust information to the final executive
units.

A. POSITION SUBSYSTEM
According to reference [34], the following two virtual vari-
ables Ux and Uy are introduced to decouple the relationship
between the inner- and outer-loop control systems.

Ux = U1(cosφsinθcosψ + sinφsinψ)
Uy = U1(cosφsinθsinψ − sinφcosψ)
Uz = U1cosφcosθ

(2-2)

Then we have

θ = arctan
(
(Uxcosψ + Uysinψ)/Uz

)
(2-3)

8 = arctan(
(
cosθ (Uxsinψ − Uycosψ)/Uz

)
) (2-4)

Suppose that the model uncertainties in x, y, z dimen-
sions are [23] χ1 (t, x, ẋ) , χ2 (t, y, ẏ) , χ3 (t, z, ż). There are
many random uncertainties in actual flight environment,
and the prior empirical knowledge is difficult to obtain in
real-time. The typical example is wind gusts, which has
high-frequency or multi-frequency characteristics [4]. Here
we suppose that γ (t) = [γ1 (t) , γ2 (t) , γ3 (t)] denotes the
external disturbances caused by external disturbances in x,
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FIGURE 2. Overall control loop structure of quadrotor UAVs.

FIGURE 3. The entire framework of the elaborated control strategy for quadrotor UAV.

y, z directions. The state variables in position x, y, z can be
rewritten as

mẍ = Ux − Kax ẋ + χ1 (t, x, ẋ)+ γ1(t)
mÿ = Uy − Kayẏ+ χ2 (t, y, ẏ)+ γ2(t)
mz̈ = Uz − Kazż− mg+ χ3 (t, z, ż)+ γ3(t)

(2-5)

In the outer-loop translation altitude subsystems and with
the predefined target position (xd , yd , zd ), the virtual control
variables Ux ,Uy and Uz are calculated by Eq. (2-5). Then
we can get the attitude angles φ, θ and U1 directly through
Eqs. (2-2), (2-3) and (2-5), which are regarded as the target
angles of the inner-loop attitude subsystem.

B. ATTITUDE SUBSYSTEM
According to the dynamic attitude expression in Eq. (2-1), the
attitude equation can be expressed as [28], [41]

Dq̈(t) = f (t, q, q̇)+ U (t)+ τ (t) (2-6)

f (t, q, q̇) = C (q̇) q̇+ ξ (t, q, q̇) (2-7)

where q = (φ, θ, ψ)T .τ (t) is a 3× 1 dimensional matrix, and
represents the disturbance to the built-in gyroscope. D, C(q̇),
U (t) represent

D =

 Ix 0 0
0 Iy 0
0 0 Iz

 , U (t) =

U2
U3
U4


C(q̇) =

 0 0
(
Iy − Iz

)
θ̇

(Iz − Ix) ψ̇ 0 0
0

(
Ix − Iy

)
φ̇ 0



ξ (t, q, q̇) denote nonlinear model uncertainties, including
the vibration and the ignorance structure of the airframe,
which is inspired by the following two parts: (1) In actual
flight, the air resistance of the propellers is almost basically
in direct proportion to square of rotor speed [28]. (2) In
the modeling process, the rotation resistance terms (e.g.,
Ir θ̇ωsum/Ix , Ir φ̇ωsum/Iy) of attitude subsystem is always
ignored to simplify the subsystem during the modelling
process, which influences the modeling accuracy and even
results in severe distortion to physical devices.

III. CONTROL DESIGN
To address the problem described above, we propose a combi-
natorial, nonlinear control strategy for trajectory tracking in
quadrotors when dealing with dynamic model uncertainties
and external disturbances. As shown in Fig. 3, for the outer-
loop position subsystem, a robust sliding mode controller
was established to realize the horizontal position, in which
the integration of first-order tracking error was introduced
to enhance the robustness against external disturbances. For
the inner-loop attitude subsystem, an adaptive fuzzy sliding
mode controller was designed in combination with both the
fuzzy algorithm and SMC, in which an improved STA was
designed to guarantee the robustness of the system to external
disturbances. These sub-control systems were then integrated
into a unified closed-loop system.

Moreover, according to Fig.3, when carrying out control
of the position subsystem, the chattering caused by control
switching of attitude subsystem can be regarded as external
disturbance, and the integration of first-order tracking error
was introduced to enhance the robustness against external
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FIGURE 4. Proposed structure of the robust sliding mode controller.

disturbances. When carrying out control of the attitude,
the chattering caused by control switching of position sub-
system is also regarded as external disturbance, and the fuzzy
and super twisting algorithmwere introduced to guarantee the
robustness to disturbance. In this way, the chattering caused
by control switching is suppressed.

A. POSITION CONTROLLER DESIGN
As described in (2-5), by introducing three virtual variables
Ux , Uy and Uz, the translational movement equations can be
simplified as [25]

mẍ = Ux − Kax ẋ + δ1(t, x, ẋ) (3-1)

mÿ = Uy − Kayẏ+ δ2(t, y, ẏ) (3-2)

mz̈ = Uz − Kazż− mg+ δ3(t, z, ż) (3-3)

where δ1 (t, x, ẋ) = χ1 (t, x, ẋ) + γ1(t), δ2 (t, y, ẏ) =
χ2 (t, y, ẏ)+ γ2(t), δ3 (t, z, ż) = χ3 (t, z, ż)+ γ3(t).

Although the model uncertainties and disturbances are
unpredictable in actual flight and could not be known as
a prior, the effects of those factors can be alleviated by
the proposed control item. Therefore, a robust sliding mode
controller was constructed to realize the accurate and stable
movement in three dimensions, which is shown in Fig. 4.

Here, we take the x direction as an example to illustrate
the controller design process. In this controller, virtual vari-
ables are designed to ensure that the system is asymptotically
bounded, so the control output not only suppresses distur-
bances, but also realizes the asymptotic tracking on reference
signals.

By defining two state variables x1, x2, Eq. (3-1) can be
rewritten as the following state-space form: ẋ1 = x2

ẋ2 =
1
m
Ux −

Kax

m
x2 +

1
m
δ1(t, x1, x2)

(3-4)

where Ux = U1(cosφsinθcosψ + sinφsinψ); x1, x2 represent
velocity and acceleration in x-direction respectively, which
are used to describe the system’s motion state in x direction.
Inspired by the backstepping technique, we introduce

the virtual variable β and the first-order tracking error∫ t
0 e1x(τ )dτ , to ensure the tracking robustness.

β = ẋ1d − J0

∫ t

0
e1x(τ )dτ − J1e1x , J0, J1 > 0 (3-5)

Define two error variables e1x , e2x and set{
e1x = x1 − x1d
e2x = x2 − β

(3-6)

Then we have the sliding surface:

sx = cxe1x + e2x (3-7)

where cx is the convergence parameter.
Moreover, from Eq. (3-6)

ė2x =
1
m
Ux −

Kax

m
x2 +

1
m
δ1(t, x1, x2)

−ẍ1d + J1ė1x + J0e1x (3-8)

where J0, J1> 0. Define the following exponential approach
law to improve the robustness of the translational control
system

ṡx = −ρ1sign (sx)− ρ2sx , where ρ1, ρ2> 0 (3-9)

Define the Lyapunov function

V =
1
2
s2x (3-10)

and set the robust control law:

Ux=Kaxx2+m
(
ẍ1d+cx

(
J1e1x+J0

∫ t

0
e1x (τ ) dτ−e2x

)
−(J1ė1x+J0e1x+ρ1sign (sx)+ρ2sx)) (3-11)

Then the differential of Eq. (3-10) is

V̇ = sx ṡx = sx (cx ė1x + ė2x)

= sx

[
cx (x2 − ẋ1d )+

1
m
Ux −

Kax

m
x2

+
1
m
δ1(t, x1, x2)− ẍ1d + J1ė1 + J0e1

]
= −ρ1 |sx | − ρ2s2x +

sx
m
δ1 (t, x1, x2)

≤ −ρ2s2x − |sx | (ρ1 −
δu1

m
) (3-12)

where δu1 is the upper bound of disturbance δ1 (t, x1, x2).

Clearly, when ρ1 >
δu1
m , ρ2> 0, V̇< 0, the sliding surface

s→ 0 and the translation subsystem is asymptotically stable.
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FIGURE 5. Proposed attitude control structure based on fuzzy adaptive sliding mode algorithm.

FIGURE 6. Structure of the proposed online fuzzy approximation system.

Similarly, control inputs in y and z directions can be
obtained and expressed as

Uy = Kayy2 + m(ÿ1d + cy(J3e1y + J2

∫ t

0
e1y (τ ) dτ − e2y)

−(J3ė1y + J2e1y)− ρ3sign
(
sy
)
+ ρ4sy) (3-13)

Uz = Kayz2 + m(z̈1d + cy(J5e1y + J4

∫ t

0
e1z (τ ) dτ − e2z)

−(J5ė1z + J4e1z)− ρ5sign (sz)+ ρ6sz)+ mg (3-14)

B. ATTITUDE CONTROLLER DESIGN
For the attitude sub-control system, an online adaptive fuzzy
sliding mode controller was elaborated for attitude tracking
accuracy. As shown in Fig. 5, this method uses both the fuzzy
model and SMC to overcome uncertainties and external dis-
turbances, respectively. Moreover, to alleviate the chattering
problem existing in the traditional SMC, we introduced an
improved STA, in which the chattering switch function is
applied to higher-order derivative of the slidingmode variable
by introducing the integral term and the exponential term.
On this basis, an online adaptive strategy was also designed
to integrate the fuzzy model and robust SMC into a unified
framework, so that the parameters of the control system
would be simultaneously identified in real-time.

Due to the simplicity and practicability in modeling, it is
difficult to obtain an accurate equation of f (t, q, q̇). Accord-
ing to the universal approximation theorem [32], there must
be a fuzzy system f̂ (t, q, q̇) highly approximate to f (t, q, q̇);
in this way, it is reasonable to use f̂ (t, q, q̇) constructed on the

two-dimensional fuzzy controller to approximate f (t, q, q̇).
Here and to ensure approximation accuracy, ε is defined as
the approximation error.

From Eq. (2-6), we know that there are three angle vari-
ables in the attitude control system, and all should be consid-
ered when designing the fuzzy system. Here, we use pitch
angle φ as an example. The detailed fuzzy approximation
processes are shown in Fig. 6.

Assume that A1 and A2 represent the fuzzy sets
of ϕ1 and ϕ2 respectively, B denotes the result set.
l1= 1, 2, · · · ,m;l2= 1, 2, · · · ,n is the elements number of
each fuzzy set. Al11 and Al22 are the element fuzzy sets of A1
and A2, m and n represent the element number of Al11 and Al22 .
Bl1l2 is the fuzzy result. Then the fuzzy rules can be built as
follows:

R(l1l2) : IF ϕ1 is A
l1
1 and ϕ2 is A

l2
2 THEN f̂

(
φ |ωφ

)
is Bl1l2

Currently, there are several studies on fuzzy systems
with trigonometric [12] and Gaussian functions [18], [30],
in which the satisfactory approximation performance for
uncertain disturbances has been demonstrated, especially the
Gaussian function. Here the membership function is selected
as:

µj = exp

(
−

∥∥φ − cj∥∥2
2b2j

)
, j ∈ {l1, l2} (3-15)

In the fuzzy system, the singleton fuzzifier is used to cal-
culate the rule result and the function value yl1l2 corresponds
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TABLE 1. Description of the fuzzy calculation procedures.

to the maximum value of the membership function. More-
over, implying the product inference machine, the inference
conclusions can be formulated as yl1l2

∏2
i=1 µ

li (ϕi). Thus,
the system output is obtained based on the center average
defuzzifier

f̂ (φ |ω) =

∑m
l1=1

∑n
l2=1 yl1l2

(∏2
i=1 µ

li (ϕi)
)

∑m
l1=1

∑n
l2=1

(∏2
i=1 µ

li (ϕi)
) (3-16)

where µli (·) represents the membership function.
Define parameter ωφ and introduce a new ζ (φ) ∈ Rm×n,

then we have the fuzzy output

f̂
(
φ |ωφ

)
= ω̂Tφ ζ (φ) (3-17)

Then the ζ (φ) for l1l2th(l1= 1, 2, · · · ,m;l2= 1, 2, · · · ,n)
members can be expressed as:

ζl1l2 (φ) =

∏2
i=1 µ

li (ϕi)∑m
l1=1

∑n
l2=1

(∏2
i=1 µ

li (ϕi)
) (3-18)

The description of the fuzzy calculation procedures is
shown in Table 1.

Assuming that

ω∗φ = argmin
ωε�

[
sup
φε�

∣∣∣f̂ (φ |ω)− f (φ)∣∣∣] (3-19)

then we have

f (φ) = ω∗Tφ ζ (φ)+ ε (3-20)

where ε represents the approximation error.
Defining ω̃Tφ = ω̂

T
φ − ω

∗T
φ , then

f (φ)− f̂ (φ |ω) = ω∗Tφ ζ (φ)+ ε − ω̂
T
φ ζ (φ)

= −ω̃Tφ ζ (φ)+ ε

Similarly, withWq = [ωφ, ωθ , ωψ ]T we have

f̂ (t, q, q̇) = W ∗Tq ζ (q, t)+ E

and the dynamic attitude equation can be rewritten as

Dq̈(t) = f (t, q, q̇)+ U (t)+ τ (t) (3-21)

f̃ (t, q, q̇) = f (t, q, q̇)− f̂ (t, q, q̇)

= −W̃ T
q ζ (q, t)+ E (3-22)

where D =

 Ix 0 0
0 Iy 0
0 0 Iz

, U =
U2
U3
U4

. Ix , Iy, Iz represent the
moment of inertia. W̃ T

q = Ŵ T
q − W ∗Tq , E = [ε1, ε2, ε3]T .

ε1, ε2, ε3 are the approximation error of θ , ϕ, ψ respectively.
With the former proposed fuzzy approximation sys-

tem, model uncertainties of the system can be compen-
sated. To obtain better satisfactory tracking accuracy and
robust performance against external disturbances, an adaptive
robust controller was further elaborated. In this controller,
an improved STA was introduced as the robust term to alle-
viate the chattering problem existing in the traditional sliding
mode controller. The robust approaching law varied accord-
ing to the real-time feedback state and fuzzy approximation
term. The structure of the robust sliding mode algorithm is
shown in Fig. 7.

Define the sliding mode function

sq = λe+ ė (3-23)

where λ > 0, e = [φd − φ, θd − θ, ψd − ψ]T , and φd , θd ,
ψd are the target angles. Thus, sq is a 3× 1 dimensional
matrix:

ṡq = λė+ D−1 (U (t)+ τ (t)+ f (t, q, q̇))− q̈d (3-24)
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FIGURE 7. Structure of the robust sliding mode algorithm.

It is known that when the sliding mode function sq→ 0,
the altitude error e and differential error will converge to zero
exponentially. Then we have

U = Dq̈d − Dλė− f (t, q, q̇)+ Dṡq − τ (t)

Dṡq = Dλė+ U + τ (t)+ f (t, q, q̇)− Dq̈d (3-25)

Here, an improved STA, which inherits the best properties
of traditional linear and nonlinear STA in disturbance sup-
pression [38], is introduced as the robust term of SMC to over-
come chatters faced by SOSM and increase the robustness of
the system to external disturbances:

ṡq = −k1
∣∣sq∣∣ 12 sign (sq)− k2sq − k3 ∫ t

0
sign

(
sq
)
dt

−k4

∫ t

0
sqdt + Ef + τm (t) (3-26)

where Ef = D−1E, τm (t) = D−1τ (t), k1, k2, k3, k4 are a
3× 3 dimensional diagonal matrix, and meet k1, k2, k3, k4 >

0. D =

 Ix 0 0
0 Iy 0
0 0 Iz

. Ix , Iy, Iz represent the moment of inertia.

Replace ṡq into Eq. (3-25), and the actual control input is
obtained.

Û = Dq̈d − Dλė−W ∗Tq ζ (q, t)− D(k1
∣∣sq∣∣ 12 sign (sq)

+k2sq + k3

∫ t

t0
sign

(
sq
)
dt + k4

∫ t

t0
sqdt)

Define the Lyapunov function

V (t) =
1
2
sTqDsq +

1
20

T

q
D−1q W̃q (3-27)

The differential expression of Eq. (3-27) can be expressed
as follows:

V̇ (t)

= sTqDṡq +
1
0
W̃ T
q D
−1 ˙̂Wq

= sTq
(
Dλė+ Û − Dq̈d + f (t, q, q̇)+ τ (t)

)
+
1
0
W̃ T
q D
−1 ˙̂Wq

= sTq (−W̃
T
q ζ (q, t)+ 2E + τ (t)− D(k1

∣∣sq∣∣ 12 sign (sq)
+k2sq + k3

∫ t

t0
sign

(
sq
)
dt

+k4

∫ t

t0
sqdt)+

1
0
W̃ T
q D
−1 ˙̂Wq

= sTqD
(
−k1

∣∣sq∣∣ 12 sign (sq)− k2sq − k3 ∫ t

t0
sign

(
sq
)
dt

−k4

∫ t

t0
sqdt + 2E f + τm (t)

)
+W̃ T

q D
−1
(
1
0

˙̂Wq − sqζ (q, t)
)

=−D
(
k1
∣∣sq∣∣ 32−k2sTq sq−k3∫ t

t0

∣∣sq∣∣ dt−k4∫ t

t0
sTq sqdt

)
︸ ︷︷ ︸

Part1

+ sTqD
(
2Ef + τm(t)

)︸ ︷︷ ︸
Part2

+ W̃ q
t D
−1
(
1
0

˙̂Wq − sqζ (q, t)
)

︸ ︷︷ ︸
Part3

(3-28)

Obviously, the first part of V̇ meets: V̇Part1 ≤ 0 (only when
the sliding surface sq = 0, the derivative is zero). Besides,

when ˙̂W satisfies ˙̂Wq = 0sqζ (q, t), V̇Part3 = 0. Then
the original problem is transformed into the derivation of
the boundary condition that the sliding surface sq converges
to 0 in V̇Part2. Therefore, in order to obtain the uniform
convergence time and boundary conditions of k1, k2, k3, k4,
here we introduce three variables ν1, ν2 and ν3

ν = [ν1ν2ν3]T = [|η1|
1
2 sign (η1) η1η2]

T
(3-29)

where

η = [η1η2]T = [sq − k3

∫ t

0
sign

(
sq
)
dt

−k4

∫ t

0
sqdt + τm(t)]T

Then
ν̇1 =

1
2 |ν1|

(−k1ν1 − k2ν2 + ν3 + Ef )

ν̇2 = −k1ν1 − k2ν2 + ν3 + Ef

ν̇3 =
1
|ν1|

(−k3ν1)− k4ν2 + τ̇m(t)

(3-30)
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Define the Lyapunov function

V1 (ν) = 2k3v21 +
1
2
v22 +

1
2
v23 +

1
2
(k1ν1 + k2ν2 − ν3)2

(3-31)

When introducing

P =
1
2

 4k3+k21 k1k2 −k1
k1k2 2k4+k22 −k2
−k1 −k2 2

 , ATP+PA = −Q,

then V1 (ν) can be transformed into the positive definite
quadratic form:

V1 (ν) = νTPν

The corresponding derivative of the Lyapunov equation is
obtained as follows:

V̇1 (ν) = −νT
(
ATP+ PA

)
ν + 2νTPB

= −νTQ1ν −
1∣∣sq∣∣ 12 νTQ2ν −M1ν −

1∣∣sq∣∣ 12 M2ν

(3-32)

where Q = Q1 + Q2, B = [Ef ,Ef , τ̇m]T ,

M1 =
1
2
[−
(
k21+4k3

)
Ef +k1τ̇m−k1k2Ef +k2τ̇mk1Ef − 2τ̇m]

M2 =
1
2
Ef [−k1k2 −

(
k22 + 2k4

)
k2]

Q1 =
1
2


−k21k2 −k1

(
k22 + k4

)
k1k2

−k1
(
k22 + k4

)
−k2

(
k22 + 2k4

)
k22 + k4

k1k2 k22 + k4 −k2

 ,

Q2 =
1
2

 −k31 − 2k1k3 k1k4 − k2
(
k21 + k3

)
k21

k1k4−k2
(
k21+k3

)
2k2k4−k1k22 k1k2−2k4

k21 k1k2 − 2k4 −k1


For some constants τ1, τ2, E1, E2 ≥ 0, if Ef and τ̇ meet∣∣Ef ∣∣ < E1

∣∣sq∣∣ 12 + E2
∣∣sq∣∣, |τ̇m| < τ1 + τ2

∣∣sq∣∣, the below
restriction can be obtained

1∣∣sq∣∣ 12 M2ν ≤
E1∣∣sq∣∣ 12 νT41ν + E2νT41ν (3-33)

M1ν ≤
1∣∣sq∣∣ 12 νT42ν + ν

T
43ν (3-34)

where

41 =
1
2

−k1k2 0 −
k2
2

0 −
(
k22 + 2k4

)
0

−
k2
2 0 0



42 =
1
2


k1τ1 0 0

0 −
(
k21 + 4k3

)
E2 − k1τ2 − k1k2E1 0

0 0 0



43 =−
1
2

×


(
k21+4k3

)
E1−k1τ1 0

k1E1+2τ1
2

0 k1k2E2−k2τ2
k1E2+2τ2

2
k1E1+2τ1

2
k1E2+2τ2

2
0


In this case, V̇1 (ν) can be further expressed as

V̇1 (ν) ≤ −νT01ν −
1∣∣sq∣∣ 12 νT02ν (3-35)

where 01 = Q1 +43 + E241, 02 = Q2 +42 + E241.
According to system stability conditions, when 01 and

02 are positive definite matrices, the system converges
uniformly.

Q1 +43 + E241 > 0 (3-36)

Q2 +42 + E241 > 0 (3-37)

Therefore, based on equations (3-36) and (3-37),
the boundary conditions of k1, k2, k3, k4 satisfying
Eq. (3-38) [38]:
where p1 = k1

(
1
4k

2
1 − τ1

)
+

1
2 (k1 − E1)(2k3 +

1
2k

2
1 ).

As predefined in Eq. (3-33), in the boundary conditions,
parameters τ1 and τ2 are two constants and used to restrict the
external disturbances τ (t). With the bounded external distur-
bance in actual flight environment, and it is easy to estimate
this boundary τ1, τ2 using expert experience or measurement.
In this way, k1, k2, k3 and k4 can be obtained.
Subsequently, we have

V̇1 (ν) ≤ −
1∣∣sq∣∣ 12 λmin {01} ‖ν‖2 − λmin {02} ‖ν‖2

≤ −α1V
1
2
1 (ν)− α2V1 (ν) (3-39)

where

α1 =
(
λ
1/2
min {P} λmin {01}

)
/λmax {P} (3-40)

α2 = (λmin {02}) /λmax {P} (3-41)

λmin {·} and λmax {·} represent the minimum and maximum
eigenvalues of the symmetric matrix.

Finally, the Lyapunov function satisfies V̇1 ≤ 0 (only
when the sliding surface ν = 0, the derivative V̇1 equals
to zero), that is, the sliding surface sq, attitude error e and
differential error ė will converge uniformly to zero in finite-
time at exponential speed. Then part 2 of derivative V̇ in
Eq. (3-28) meets V̇Part2 = sTqD

(
Ef + τm (t)

)
→ 0, namely:

V̇ (t) =−D
(
k1
∣∣sq∣∣ 32−k2sTq sq−k3 ∫ t

t0

∣∣sq∣∣ dt−k4 ∫ t

t0
sTq sqdt

)
︸ ︷︷ ︸

Part1

+ sTqD
(
Ef + τm(t)

)︸ ︷︷ ︸
Part2

+ W̃ q
t D
−1
(
1
0

˙̂Wq − sqζ (q, t)
)

︸ ︷︷ ︸
Part3

< 0,

with the boundary conditions of k1, k2, k3, k4 in Eq. (3-38),
as shown at the bottom of the next page.
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Furthermore, the computing complexity of intelligent and
robust parts in this proposed controller can be derived as
follows:

T (m, n,w) =

Fuzzy Logic︷ ︸︸ ︷
O(m∗n∗3 +

Adaptiveness︷ ︸︸ ︷
m∗n+ 3 +

STA︷ ︸︸ ︷
3∗W ∧ 2+ w)

= O(m∗n+ w ∧ 2)

According to this formula, the growth of computing com-
plexity is related to m, n and w, which represent the elements
number of fuzzy set A1, A2 (Section 3.2) and controlling
variables (such as θ , ϕ, ψ), respectively. The complexity
mainly comes from multiplication and addition, and there is
no complex power operation and exponential operation.

C. STABILITY ANALYSIS OF CLOSED-LOOP SYSTEM
Here, the model uncertainties in x, y, z dimensions are [23]
χ1 (t, x, ẋ) , χ2 (t, y, ẏ) , χ3 (t, z, ż), and ξ (t, q, q̇) denotes
nonlinear uncertainties of inner attitude subsystem, i.e.,
the vibration and the ignorance structure of the airframe;
γ (t) denotes the external disturbances of the control sys-
tem, where γ1 (t) , γ2 (t) , γ3 (t) are components of γ (t)
in x, y, z directions. τ (t) = [τϕ (t) , τθ (t) , τψ (t)]T ∈
R3×1 denotes the disturbance to the built-in gyroscope.
δ1 (t, x, ẋ) = χ1 (t, x, ẋ) + γ1(t), δ2 (t, y, ẏ) = χ2 (t, y, ẏ) +
γ2(t), δ3 (t, z, ż) = χ3 (t, z, ż)+ γ3(t).
Based on the above controller design, define the Lyapunov

function of quadrotor system as

V =
1
2
s2x +

1
2
s2y +

1
2
s2z +

1
2
sTqDsq +

1
20

W̃ T
q D
−1W̃q

Then

V̇ = sx ṡx + syṡy + szṡz + sTqDṡq +
1
0
W̃ T
q D
−1 ˙̂Wq

= sx (cx ė1x + ė2x)+ sy
(
cyė1y + ė2y

)
+ sz (czė1z + ė2z)

+sTqDṡq +
1
0
W̃ T
q D
−1 ˙̂Wq

= sx

[
cx (x2 − ẋ1d )+

1
m
Ux−

Kax

m
x2−ẍ1d + J1ė1 + J0e1

]
+sy

[
cy (y2−ẏ1d )+

1
m
Uy−

Kay

m
y2−ÿ1d+J3ė1 + J2e1

]
+sz

[
cz (z2−ż1d )+

1
m
Uz−

Kaz

m
z2−z̈1d + J5ė1 + J4e1

]
+sTq

(
Û − Dλė− Dq̈d + f (t, q, q̇)

)
+

1
0
W̃ T
q D
−1 ˙̂Wq

where cx , cy, cz > 0 denote the convergence parameters
of the sliding surface sx , sy, sz; constants J0, J1, J2, J3, J4,
J5 > 0. According to the virtual variables in Ux ,Uy, Uz Eq.
(3-11), (3-13) and (3-14), for parameters ρ1 >

δu1
m , ρ3 >

δu2
m , ρ1 >

δu3
m , where δu1 , δ

u
2 and δu3 is the upper bound of

disturbance δ1 (t, x, ẋ), δ2 (t, y, ẏ), δ3 (t, z, ż); ρ2, ρ4, ρ6> 0,
˙̂Wq = 0sqζ (q, t).
The control laws satisfy the following equations:

U1 = (Kayz2 + m(z̈1d + cy(J5e1y + J4

∫ t

0
e1z (τ ) dτ − e2z)

−(J5ė1z + J4e1z)−ρ5sign (sz)+ ρ6sz)

+mg)/ (cosϕdcosθd )

U2 = Ix ϕ̈d − Ixλϕ ėϕ − f̂ (t, ϕd , ϕ̇d )− Ix(k1ϕ
∣∣sϕ∣∣ 12 sign (sϕ)

+k2ϕsϕ + k3ϕ

∫ t

t0
sign

(
sϕ
)
dt + k4ϕ

∫ t

t0
sϕdt)

U3 = Iyθ̈d − Iyλθ ėθ − f̂ (t, θd , θ̇d )− Iy(k1θ |sθ |
1
2 sign (sθ )

+k2θ sθ + k3θ

∫ t

t0
sign (sθ )dt + k4θ

∫ t

t0
sθdt)

U4 = Izψ̈d − Izλψ ėψ − f̂ (t, ψd , ψ̇d )

−Iy(k1ψ
∣∣sψ ∣∣ 12 sign (sψ)+ k2ψ sψ

+k3ψ

∫ t

t0
sign

(
sψ
)
dt + k4ψ

∫ t

t0
sψdt)

where λϕ, λθ , λψ > 0 denote the convergence param-
eters of the sliding surface sϕ , sθ , sψ ; θd = arctan(
(Uxcosψ + Uysinψ)/Uz

)
, ψd = arctan (cosθ (Uxsinψ

−Uycosψ)/Uz
)
; kiϕ = kiθ = kiψ and ki =

 kiϕ 0 0
0 kiθ 0
0 0 kiψ


(i = 1,2,3,4) meet the condition of Eq. (3-38). The derivative
of Lyapunov function can be rewritten as

V̇ = −ρ1 |sx | − ρ2s2x − ρ3
∣∣sy∣∣− ρ4s2y − ρ5 |sz| − ρ6s2z
+W T

q D
−1
(
1
0

˙̂Wq − sqζ (q, t)
)

Obviously, when ˙̂W satisfies ˙̂Wq = 0sqζ (q, t), the deriva-
tive of V is no more than 0, and only when the sliding surface
sx , sy, sz equal to zero, the derivative is zero. Therefore,



k1 > 2max(E1,
√
τ 1)

k2 >
3
8
E2 +

1
4

√
9
4
E2
2 + 8τ2

k3 >
E1k21 +

1
8E

2
2k1 + τ1k1

k1 − 2E1

k4 >
k1

[
1
2k1

(
k1 + 1

2E2
)2

(2k22 +
3
2E2k2 + τ2)+ ( 52k

2
2 +

3
2E2k2 + τ2)p1

]
k1(p1 − 1

2k
3
1 )

(3-38)
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according to Lyapunov stability theory, the overall closed-
loop system of quadrotor UAV is stable. In the above stability
analysis, the range of each parameter is explained in detail,
so the parameters related to the controller can be obtained
by taking values in its definition domain. With the detailed
definition domain of each parameter, the appropriate param-
eter values can be obtained by the intelligent heuristic algo-
rithms combining with the idea of experience adjustment and
iteration, which determine the appropriate parameter value
effectively by defining the objective function. Herewemainly
used particle swarm optimization (PSO) [42], [43]. Several
rules are given in tuning controller parameters:

1) By taking theminimum regulation time and overshoot as
the objective function, PSO is used to search the parameters
in the definition domain i.e., super twisting parameters k1, k2,
k3, k4, nonnegative real parameters J0, J1, ρ1, ρ2, etc., until
the values satisfying iteration times and minimum threshold
of objective function;

2) As PSO is used to optimize the parameters, the selection
of learning rate and inertia weight has a great influence on the
particle velocity in the parameter search space. An effective
method is to start with a large learning rate and gradually
reduce the speed until the objective function is no longer
divergent.

3) While gradually improving the learning rate of each
small batch (iteration), a feasible way is conducted to observe
and record the change of the objective function after each
increment.

4) In order to improve the efficiency of parameter optimiza-
tion, for several parameters, i.e., J0, J1, ρ1, ρ2, as long as their
values are greater than 0, the stability conditions will meet.
An effective way to tuning those parameters are increasing
the value of these parameters empirically, as the simulation
of Wq demonstrated in section IV.

IV. SIMULATION AND RESULTS
In this section, several case studies were conducted by intro-
ducing three commonly used control algorithms. This was
done to verify the effectiveness of the elaborated control
strategy. The parameters of the quadrotor aircraft used in the
simulations (Table 2) are also referenced in the literature [11].

A. EXAMPLE 1 ATTITUDE TRACKING SIMULATION
To illustrate the robustness and convergence performance of
the proposed fuzzy adaptive sliding mode controller, we take
the attitude subsystem and conduct a contrast simulation on
its attitude tracking effect and input stability.

(1) Cascade PID controller (PID) [14]
(2) Improved sliding mode controller (M-SOSM) [23]
(3) Fuzzy sliding mode controller (Fuzzy M-SOSM)
(4) Elaborated fuzzy adaptive sliding mode controller

(AdapFuzzy M-SOSM)
Among these three controllers, the cascade PID controller

contains a double-loop PID control strategy for both angle
and angular velocity. The SMC applied in M-SOSM con-
troller and Fuzzy M-SOSM is optimized by the improved

TABLE 2. Parameters of the quadrotor aircraft.

TABLE 3. Controller parameters used in the simulations.

super twisting algorithm (STA), which is the same as the
robust term applied in the proposed fuzzy adaptive M-SOSM
controller. This was also done to demonstrate the anti-
interference robustness and online approximation perfor-
mance. The model uncertainties of attitude subsystem are
chosen as:

ξ (t, q, q̇) = 0.3q̇(t)+ 0.2q(t)+ 0.3

As illustrated in Eqs. (4-1) and (4-2), the multi-frequency
function u (t) and sine signal τ (t) are introduced as the
changing frequency reference signal and the high-frequency
dynamic external disturbances, respectively.

r (t) = sin t + sin (2t)+ sin(3t) (4-1)

τ (t) = 0.2sin40π t (4-2)

Based on the control design procedure in Section 3, and
the simulation examples in the literature [14], the parameters
used in this contrast simulation are listed in Table 3.
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FIGURE 8. Attitude tracking and tracking errors with different initial value
of Wq (roll angle ϕ).

FIGURE 9. Attitude tracking and tracking errors with different initial value
of Wq (pitch angle θ).

FIGURE 10. Attitude tracking and tracking errors with different initial
value of Wq (yaw angle ψ).

The fuzzy membership functions are illustrated as follows

µ =



µNM (xi) = exp
{
−
[
(xi + π/3)

/ (
π
/
12
)]2}

µNS (xi) = exp
{
−
[
(xi + π/6)

/ (
π
/
12
)]2}

µZ (xi) = exp
{
−
[
xi
/ (
π
/
12
)]2}

µPS (xi) = exp
{
−
[
(xi − π/6)

/ (
π
/
12
)]2}

µPM (xi) = exp
{
−
[
(xi − π/3)

/ (
π
/
12
)]2}

where xi ∈
[
−
π
3 ,

π
3

]
.

To obtain the appropriate initial parameters of the designed
controller, we first analyzed the influence of parameterWq on
tracking performance under different initial values through
some of the simulations.

According to Figs. 8-10, before the tracking process is sta-
ble, the tracking effect decreases with increases of the initial
value. However, it has no effect on the tracking convergence
time. This means that in the selection of the initial value, we
should try to choose a smaller initial value for Wq. Thus, we
chose Wq = [0.1 ∗ ones(3 ∗ 25, 1)] to conduct the following
two simulations.

The attitude tracking result and tracking errors of those
three control strategies are shown in Fig. 11-13. From
those figures, the introduction of improved super twisting

FIGURE 11. Attitude trajectory tracking and tracking errors (roll angle ϕ).

FIGURE 12. Attitude trajectory tracking and tracking errors (pitch angle θ).

FIGURE 13. Attitude trajectory tracking and tracking errors (yaw angle ψ).

algorithm can alleviate the high-frequency disturbances
effectively. In addition, when compared with M-SOSM and
Fuzzy M-SOSM, the tracking error of the proposed con-
troller was reduced very quickly, converging to zero in 0.5 s.
This means that the tracking accuracy was highly improved
with the introduction of adaptive law and fuzzy system.
According to the illustrated information and when compared
with the PID cascade controller and second order sliding
mode controller, the elaborated adaptive control strategies
demonstrated a quite satisfactory tracking effect after only an
extremely tiny adjustment in time (nearly 0.6 s). Moreover,
the tracking errors for the other algorithms were bounded in
and [−0.7, 0.4], [−0.3, 0.3] and [0, 0.3], respectively.

The root mean square errors (RMSE) of this contrast sim-
ulation are quantitatively summarized in Table 4. Given these
results and when compared with the cascade PID, M-SOSM
and fuzzyM-SOSM, the designed controller had significantly
faster convergence and stability performance in its attitude
tracking stability.

B. EXAMPLE 2 TRAJECTORY TRACKING SIMULATION
Here, the trajectory tracking simulation was conducted to
demonstrate the validity and mobility of the elaborated con-
trol strategy. The object trajectory used was a cylindrical
spiral, as shown in Eq. (4-3) [34].

xd = 1.5cos(0.5t)
yd = 1.5cos(0.5t)
zd = t
ψd = 60◦

(4-3)
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TABLE 4. Quantitative comparison of tracking performance.

FIGURE 14. Trajectory tracking result.

The simulation time is 20s, initial position coordinates
and attitude of the quadrotor were set as [x, y, z] = [000],
[φ, θ, ψ] = [000]. Denoting the model uncertainty χ (t) as

χ (t) = [0.1ẋ (t)+ 0.2, 0.1ẏ(t)+ 0.2, 0.1ż(t)+ 0.2]T

In general, it is difficult to control the aircraft under high-
frequency random disturbances and multi-frequency random
disturbances. Here, to solve this problem, two forms of wind
gusts were presented in the simulation: high frequency ran-
dom disturbances (high frequency sine signal) [17], [27],
[35], [36] and multi frequency random disturbances (square
wave signal) [34], [37]. The disturbances used in this tracking
simulation consist of the following two parts:

γ (t) =

{
0.2sin 40π t, t ∈ [7, 8]
1, t ∈ [13, 14]

τ (t) = 0.1sin t

According to the literature [3], the parameter cx does not
affect the stability of the control system but has a direct
relationship with the convergence time. If the parameter cx
is too large, the fast convergence speed will produce strong
buffeting; if the parameter a is too small, the convergence
time will be longer. Therefore, in this simulation, we used
the empirical value of cx= 5. The fuzzy basis vector for both
altitude and attitude controllers were w = [0.1 ∗ ones(75, 1)]
andw = [zeros(25, 1)]. Moreover, the domain of each param-
eter and the fuzzy membership function used were the same
as in Section 4.1.

Fig. 14 illustrates the trajectory tracking results. The elab-
orated control algorithms displayed a satisfactory tracking

FIGURE 15. Trajectory tracking and errors in x-direction.

FIGURE 16. Trajectory tracking and errors in y-direction.

FIGURE 17. Trajectory tracking and errors in z-direction.

accuracy and robust performance against the model uncer-
tainties and disturbances. Despite the initial difference in
the beginning of the simulation between these two lines,
the control system converged quickly to track the cylindrical
spiral trajectory. The trajectory tracking errors are displayed
in Figs. 15-17.

According to the results presented above, when the high-
frequency appeared in [7s,8s], the position response of
the quadrotor UAV experienced a fluctuated trend with a
remarkably small amplitude (≤0.1m). Then in time inter-
val [13s,14s], although the step disturbances influenced the
tracking accuracy in short time range, the tracking errors
reduced quickly (≤0.2 s) after the external interference
disappeared.

Here, in order to increase the credibility of simulation
results, the confidence level of tracking errors in x-, y-,
z-directions are evaluated. The main indicators involve the
mean value (Mean), standard deviation (SD), and the corre-
sponding confidence interval (CI) of them at 0.95 confidence
level. Table 5 shows confidence levels in x, y, z directions
under model uncertainties and external disturbances.

In this simulation, the upper and lower limits of the external
disturbance are [−0.2m,1m], and the width of the interfer-
ence interval is 1.2m. From table 5, the confidence inter-
val width of the control system in x, y, z directions are
0.0144m, 0.0094m and 0.0070m, accounting for 1.2%, 0.78%
and 0.58% of the interference interval width, respectively.
It demonstrates that the simulation results have high accuracy
and reliability at 95% confidence level.
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TABLE 5. Confidence levels (95%) in x, y, z directions.

FIGURE 18. Gaussian white noise used in the simulation.

C. EXAMPLE 3 TRACKING SIMULATION WITH
MEASUREMENT NOISE
Since the practical factors such as measurement noise and
navigation error can affect the control performance to some
extent, additional tracking simulation is conducted to demon-
strate the effectiveness of the elaborated control strategy with
random noise. In this simulation, the related parameters such
as simulation time, initial position coordinates, target trajec-
tory, model uncertainties, external disturbances etc., are the
same as Section 4.2.

As shown in Fig. 18, the random noise υ is introduced
to simulate measurement noise and navigation error in real
environment. Referring to the treatment of measurement
error in some literatures [44], [45], when ignoring factors
such as measurement technology, human and instruments,
the value and symbol of measurement error change randomly
in an unpredictable way, and obey normal distribution. There-
fore, in the simulation, we selected Gaussian white noise
as the measurement noise, which is subjected to normal
distribution of 0-mean value and 0.05-variance. The noise
generated by random number generator with the sampling
period of 0.001s. Fig. 19 illustrates the trajectory tracking
results.

Compared with Fig. 14, it is clear that despite the existing
of gaussian random noise, the control system presents a sta-
ble tracking performance and converges quickly to track the
cylindrical spiral trajectory. The trajectory tracking errors are
displayed in Figs. 20-22.

According to the results above, the position response
of the quadrotor to the random noise and external distur-
bances experienced a fluctuated trend with a remarkably
small amplitude (bounded in ±0.1m), which demonstrates

FIGURE 19. Trajectory tracking result with random noise.

FIGURE 20. Trajectory tracking and errors in x-direction.

FIGURE 21. Trajectory tracking and errors in y-direction.

FIGURE 22. Trajectory tracking and errors in z-direction.

the effectiveness of the proposed controller on alleviation of
the random noise. Table 6 illustrates the confidence indicators
in x, y, z directions with random noise at 0.95 confidence
level.

As shown in table 6, compared with Example 2, the con-
fidence interval width of the control system in x, y, z
directions are expanded to some extent (0.0541m, 0.0328m
and 0.0292m) due to the gaussian random noise. However,
the upper and lower bounds of the total interference also
increase from 1.2m to 2.4m, and the ratio of the confidence
interval to the total disturbance width of the system is 2.25%,
1.37%, 1.22%, bounded in 2.5%, which denotes that the con-
trol strategy designed in this paper can effectively suppress
the random noise.
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TABLE 6. Confidence levels (95%) in x, y, z directions under random
measurement noise.

V. CONCLUSION
In this paper, we developed a combinatorial adaptive slid-
ing mode control strategy combined with fuzzy algorithm
and sliding mode control algorithm for quadrotor UAVs to
guarantee their tracking accuracy and robust performance.
The controller considered not only the underactuated and
strongly coupled characteristics of the quadrotor, but also
the dynamic model uncertainties and external disturbances.
The overall system was divided in the outer-loop position
subsystem and inner-loop attitude subsystem, upon which
the corresponding controllers were proposed according to the
specific structure of subsystems. In case studies, the time-
varying model uncertainties and multi-frequency external
disturbances were introduced to illustrate the response per-
formance for changing frequency nonlinearities. As a result,
the first comparative simulation allowed us to conclude that,
when compared with the cascade PID, M-SOSM and fuzzy
SOSM controllers, the proposed fuzzy adaptive M-SOSM
control strategy had the smallest error on both attitude and
speed tracking. Furthermore, the validity and mobility of the
elaborated control strategy was demonstrated by the second
trajectory tracking simulation.

With the increasing demand across a variety of fields for
autonomous and intelligent flights using UAVs, our future
work will entail more in-depth research into the global opti-
mization of control parameters as well as the development
of a robust control algorithm with memory function and a
tracking control strategy based on data fusion. This work will
be critical, since they form the basis for autonomous flight
control of UAVs. We will also validate the algorithm using
actual hardware experiments in a real flight environment.
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