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ABSTRACT Dedicated short-range communications (DSRC) is one of the key technologies enabling
safety-critical applications for intelligent transportation system (ITS). Considering the significance of such
safety-of-life applications, it is of utmost importance to guarantee reliable delivery of basic safety messages
(BSMs). However, in accordance with a V2X network being inherently dynamic in key aspects such as
vehicle density and velocity, the networking behavior of a DSRC system is usually highly complicated to
analyze. In addition, the United States Federal Communications Commission (US FCC) recently proposed
the so-called ‘‘5.9 GHz band innovation,’’ which includes a plan to reduce bandwidth for DSRC to 10MHz at
best from 75 MHz. Motivated from these challenges, the necessity of ‘‘lightening’’ load of a DSRC network
has become essential to keep safety-related operations from performance deterioration. To this end, this
paper proposes a protocol that prioritizes transmission of a BSM from a vehicle according to the level of
accident risk of the vehicle. The proposed protocol uses the distance of a vehicle from a danger source as the
metric to determine the priority for transmission. Our results show that this protocol effectively prioritizes
the transmission opportunity for dangerous vehicles, and hence results in higher performance in terms of
key metrics–i.e., average latency, packet delivery rate (PDR), and inter-reception time (IRT).

INDEX TERMS V2X, IEEE 802.11p, DSRC, message prioritization, 5.9 GHz band.

I. INTRODUCTION
A. MOTIVATION
Vehicle-to-Everything (V2X) communications have been
garnering massive interest across the academic and com-
mercial bodies thanks to their potential to significantly pro-
mote the traffic safety [1]. As such, the technologies take a
central role in constitution of safety-critical applications in
intelligent transportation system (ITS) and connected vehicle
networks. Today, twomajor radio access technologies (RATs)
enabling V2X communications have been attracting particu-
lar research interest: namely, Dedicated Short-Range Com-
munications (DSRC) and cellular V2X (C-V2X). In 1999,
the United States Federal Communications Commission (US
FCC) allocated DSRC to the 5.9 GHz band (viz., 5.850-
5.925 GHz). Recently, however, C-V2X has been proposed
to operate in the same band along with cellular operators’
licensed bands [2].

Of the two RATs, DSRC has longer been deployed
in many communities for as the key enabler technol-
ogy for safety-critical applications owing to several merits.
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First, DSRC is a mature technology that has already been
tested and deployed by a wide variety of stakeholders includ-
ing car manufacturers and state governments in various
aspects including not only technology but practical domains
such as policy and deployment preparations [3]. Second,
DSRC does not require any paid subscription, which makes
possible wider deployment at a lower cost [3]. Third, the uni-
versal compatibility among IEEE 802.11 technologies leads
to the spectrum versatility and easy operation [4], which
could strengthen DSRC in the market of connected vehicles.

Based on these advantages, as of November 2018, more
than 5,315 roadside units (RSUs) operating in DSRC were
deployed in the United States (US) alone [5]. In Decem-
ber 2016, the US National Highway Traffic Safety Adminis-
tration (NHTSA) proposed tomandateDSRC for all new light
vehicles [6]. However, despite the advantages andwidespread
deployment, the technology has encountered an unprece-
dented obstacle: the 5.9 GHz band reallocation by the US
FCC [7].

In December 2019, the US FCC voted to allocate the lower
45 MHz (i.e., 5.850-5.895 GHz), out of entire 75 MHz of
the 5.9 GHz band (i.e., 5.850-5.925 GHz), for unlicensed
operations to support high-rate broadband applications
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(e.g., Wireless Fidelity, or Wi-Fi) [7]. While the real-
location is proposing to leave the upper 30 MHz
(i.e., 5.895-5.925 GHz) for ITS operations (viz., DSRC and
C-V2X), it is also proposing to dedicate the upper 20 MHz of
the chunk (i.e., 5.905-5.925 GHz) for C-V2X.

Therefore, according to this plan, DSRC is only allowed
to use 10 MHz of spectrum (i.e., 5.895-5.905 GHz) at max-
imum. It has never been studied nor tested if 10 MHz would
suffice for operation of the existing DSRC-based transporta-
tion safety infrastructure. Many states in the US have already
invested large amounts of fortune in the deployment of con-
nected vehicle infrastructure based on DSRC [8]. As such,
it has become urgent to understand how much impact of
the FCC’s 5.9 GHz band reallocation will be placed on the
performance of such connected vehicle infrastructure.

Another significant issue for DSRC is that it may need
to experience coexistence with C-V2X users according to
the FCC’s proposition [7]. The key technical challenge
here is that the C-V2X standards adopt significantly dif-
ferent protocols, which makes the technology incompat-
ible with DSRC-based operations. In fact, based on the
author’s recent investigation [9], DSRC may be severely
interfered by C-V2X if the two disparate technologies coexist
in a co-channel basis. Therefore, it has become crucial to
lighten the load of a DSRC network while keeping the dis-
semination of packets operable, in order to suit the technology
into such a competitive spectrum environment.

B. CONTRIBUTIONS
As shall be detailed in Section II, the current literature shows
a key limitation to achieve the load lightening of a DSRC
network: despite being a predominant factor determining
the performance of a V2X network, the length of back-
off time was allocated to each vehicle without considering
‘‘semantic’’ contexts that the vehicle is experiencing.

We would regard it more efficient from the system’s point
of view if vehicles being closer to a danger take higher
chances to transmit. The rationale is that these vehicles in
the closest proximity of a danger-causing object are the key
nodes in the network for expedited propagation of basic safety
messages (BSMs). That is, the other vehicles in the network
will be able to receive the BSMs only after those being close
to the danger source have successfully transmitted the BSMs.

To this line, this paper proposes a V2X networking scheme
where a vehicle takes a transmission opportunity according
to the distance to a danger source. Moreover, we clearly
distinguish our contributions from the most relevant work
[11]. While the prior work focused on the stochastic geom-
etry of a particular coexistence scenario between military
and civilian vehicles in an urban area, this present paper
significantly extends the scope of discussion to (i) a general
two-dimensional geometry and (ii) detailed analysis on net-
working behaviors–viz., an exact backoff allocation method.

Overall, the technical contributions of this paper
distinguished from the literature can be summarized as
follows:

1) It proposes a method prioritizing a BSM according to
the level of danger to which each vehicle is exposed.

2) In order to measure the danger, it uses the ‘‘distance
to a danger source,’’ which is a quantity that is easy to
obtain by using the existing techniques and apparatus.

3) Based on (i) key metrics–namely, latency, packet
delivery rate (PDR), and IRT–and (ii) a generalized
two-dimensional spatial model (not limited to certain
road models), it provides a stochastic analysis frame-
work characterizing a DSRC network’s broadcast of
BSMs.

II. RELATED WORK
A. PERFORMANCE ANALYSIS SCHEMES
1) MATHEMATICAL ANALYSIS FRAMEWORK
Analysis frameworks based on stochastic geometry for DSRC
have been provided recently [9]– [12]. They commonly rely
on the fact that uniform distributions of nodes on X and Y
axes of a Cartesian-coordinate two-dimensional space yield
a Poisson point process (PPP) on the number of nodes in
the space [13]. This paper distinguishes itself from the prior
proposals in the sense that it applies the stochastic geometry
framework for analysis of the temporal aspect of DSRC
multiple access mechanisms.

2) PERFORMANCE EVALUATION METHOD
A recent proposal combines a packet-level simulation model
with data collected from an actual vehicular network [14]. It is
critical to discuss the potential impacts of internal and exter-
nal bandwidth contentions, which form a critical discussion
point after the US FCC’s recent 5.9 GHz band reallocation
[7]. The ‘‘internal’’ contention means the contention among
DSRC vehicles themselves, while the ‘‘external’’ contention
refers to the contention incurred by other RAT(s).

The limitation of the prior art lies in that the performance
evaluation was performed without consideration of these
bandwidth contentions, which might undermine its own gen-
erality. For instance, it is assumed that (i) safety messages
and (ii) packets for non-safety applications are sent over
separate DSRC channels [14], whereby no interference is
generated between safety and Internet traffic. This assump-
tion has become obsolete according to the US FCC’s recent
proposition where DSRC may not be able to utilize multiple
channels any more [7].

3) CONGESTION IN DSRC NETWORKS
It has been found that a DSRC network is constrained
by packet expirations (EXPs) and collisions over the air
[36]. An EXP refers to a packet ‘‘drop’’ as a result of not
being able to (i) make it through the backoff process and
hence (ii) be transmitted within a beaconing period. Since
the IEEE 802.11p broadcast of BSMs does not support retry
nor acknowledgement (ACK), an expired packet is dropped
and the next packet with a new sequence number is gener-
ated [31]– [33]. The reason of a packet not being able to
go through a backoff process is finding the medium busy,
which hinders the backoff counter from being decremented.
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Meanwhile, a collision is composed of two types of cause: a
synchronized transmission (SYNC) or a hidden node (HN).

The performance of a DSRC broadcast system in a
high-density vehicle environment has been studied [16], yet
the assumption was too ideal to be realistic, which means
that the number of vehicles within a vehicle’s communi-
cation range was kept constant. Another study proposed a
DSRC-based traffic light control system [17], but it limited
the applicability to the traffic lights only.

4) SAFETY-RELATED APPLICATION
Furthermore, we concentrate on DSRC’s networking to sup-
port the safety-critical applications. In the related literature,
a DSRC-based end of queue collision warning system has
been proposed [18]. However, it discusses a one-dimensional
freeway model, which needs significant improvement for
application to an intersection with two or more ways.

5) EXTERNAL BANDWIDTH CONTENTION
Lastly, the objective of our proposed protocol is to lighten the
traffic load of a DSRC network to better suit in an environ-
ment of coexisting with a disparate technology (viz., C-V2X)
according to the 5.9 GHz reallocation [7]. The performance
degradation of DSRC under interference fromWi-Fi has been
studied [19]; however, it lacks consideration of coexistence
with C-V2X.

B. PERFORMANCE IMPROVEMENT SCHEMES
Various modifications on the binary exponential back-
off (BEB) algorithm have been proposed as a means to
improve throughput and fairness in general carrier-sense mul-
tiple access (CSMA) in IEEE 802.11-related technologies.
Specifically, adjustment of the contention window (CW) was
often suggested to improve the performance of a vehicular
communications network such as a recent work [20]. More
directly relevant to our work, a distance-based routing pro-
tocol has been found to perform better in vehicular ad-hoc
networks (VANETs) [21]. Also, in a general ad-hoc network,
reduction of the length of a header can be a solution that
is worth considering [22]; however, due to a centralized
network structure, it shows a limit to be applied to a V2X
network. A ‘‘subjective’’ user-end experience optimization is
also worth consideration [23], wherein a one-bit user satisfac-
tion indicator was introduced, which served as the objective
function in a non-convex optimization.

Another method is the enhanced distributed channel access
(EDCA), which divides the data to four queues according
to priority: viz., voice, video, best effort and background.
Using the default parameter values for EDCA protocol will
lead to increasing the collisions in the wireless network
and decreasing the capacity [15]. More importantly, such
application-specific differentiation of backoff counters can-
not be directly applied to the situation that we are target-
ing to address. That is, we are trying to differentiate the
backoff length according to the danger level of each vehicle,
instead of the type of application. This makes a compelling
case that urgent BSMs for safety-critical use cases need a

TABLE 1. Frequently used abbreviations.

TABLE 2. Key notations.

more dedicated type of networking protocol than the existing
EDCA. In this context, this paper proposes a protocol that
guarantees to prioritize a BSM with a high urgency.

III. SYSTEM MODEL
This section describes the systemmodel that this paper adopts
for analysis. Note that Table 1 lists key abbreviations that
are frequently used throughout this paper. Also, mathematical
notations are summarized in Table 2.

A. GEOMETRY
A two-dimensional space R2 is defined as a 2 km-by-2 km
square, as illustrated in Figure 1. Once a vehicle reaches
the end of the space, it bounces back into the space. This
assumption is to maintain a fixed vehicle density and, hence,
a same level of competition for the medium at any given time.

The distribution of the nodes follows a homogeneous PPP
in R2. We define a general situation where a safety-critical
application disseminates BSMs over a V2X network [24].
That is, a source of ‘‘danger’’ exists (expressed as a large
black square in Figure 1), which should be avoided by all
the other vehicles. The danger source is located at the origin,
i.e., the center of R2. It is noteworthy that the danger source
is not expected to generate BSMs to inform the surrounding
vehicles; rather, the vehicles approaching this danger source
autonomously detects it. This assumption is practical based
on the fact that a vehicle is likely equipped with various
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FIGURE 1. An example drop of nodes on R2 (with the danger source at
the origin, λ = 20 km−2, CAT 1: 0 ≤ d→dgr ≤ Th1, CAT 2:
Th1 < d→dgr ≤ Th2, CAT 3: Th2 < d→dgr ≤ Th3 where {Th1, Th2, Th3} =
{300, 500, 700} m).

technologies (such as radar, lidar, etc.) enabling the vehicle
to detect presence of a hazard. This way, any type of danger
source can be detected even including those not being capa-
ble of transmitting BSMs, e.g., a construction site, wrecked
vehicle, etc.

As shall be detailed in Section IV, our proposed algorithm
prioritizes transmission of a BSM as a vehicle is closer to this
danger source. This necessitates to measure the distance from
the danger, which is denoted by d→dgr. Figure 1 demonstrates
an example ‘‘drop’’ of vehicles with the density of λ =
20 km−2, which is equivalent to 80 nodes over the defined
space R2. The crash risk is quantified in categories (CATs)
according to d→dgr as follows:

CAT 1 (‘‘Most dangerous’’) : 0 ≤ d→dgr ≤ Th1
CAT 2 (‘‘Less dangerous’’) : Th1 < d→dgr ≤ Th2

CAT 3 (‘‘Far less dangerous’’) : Th2 < d→dgr ≤ Th3 (1)

In Figure 1, vehicles positioned within CATs 1, 2, and 3 are
marked as red, yellow, and green circles, respectively. The
vehicles that are sufficiently far and thus do not belong to any
of the CATs are drawn as blue circles. As shall be depicted
in Section IV, the proposed protocol does not allocate these
vehicles not belonging to any of the three CATs. The rationale
behind this is that these farthest located vehicles are within
communications ranges of those belonging to CAT 3. That is,
once vehicles in CAT 3 become able to transmit, the messages
can be disseminated to these even further vehicles.

Notice, though, that the categorization into three CATs
is only an example as an effort to show how the proposed
protocol works. In other words, there could be a larger or
smaller number of chunks than three; also, the values for each
threshold can be set to any values to yield larger or smaller
granularity. It means that, although this paper uses three CATs
determined by {Th1,Th2,Th3} = {300, 500, 700} m as an

example, the idea proposed in this paper can be extended to
other numbers of CATs and other values for thresholds.

B. COMMUNICATIONS
We suppose that all the vehicles distributed in R2 have the
same ranges of carrier sensing and communication. Also,
each vehicle broadcasts a BSM every 100 msec, which is
denoted by Tibi–i.e., 10 Hz of the broadcast rate. Notice that
we assume a BSM to be transmitted within a 50-msec con-
trol channel (CCH) according to the multi-channel operation
defined by IEEE 1609.4 [25].

We remind that DSRC adopts distributed coordina-
tion function (DCF) as the basic access mechanism
[26]. This paper assumes that the DCF operates in a
saturated-throughput scenario [27]. The purpose of this
assumption is to analyze a worst-case scenario (i.e., the heav-
iest possible network load), which can provide a conservative
guideline for the performance evaluation of the proposed
scheme in a DSRC network.

It is significant to note that the above-mentioned catego-
rization into CATs 1-3 is mapped to categorization of backoff
values, which is the central idea of the mechanism that is
proposed in this paper. See Figure 2 for details of the map-
ping. We reiterate that the three-way categorization is only an
example, while the idea can be extended to any other number
of categories in terms of d→dgr (and hence CW as well).
Lastly, in accordance with the FCC’s 5.9 GHz reallocation

[7], this paper assumes the bandwidth of 10 MHz based on
the operation in CCH as mentioned earlier.

IV. PROPOSED ALGORITHM
We propose a protocol that controls priority of a packet trans-
mission according to d→dgr as a means to improve the per-
formance of safety-critical messaging in DSRC. This section
describes details of the proposed protocol.

1) KEY IMPROVEMENT FROM CONVENTIONAL CSMA
It has been noted that for contention resolution, the conven-
tional BEB algorithm relies on the number of unsuccessful
transmission attempts and Physical Layer (PHY)-related fac-
tors including packet retry limit, maximum and minimum
values of CW size, header format, etc. [28]. This specifically
means that once the PHY-specific values are fixed, the future
course of the BEB algorithmwould be dictated by the number
of unsuccessful attempts taken by a STA to successfully
transmit the packet. In fact, the PHY parameters will likely
remain constant since the current version of IEEE 802.11p
does not support a link adaptation [34], [35].

We got motivated from a simple but critical curiosity: why
must it be a uniform probability to choose a backoff time for
all Txs competing for the medium? In other words, in the
current CSMA scheme, if there are 50 vehicles on the road
at a certain time instant and if they try to transmit a packet at
the same time, all of them have an equal opportunity to choose
for a backoff time randomly from a range of [0,CW-1]. That
is, a vehicle chooses a backoff time in a random manner
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FIGURE 2. Flowchart for the proposed algorithm.

regardless of the level of danger that the vehicle marks.
For instance, the Tx STA being far away from a danger source
(and thus at a lower risk of a crash) can be allocated a
shorter backoff time compared to one being exposed to a
higher risk. As an effort to make the protocol more efficient,
we propose an idea of assigning a backoff time depending on
d→dgr, the distance between a STA and the danger source.
Specifically, a Tx STA with a smaller d→dgr (i.e., closer to
the danger source) will have a shorter backoff time and vice
versa.

2) DISTANCE CALCULATION METHOD
One significant discussion regarding the proposed algorithm
is the rationale for d→dgr as the metric measuring the risk of
a crash. While an accident can be caused by many factors
including weather condition, road surface status, mechanical
failures, etc., the dominating factor is the inborn reactive time
limitation of the drivers [29]. This makes it reasonable to
consider the distance to a danger source as a key factor of
an accident [30].

Furthermore, one understands that at the current level of
technologies, it is not a difficult task to obtain a vehicle’s
exact distance from a danger source. Specifically, (i) each
BSM contains information of the position of its transmitter
vehicle based on commercially available techniques such
as Global Positioning System (GPS); (ii) in this way, each
vehicle is able to exchange each other’s exact position;
(iii) as such, each vehicle is able to calculate the distance from
each other.

3) BACKOFF ALLOCATION ACCORDING TO d→dgr
Now, based on the aforementioned rationale, we propose a
backoff allocation algorithm according to the distance to a
danger. A flowchart for the proposed mechanism is provided
in Figure 2. Unlike the traditional BEB scheme, the proposed
protocol allocates a smaller backoff to the group of vehicles
with a smaller d→dgr. Specifically, according to the thresh-
old distance, Thi, the vehicles in R2 are grouped in three
categories–viz., CATs 1, 2, and 3. A smaller CAT categorizes
a smaller d→dgr, which, in turn, means a more urgent need for
transmission.

Here is an elaboration on the relationship between CATs
and CW. As presented in Section VI, this paper uses {300,
500, 700} m for {Th1, Th2, Th3}, representing the thresholds
defining CATs 1, 2, and, 3, respectively, as have been shown
in (1). The proposed protocol divides the entire range of CW
into three chunks: for {Th1, Th2, Th3}, the backoff counter
ranges of [0, (CW-1)/3], [(CW-1)/3, 2(CW-1)/3], and [2(CW-
1)/3, CW-1] are allocated. Via this modification, a Tx STA
belonging to CAT 1, which is at a higher crash risk due to a
smaller d→dgr, has a higher probability of packet transmission
only after a shorter backoff time. In contrast, a STA with
a larger d→dgr is designed to hold a bit longer before a
transmission.

V. PERFORMANCE ANALYSIS
This section formulates three metrics to measure the perfor-
mance of the proposed backoff allocation scheme–namely,
average latency, PDR, and IRT.

It is worth to notice that all the three quantities are defined
with a BSM transmitted at a tagged vehicle. We emphasize
that such an assumption keeps generality since the type of net-
work being considered in this paper is distributed, in which
every node has an equal characteristic and hence shows a
consistent networking behavior.

A. AVERAGE LATENCY
We remind that this paper focuses on safety-critical applica-
tions, which makes the latency as one of the most significant
metrics in the performance evaluation of a DSRC network.
Further, reflecting the ‘‘broadcast’’ nature of a DSRC net-
work, this paper defines an average latency among all the
STAs across a network.

Let T denote an instantaneous total latency taken for a
node to transmit a packet. Considering all possible results of a
packet transmission (viz., expiration, success, and collision),
an average latency can be computed as
E
[
T
]
= (1− P [Tx])T

[
Expiration

]
+P [Tx]

{
T [Success]+ T [Collision]

}
= (1− τ)E

[
Texp

]
+ τ

[
E
[
Tbo

]
+ E

[
Tsuc

]
+ E

[
Tcol

] ]
= (1− τ)E

[
Texp

]
+ τ

[
E
[
Tbo

]
+ (1− Pcol)Tsuc + PcolTcol

]
(2)
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where P [·] and T [·] denote the probability and the time
length of an event, respectively. Variables in (2) are defined
as follows: τ denotes the probability that a tagged vehicle is
able to transmit in a certain slot within a beaconing period
[9]; Pcol gives the probability of a collision–viz., a SYNC or
a HN [9]; Texp, Tcol, and Tsuc denote the time lengths taken
for an expiration, a collision (viz., SYNC and/or HN), and a
successful delivery, respectfully.
Proof of (2): Each term in (2) is elaborated as follows:
(1− τ)E

[
Texp

]
: We remind that τ is the probability of

a tagged vehicle being able to (i) make it through a backoff
process before expiration and thus (ii) transmit a packet.
For calculation of τ , we modified a Markov chain for the
DSRC backoff process [27] in order to reflect the impacts
of packet expiration, which does not occur in classical IEEE
802.11 DCF and hence was not reflected in the existing
analysis models for DCF. Due to a long recursiveness in the
computation process, it wasmore efficient to take a numerical
approach to obtain τ instead of a closed-form derivation.
As shown in (3) below, E

[
Texp

]
is meant to express the

average time length until a packet successfully completes a
backoff process. Notice that the number of consecutive idle
beaconing periods, Nbcn, can be characterized as a geometric
random variable [27]. An EXP is modeled as a geometric
random variable since it can be abstracted as a ‘‘binary’’ result
about whether the packet was able to complete a backoff
process within a beaconing period. Therefore, an average
time taken for an expiration can be calculated as

E[Texp] = (Length of a beaconing period)

· (Number of beaconing periods spent for EXPs)

= T [Beacon]E
[
Nbcn

]
= Tibi · (1− τ) τ−1 (3)

where Tibi denotes a beaconing interval (also known as
‘‘inter-broadcast interval’’ or IBI), and (1 − τ )τ−1 gives
the mean of a geometric random variable with a success
probability of τ in each trial.

E
[
Tbo

]
+ (1− Pcol)Tsuc : The second term in (2) gives

the length of time that is taken for a successfully delivered
packet. We start derivation from computing the length of time
taken for a backoff, which is given by

E
[
Tbo

]
= TslotE

[
Nbo

]
(4)

where Tslot is the length of a slot [27] (i.e., 66.7 µsec [9]).
Also, in (4), Nbo denotes the number of slots spent to go

through a backoff process. This quantity can be displayed as
a function of the number of STAs, denoted byNsta. Notice that
mathematical details for this quantity is given in Section V.C
of [36]. We found that Nbo does not act as a significant
factor in determination of E

[
Tbo

]
. Yet, here we report two

noteworthy tendencies: (i) the proposed scheme consumes a
smaller Nbo as compared to the traditional CSMA, thanks
to higher possibility of shorter backoffs; and (ii) a larger
CW spends a larger Nbo due to higher possibility of longer
backoffs.

Regarding Tsuc in (2), the number of slots that are used by
a successful delivery of a packet is formulated as

Tsuc = (Time for a BSM)

= Hdr+ Pld+ SIFS+ Tprop (5)

where Hdr and Pld denote the lengths of a header and a
payload, respectively. Also,Tprop gives the propagation delay,
which is assumed to be kept the same to all of the Rx vehicles
within the tagged vehicle’s communication range.

PcolTcol : Now, upon transmission with the probability of
τ , one needs to examine whether a packet survives from a
collision. There are two types of packet collision: namely,
SYNC andHN.A SYNCoccurs whenmore than one vehicles
happen to start a transmission in an exactly same time slot.
The assumption is that although the vehicles are in each
other’s carrier-sense range, they were unable to sense each
other because they coincide to start in the same time slot.
A HN occurs among vehicles being unable to sense each
other. As such, the probability of a collision is formulated as

Pcol

=P
[
SYNC only

]
+P

[
HN only

]
+P [Both SYNC and HN]

=Psync (1− Phn)+ Phn
(
1− Psync

)
+ PsyncPhn. (6)

Mathematical details and proofs for Psync and Phn are found
in [36].

See Figure 5 in Section VI for demonstration of Pcol
between the proposed scheme (i.e., CAT 1) and the traditional
CSMA. As inferred from Figure 1, the key reason that the
proposed scheme achieves a lower Pcol is a dramatically
smaller number of competing nodes.

Now, Tcol gives the time length that has been taken while
going through a collision. One most important note in DSRC
is that there is no feedback from a receiver about a packet
transmission. It means that no matter it was a SYNC or a HN
or both, a vehicle needs to spend an entire transmission cycle,
which is formulated as Tcol ≈ Tsuc. �

B. PACKET DELIVERY RATE
Another metric that we use to assess the performance of the
proposed scheme is PDR, which can be formally written
as [36]

PDR = P
[
Tagged STA transmits

]
P [No collision]

= τ (1− Pcol) (7)

where Pcol has been defined in (6). Also, τ has been men-
tioned after derivation of (2) as well.

C. INTER-RECEPTION TIME
Lastly, we define the IRT as the time taken between two given
successful packet reception events. Notice that the unit of a
quantity of IRT is ‘‘the number of beaconing periods.’’ As
such, one can multiply a beaconing time (e.g., 100 msec in
this paper) when wanting to display an IRT in the unit of time
(i.e., seconds).
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FIGURE 3. Average latency vs. number of STAs.

TABLE 3. Values for key parameters.

Now, the probability that Nbcn failures follow a successful
delivery is modeled to follow a geometric distribution, which
can be formally written as

P
[
IRT = Nbcn

]
= (1− PDR)Nbcn−1 PDR. (8)

Proof of (8): For formulation of an ‘‘IRT,’’ we start from a
successful reception, and then measure how many beaconing
periods are expended until the next successful reception. That
is, the first beaconing period is set to have the probability
of PDR, and thereafter the possibility is left open between
PDR and 1−PDR depending on occurrence of a successful
delivery or a failure, respectfully. �

VI. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
backoff algorithm compared to the traditional CSMA (i.e.,
BEB) [26]. As summarized in Table 3, each Tx STA is
assumed to have a fixed payload length of 40 bytes [24]. Also,
for our numerical analysis, we set the spatial setting being
consistent with what was shown in Figure 1.
One thing to note commonly in Figures 3 through 6 is

that, regardless in the proposed or the traditional CSMA,
the performance of a DSRC network predominantly depends
on a packet’s (i) EXP and (ii) collision over the air (viz.,
SYNC and/or HN). This justifies that we ignore impacts

of small-scale link-level fluctuations such as Rayleigh and
Nakagami fading.

It is noteworthy that plots representing the proposed
scheme in Figures 3 through 6 are ‘‘stepped’’ rather than
smooth. It is because of rounding the number of STAs
to the nearest integer for calculation of binomial coeffi-
cients between the number of all STAs and the number
of CAT 1 STAs, i.e., ‘‘Nall

sta choose Ncat 1
sta ’’ in calculation

of τ . (Notice that the rounding comes from A (CAT 1) /
∣∣R2

∣∣
where A (·) denotes the area of a space.) As such, all
the subsequent quantities–viz., τ , Pcol and PDR–are also
affected by the approximation since they are based on τ .
See (3) for the relationship betweenE

[
Texp

]
. Meanwhile, see

Section V.D of [36] for derivations of Pcol and PDR in terms
of τ .

A. AVERAGE LATENCY
Figure 3 demonstrates the average length of time taken for
successful reception of a packet, E

[
T
]
, versus the number

of STAs, Nsta, according to the CAT and CW. We remind
from (2) that E

[
T
]
is composed of three parts: i.e., (i) time

taken for an EXP, (ii) that for a successful packet transmission
and reception, and (iii) that for a successful packet trans-
mission but a collision. It means that, as Nsta grows, all of
the three quantities increase, which results in a higher E

[
T
]
.

This relationship is shown in (i) both traditional and proposed
schemes as Figure 3a presents and (ii) commonly on all CW
sizes as Figure 3b depicts.

The key rationale of the proposed protocol’s outperfor-
mance is higher τ as displayed in Figure 4a. While it entails a
negative margin compared to the traditional scheme in terms
of Pcol as shown in Figure 5, the positive margin from τ

is larger and, as a consequence, yields the outperformance
in E

[
T
]
.

The same rationale is behind the positive coupling between
E
[
T
]
and Nsta with respect to CW size, which is described

in Figure 3b: a smaller CW size favors in terms of E
[
T
]
in

spite of disfavor in terms of Pcol’s.
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FIGURE 4. Probability of packet transmission vs. number of STAs.

FIGURE 5. Probability of collision vs. number of STAs.

Although slight, each curve in Figures 3a and 3b shows
an inflection point that transitions from a downtrend to an
uptrend. It is interesting to observe the downtrend since it
means E

[
T
]
decreases as Nsta increases, which is against

one’s normal intuition. Soon enough, however, the tendency
is reversed back to form an upward trajectory, and proceeds
to increasing further thereafter. The quantitative rationale is
given as below:
• Although not explicitly displayed in the figure, we dis-
covered that initially (i.e., with Nsta ≈ 0), Texp �

Tbo + Tsuc + Tcol and the weight for Tbo + Tsuc + Tcol
is greater than that for Texp since τ is large with a small
Nsta, as shown in Figure 4.

• Soon after, with Nsta being still relatively small,
we found that while still Texp < Tbo + Tsuc + Tcol, Texp
grows far faster than Tbo+Tsuc+Tcol. Now, the weight
for Texp is greater than that for the other since τ gets
smaller due to Nsta being greater.

• Eventually, however, with Nsta being large enough, both
the quantity andweight get bigger inTexp > Tbo+Tsuc+

Tcol and (1− τ) > τ as τ gets far smaller due to Nsta
getting very large.

B. PACKET DELIVERY RATE
Our nextmetric,PDR, also depends dominantly on τ andPcol
as shown in (7). Refer to Figures 4 and 5 for understanding
the result displayed in Figure 6.
Figure 4 presents τ , the probability that a STA transmits in

an arbitrary slot within a beaconing period Lbcn, versus the
number of STAs competing for the medium, Nsta. The figure
provides two-fold comparisons: (i) between the proposed and
traditional schemes and (ii) according to CW.

Figure 4a does the former: it compares τ between the
proposed and traditional CSMA schemes for the most dan-
gerous vehicles (i.e., CAT 1 from Figure 1) with CW =
63. It is straightforward that a larger Nsta causes a lower τ .
Also, the level of τ is significantly improved in the proposed
scheme in comparison to the traditional CSMA. It highlights
the principle of the proposed scheme: vehicles being closer
to a danger source take higher chances of transmissions in a
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FIGURE 6. PDR vs. number of STAs.

backoff process. As such, the semantic message prioritization
is accomplished, which this paper’s proposition aims at.

Figure 4b compares τ according to CW. Commonly with
the proposed and traditional schemes, a larger CW results in
a lower τ due to a longer backoff process. From this, one
can infer that the EXP is one of the main causes limiting the
performance of a DSRC network.

Now, Figure 5 presents that two-fold comparisons on the
other key factor for PDR: the probability of collision, Pcol.
It is interesting to observe the downside of the proposed

scheme in Figure 5a: the result shows that the proposed
scheme yields a higher Pcol. It is inevitable because the
proposed scheme allows vehicles to transmit a packet with a
higher probability by letting them succeed through a backoff
process more easily. Also, one can obviously observe that a
larger Nsta yields a higher Pcol.

Figure 5b gives a comparison among different CW sizes.
It matches one’s intuition that a larger CW size yields a lower
Pcol since the STAs can be distributed on a wider window
of backoff counter values. This tendency is common in both
proposed and traditional schemes.

As a result of the observations of τ and Pcol, we can
demonstrate PDR as shown in Figure 6. We remind from (7)
that PDR is directly proportional to τ , which yields that
Figure 6 shows a similar overall tendency to what Figure 4
did. Meanwhile, it is critical to understand that the pro-
posed scheme yields higherPDRs compared to the traditional
scheme, despite higher Pcols. The reason is, as observed from
Figures 4 and 5, positive margins in τ being larger than
negative margins in Pcol.

C. INTER-RECEPTION TIME
Figure 7 presents the probability mass function (PMF) and
cumulative distribution function (CDF) of random variable
Nbcn, respectfully, versus Nsta. Each row of two subfig-
ures demonstrates a different CW size.

We reiterate that an IRT represents the average length of
time that is spent between two successful BSM receptions.

As such, the results displayed in Figure 7 translate to the
probability that a vehicle is able to transmit with a certain
length of delay between successful BSM receptions. Notice
that an IRT is measured in the number of time slots. It means
that an IRT can also be measured in terms of the number
of seconds by multiplying a slot time, Tslot = 50 µsec, as has
been mentioned in Table 3. Intuitively speaking, applying
the IEEE 1609.4 [25] as this paper assumes, each failed
transmission takes an additional 100 msec since an entire
beaconing period is wasted when an EXP occurs. This leads
to an interpretation that the unit can always be translated to
the length of time, i.e., 100 msec of IRT per beaconing period
that is wasted.

In what follows, we discuss the implications of the results
in detail. First, both PMF and CDF describe that the proposed
scheme consumes fewer beaconing periods compared to the
traditional CSMA, regardless of CW and Nsta. (We note that
CDF is a better mark for observation of this statement.)
The rationale behind the phenomenon is that the proposed
multiple access mechanism yields a higher PDR as has been
presented in Figure 6. We remind that the outperformance of
the proposed scheme in terms of PDR is mainly attributed
to a higher packet transmission probability, τ , as has been
demonstrated in Figure 4.

Regarding the outperformance of the proposed scheme
more specifically, Figure 7 also depicts that the margin of out-
performance achieved by the proposed protocol gets greater
with Nsta increased. This serves as a concrete evidence that
the proposed scheme results in a higher efficiency as the
DSRC network gets more congested.

Second, it is also suggested from both PMF and CDF that
a larger Nsta leads to a higher probability of experiencing a
longer IRT. The main reason of the tendency is a lower PDR
that is induced by a higher Pcol as Nsta is incremented.

Third, a larger CW yields a smaller IRT. Akin to the
previous discussions, the relationship between IRT and CW
is also attributed to PDR as has been presented in (8). That
is, from Figure 6, one can find that a larger CW yields a
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FIGURE 7. Distribution of IRT (For CAT 1).

higher PDR. As a direct consequence, the IRT gets lower as
CW is increased, which is observed from comparison of CWs
through 31, 63, and 255 in Figure 7.

VII. CONCLUSION
This paper proposed a protocol prioritizing the transmission
of a BSM for a vehicle with a higher level of accident risk.
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Our results showed that this protocol effectively improved
the performance of vehicles with higher risk, measured in
terms of key metrics–viz., average latency, throughput, and
IRT. This paper also provided a generalized (i) analytical
framework and (ii) spatial system model for evaluating the
performance of the proposed scheme according to key factors
such as the number of competing STAs and CW. We remind
that the contribution of this paper is to lighten the network-
ing load of a DSRC system. It will let DSRC suit better
in coexistence scenarios with C-V2X, which are likely to
happen considering that both of the two technologies have
strengths that will have to be adopted in future connected
vehicle networks.

Thanks to the generality, this work can be extended in
multiple directions. For instance, based on the general model
of node distribution (as opposed to previous work limiting
the models to ‘‘road’’ environments), this paper’s findings
can be applied to other types of transportation network such
as unmanned aerial vehicles (UAVs) for building a stochastic
geometry-based framework analyzing latency and throughput
performances.

It will be a meaningful attempt to extend this work if one
(i) considers multiple factors potentially causing an accident
and (ii) finds an explicit relationship among them to quantify
the accident risk. For instance, it will be easy to identify a
number of risk factors; but the hard part will be to characterize
the exact impact on the accident risk as a result of the factors
in concert.
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