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ABSTRACT The krill herd (KH) algorithm is a global metaheuristic algorithm that was initially proposed for
solving continuous optimization problems. The KH algorithm, since inception, has generated considerable
real-world application interests in the research community. The standard algorithm solution implementation
steps follow the initialization mechanism, which relies mainly on educated guesses or random initialization
solution generation. Therefore, to improve the performance of the KH algorithm, the current study is set
to investigate the influence of initializing the KH algorithm with three low-discrepancy sequences, such
as the Faure sequence, Sobol sequence, and Van der Corput sequence. These low-discrepancy sequences
are known to be more uniformly distributed across the problem search space than the commonly used
random number initialization method. The study also evaluates the influence of population size on the
performance of the proposed variants of the improved KH algorithms. The experimental results show
significant improvements for the enhanced KH algorithms in terms of performance and the quality of
solutions obtained; particularly on standard benchmarked high-dimension test problem instances, where
the enhanced KH variants outperformed the existing basic KH algorithm for all the test functions evaluated.
Similarly, the results for low dimension test cases showed less sensitivity to the initialization schemes, as the
performance of our proposed improved scheme was comparable to that of the basic KH algorithm. However,
in most cases, as the problem dimension was scaled up, the enhanced KH outperformed the basic KH.
Evaluation results based on the population size of the algorithm, revealed that when the number of Krill is
set at 25, the Sobol based KH initialization scheme performed better than did the other methods. Although,
the Van der Corput and Faure basedKH initialization schemes showed similar sensitivity when the dimension
was set at 20. As we varied the population size of Krill, it was observed that the performance of the Sobol
based KH initialization scheme deteriorated, whereas the other two methods showed superior performance.
Overall, the findings from this study revealed that there are significant improvements in the performance of
KH algorithm when initialized with low-discrepancy sequences.

INDEX TERMS Krill herd algorithm, initialization of metaheuristics, faure sequence, sobol sequence, van
der caput sequence, low-discrepancy sequence.

I. INTRODUCTION
In the krill herd algorithm, the dispersion of the initial Krill
population in the search space contributes significantly to
the algorithm’s performance; if not dispersed effectively,
the global optimum can be missed [1] through premature
converging. A well-structured dispersion of random numbers
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can reduce this premature converging. Most random num-
ber generators use a uniform probability distribution to gen-
erate uniform pseudorandom number sequences; however,
such a sequence does not have the lowest discrepancies [2].
The quasi-random number can be generated using a low-
discrepancy sequence; these have been proven to have opti-
mal discrepancy and are useful in optimization problems [3].
Low-discrepancy sequences, like those of Van der Corput,
Sobol, Faure, and Halton, are potent computational method
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tools that have been used to improve optimization algorithms’
performance.

The literature shows very few instances where the focus
is on the application of quasi-random sequences initializa-
tion schemes to improve the performance of the metaheuris-
tic algorithm. For example, the Van der Corput and Sobol
sequences were shown to improve to the performance of
the particle swarm optimization (PSO) when used to initial-
ize the swarms [2]. In another study [4], the performance
of the genetic algorithm (GA) was significantly improved
when the Halton sequence was used to initialize the pop-
ulation of the genetic algorithm. Similarly, Uy et al. [5]
conducted a comparative study of the use of Halton, Faure,
and Sobol sequences for initializing the swarm population
of the PSO algorithm. More so, previous studies have also
shown that low-discrepancy sequences have greatly improved
the performance of metaheuristic algorithms. More studies
on the application of quasi-random sequences for initializing
metaheuristic swarm populations can be found in [6]–[8].
The current study is set to investigate a similar influence of
three quasi-random sequence initialization schemes on the
krill herd algorithm (KH). These initialization schemes are
abbreviated in this article as follows: Van der Corput (Vc),
Sobol (So), and Faure (Fa). A brief discussion of the
KH optimization algorithm is introduced next.

The KH metaheuristic optimization algorithm is inspired
by the herding behavior of Krill [29]. The simplicity and ease
of implementation of KH have caught the attention of many
scholars resulting in many applications for and variants of the
algorithm being published. More so, a detailed discussion of
the KH algorithm is presented in section II of this article. The
different forms of the KH algorithm have been generally clas-
sified into three main categories, which were proposed in [9].
The first classification covers the improved KH algorithms
and includes chaotic KH [10], opposition KH [11], Lévy-
flight KH [12], multi-stage KH [13] etc. The second classifi-
cation covers the hybrid KH algorithms, and this includes the
combination of cuckoo Search and KH [14], harmony search
and KH [15], stud KH [16], biogeography-based KH [17],
differential evolution based KH [18], etc. The third classifi-
cation covers the variants of KH algorithms, and this includes
discreet KH [19], binary KH [20], fuzzy KH [21], and multi-
objective KH [22].

Many real-world applications of the KH algorithm
exist in literature ranging from continuous optimiza-
tion [23], combinatorial optimization [24], constrained
optimization [25], multi-objective [26] and other related engi-
neering domains [27]. Therefore, considering the relevance
of the KH algorithm to the research communities, an effort
is made in this article to enhance its performance by means
of improving its initialization schemes. It is equally impor-
tant to note here that the design of the original KH algo-
rithm’s initialization mechanism was based on the traditional
random number generator scheme. This scheme has the
limitation of clustering, thereby making the population
spread to be non-uniform within the solution landscape.

Further, traditional random number solution initialization
schemes do not achieve the desired optimal discrepancy,
which would aid the algorithm in achieving superior solution
quality. These drawbacks motivate us to carry out our study
on the three initialization methods mentioned above and to
evaluate their influence on the KH algorithmic performance
in finding a global optimum solution for difficult optimization
problems.

To the best of our knowledge, no study has used a low-
discrepancy sequence (particularly Van der Corput, Sobol or
Faure) to improve the performance of KH. In this article,
we investigate the effect of using Van der Corput, Sobol, and
Faure sequences to initialize the krill population. The basic
KH algorithm [29] will be used to test the influence of these
sequences.We believe that our modification will have a ripple
effect on all other variants of KH because they all require
initialization of the krill population. The improved KH is
then applied to the same benchmark functions used in [29]
and the results compared with the basic KH. We also test the
influence of the krill population and maximum iterations on
the KH algorithms.

Based on the experimental investigations carried out in this
article, we can highlight the features and technical contribu-
tions of this article as follows:
• The numerical experimentation results, which are based
on the improvement of the KH algorithm by modify-
ing its initialization method using three low-discrepancy
sequences, namely VcKH, FaKH, and SoKH, show that
under the same parameter condition of population size,
the maximum number of iterations, and replications,
the proposed enhanced KH algorithm variants perform
better than standard KH algorithm. However, while the
SoKH algorithm can easily a find near-optimal solu-
tion under a small population size and low problem
dimension, the FaKH and VcKH performance is seen to
increase under large population size and large problem
dimension.

• The influence of the three initialization schemes on the
standard KH algorithms is carefully evaluated in this
article. The overall goal is to determine, in compari-
son with the basic KH algorithm, which of the three
improved KHs has more sensitivity to initialization and
is bound to producing better performance in terms of the
optimal solution and computational efficiency.

• Comparative analyses of results of the three proposed
initialization schemes are justified by using descriptive
statistical values such as the mean result obtained after
20 algorithm run replications, standard deviation, mean
error value, and the computational efficiency of each
algorithm. We believe that the descriptive statistical
results will be relevant when deciding on the appropri-
ate initialization mechanisms to consider for any given
optimization benchmark problem to solve using the
KH algorithm or its variants.

The rest of the paper is organized as follows: a summary of
related work, KH background details, and application areas

VOLUME 8, 2020 210887



O. J. Agushaka, A. E.-S. Ezugwu: Influence of Initializing KH Algorithm With Low-Discrepancy Sequences

are introduced in Section II of the paper. The study methodol-
ogy, motivation, and the initialization schemes; namely, ran-
dom number generation methods, Van der Corput sequence,
Faure sequence, and Sobol sequence are introduced, then
the proposed enhanced KH algorithmic design steps are
given in Section III, Next, the experimental configuration,
the test benchmark functions are outlined, and the results are
discussed in Section IV. Finally, the conclusion and future
research direction are given in section V.

II. RELATED WORK
In most metaheuristics, optimization algorithms initialization
of the swarm or individual population usually involves some
randomness or informed guesses, and these have consid-
erable influence on the algorithms’ ability to find optimal
solutions. However, linear programs and convex optimiz-
ers attain optimal solutions independent of the initializa-
tion schemes. The fact is most optimization algorithms are
nonlinear and non-convex [50]. Different mathematical and
statistical approaches have been previously proposed to solve
the initialization problem.

The idea of uniformly covering the search space in order
to obtain the optimal solution is well researched. Studies
have shown that quasi-random numbers are efficient ini-
tialization mechanisms for metaheuristic algorithms search-
ing for near-optimal solutions. For example, the swarm
population in [5] was initialized using Halton, Sobol, and
Faure randomized low-discrepancy sequences, and the results
were then compared with those from the global best PSO.
While there was a significant improvement in the PSO with
Sobol, there were mixed results for the Faure and Halton
sequences. The authors in [5], therefore, concluded that
employing low-discrepancy sequences for the initialization
scheme of metaheuristic algorithms significantly improves
the quality of solutions obtained by the algorithms. Similarly,
Pant et al. [2], used the Van der Corput and Sobol sequences
to initialize the swarm population of the PSO. They compared
their result with those from the basic PSO, which uses a
uniform distribution mechanism for the initialization of the
PSO swarm. Their results showed that the improved PSO
with a low-discrepancy sequence yielded a better initialized
swarm and increased the performance of PSO by a significant
percentage.

Quasi-random numbers, especially those with low discrep-
ancies, have shown promising results; however, severe limi-
tations exist in their usage. For instance, they perform poorly
as the dimension of the problem gets bigger [51]. However,
the advantages that they present are a great asset to their usage
by researchers.

Brits et al. [7] used niching methods to initialize the pop-
ulation of a swarm to find multiple solutions to function
optimization problems. Using the guaranteed convergence
particle swarm optimization (GCPSO) algorithm, their results
showed that all maxima were successfully located for all
the simulation runs. However, the GSPSO had some draw-
backs, such as its poor performance on high dimensional

functions and high computational cost. The swarms in [30]
were initialized using a nonlinear simplex method, and the
results showed that the particles gravitated better toward the
good quality solutions than they had with the variant of
PSO considered in the paper.

A different approach was considered by Richards and Ven-
tura in [31], where one particle was placed in the centre,
and the remainder were spread around it in the search space.
Their result was promising; however, it is not entirely without
bias. The chaos-based approach involves generating random
numbers using a chaotic map and fewer initial conditions.
This approach is dependent on initial conditions [52].

Researchers have also designed schemes in conjunction
with other algorithms to solve problem-specific initializa-
tion problems. For instance, Kondamadugula and Naidu [50]
combined a special sampling evolutionary algorithm with a
random sampling evolutionary algorithm to tune the param-
eters in a digital integrated circuit. In Li et al. [53], the GA
was initialized using a knowledge-based system to solve the
traveling salesman problem. The degrees of the node for each
neighbourhood was evaluated in [54], and based on these
degrees, the population was initialized to solve the network
disintegration problem. However, this approach has setbacks
such as increasing the computational cost, it is problem-
specific, and its performance is greatly influenced by the
expertise of the user.

The authors in [55] carried out a systematic comparison of
the effect of 22 different probability distribution initialization
methods on the convergence and accuracy of five optimiza-
tion algorithms. Their results showed that the population size
and maximum number of iterations affect most algorithms
differently. It also showed that some algorithms are insensi-
tive to the initialization scheme, and overall, initialization of
the population plays a significant role in finding an optimal
solution for some problems.

Next, we present a preliminary discussion on the
KH algorithm, which includes both KH background and
major application areas from literature.

A. KRILL HERD ALGORITHM
The KH algorithm was first proposed by Gandomi and Alavi
in 2012 [29], and the algorithmic inspiration is based on the
simulation of the herding behavior of krill individuals. The
algorithmic procedure for the KH is as given in algorithm
listing 1, while a schematic representation of the sensing
ambit around a krill individual is shown in Figure 1. The
objective of the algorithm is to minimize the distance of each
krill from food location and krill density. Three basic motions
are defined for each krill; specifically, the motion induced
by other krill, foraging motion, and physical diffusion. The
algorithm starts by initializing the krill position using a ran-
dom number generator (or as in our proposed improvement,
a low-discrepancy sequence generator, as is discussed in this
article).

For each krill, the three aforementioned motions are evalu-
ated, the scale factor is determined, and the value of the fitness
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FIGURE 1. An illustration of the sensing ambit between the individual
krill [29].

function for each krill is calculated as follows:
dXi
dt
= (Ni + Fi + Di) (1)

where Ni is the motion induced by other krill, Fi is the
foraging motion and Di is the physical diffusion. To improve
the performance of the algorithm, some genetic reproduc-
tion mechanisms such as crossover and mutation can be
incorporated into the KH algorithm. For the KH algorithm,
the movement induced by other krill is defined as follows:

N new
i = Nmaxαi + ωiN old

i (2)

where αi is the direction of motion, which is influenced
by the target krill density, local krill density, and repulsive
krill density. The foraging motion is influenced by the food
location and previous knowledge of the location of the food,
and this is defined as

Fi = Vf βi + ωf Foldi (3)

where

βi = β
food
i + βbesti . (4)

the parameterVf is the foraging speed,ωf is the inertia weight
and Foldi is the last foraging movement. The physical diffu-
sion is defined in terms of maximum diffusion speed (Dmax)
and a directional vector (δ), which is defined as follows

Di = Dmaxδ. (5)

There is a need for the physical diffusion to decrease with
time, so equation (5) is redefined as

Di = Dmax(1−
I

Imax
)δ. (6)

The individual krill position vector at time t to t+1t is given
as

Xi (t +1t) = Xi (t)+1t
dXi
dt
. (7)

Algorithm 1 Standard Krill Herd Algorithm [48]
1: k ← 1 {initialization}
2: Initialize parameters (Dmax, N max, etc.)
3: For i = 1 toM do
4: Generate Solution (xi(k))
5: {evaluate and update best solutions}
6: K (xi(0))← Evaluate quality(xi(0))
7: End for
8: x∗ ← Save best individual x∗(0)
9: {main loop}
10: Repeat
11: sort population of krills
12: For i = 1 to M do
13: Perform motion calculation and genetic operators:
14: Ni←Motion induced by other individuals
15: Fi← Foraging activity
16: Di← Random diffusion
17: Crossover
18: Mutation
19: {update krill position}
20: Update Solution (xm(k))
21: {evaluate and update best solutions}
22: K (xi(k))← Evaluate quality(xi(k))
23: End for
24: x∗ ← Save best individual x ∗ (k)
25: stop condition← Check stop condition ()
26: k ← k + 1
27: Until stop condition = False
28: Return K (x ∗ (k)), x ∗ (k), k

1t is the scale factor, which is tuned according to the opti-
mization problem.

Next, the krill positions are updated based on the motions
evaluated earlier, and the iteration continues until a global
value is attained or the maximum number of iterations is
reached. Algorithm listing 1 shows the implementation steps
of the standard krill herd algorithm design. See [29] for a
comprehensive discussion on the KH algorithm.

Since it was first published in 2012, the KH has received
significant attention from researchers, and according to
Google Scholar, the original publication had been cited
1177 times by August 2020. A search in Google Scholar,
IEEE, Scopus, and Web of Science, in conjunction with [9]
showed that a total of 122 articles related to KH had been
published as of August 2020. In August 2020, there were
already 20 articles published for the year. Figure 2 shows the
distribution according to years of publication.

B. APPLICATION AREAS OF KH
The 122 articles published related to KH show its applica-
tion in many areas, which can be classified into continuous
optimization, combinatorial optimization, constrained opti-
mization, multi-objective optimization, dynamic, and noisy
environment engineering, and fuzzy systems. Table 1 gives
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FIGURE 2. Number of KH related publications.

a summary of these application areas and the number of
publications in each [9], [56]–[69].

The clustered column chart, presented in Figure 3, visually
summarizes and compares the number of publications across
the various application areas identified in Table 1. We see
that the optimal power flow problem is the area with the
most applications of the KH algorithm. It also shows that
the KH algorithm is applied widely; there are more than
ten application areas in which the algorithm has more than
five publications. These span promising areas of practical
optimization problems.

III. METHODOLOGY
The performance of population-based metaheuristic algo-
rithms is heavily dependent on the initialization of the swarms
and the initial solution generated in this process. With little or
no knowledge about the search or solution space, the spread
of these swarms over the space is crucial [34]. The most com-
monmethod of initialization is the use of randomly-generated
initial solutions based on the concept of a random number
generator mechanism. However, there are some major lim-
itations associated with the traditional random initialization
schemes and so using low-discrepancy sequences is a viable
alternative for the process. In this section, we discuss each of
these methods of initialization and highlight their strengths
and weaknesses.

A. MOTIVATION
The role that initialization plays in the final solution for most
optimization algorithms is uncontested. Several initialization
schemes exist, as discussed in the previous section, all with
their advantages and disadvantages. The spread of the initial

population over the search space is important, and different
initialization distributions schemes do this differently. Our
choice of low-discrepancy sequences hinged on their offering
a uniform and wide distribution in the search space, which
different research perspectives have shown to, respectively,
influence the initial and the final results [2], [5]. The ease of
use and implementation of these initialization mechanisms is
another factor that influenced our choice for the current study.
Although some of the low-discrepancy sequences initializa-
tion schemes perform poorly as the problem dimension or
graph size scales up, their advantages are of still significant,
especially when compared to the well-known and commonly-
used random number initialization method. Overall, just as
other initialization schemes have their advantages and dis-
advantages, it is a trade-off between computational cost and
solution quality.

While researchers have done great work in applying these
schemes on algorithms such as PSO, GA, ABC, to the best
of our knowledge, no study has been published on their use
in the initialization of KH. This reason alone would be suffi-
cient motivation for the current study. Further, we were also
motivated by our interest in findingwhether theKH algorithm
would be sensitive to the choice of the initialization scheme,
particularly the low-discrepancy sequences.

Next, we briefly introduce the four initialization schemes
that were earlier mentioned in this text.

B. RANDOM NUMBER GENERATION OR MONTE CARLO
METHODS
The random number generation orMonte Carlo methods play
an essential role in the initialization process [35], [36]. The
main point here is how genuinely random are the resulting
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FIGURE 3. Clustered chart for application areas of KH.

‘randomly generated’ solutions within the solution search
spaces. The quality of a pseudorandom generator is depen-
dent on its measure of discrepancy [32]. We illustrate this
further as follows:

Given a set of points P = {X1,X2, . . . ,XN } ∈ [0 . . . 1]s the
star discrepancy of P is given in [37] as

T ∗N (PN ) =

√
∫[0,1]s [

A(J ,PN )
N

− V (J )]2du (8)

where J = [0..ui] ∀u = (u1, u2, . . . , us) ,A(J ,PN ) is the
number of points in J and V (J ) is the volume. The linear
congruential method is one of the most widely used random
number generations, it uses the Lehmer sequence, and it is of
the form [38]

xi = (axi + c)mod m ∀0 ≤ xi ≤ m (9)

The choice of a and m has a significant influence on the
random numbers generated, and normally c is set to 0. It has

been shown in [37], [39] that Monte Carlo methods do not
achieve optimal discrepancy that would aid the algorithm
to achieve superior quality results. These limitations moti-
vated us to drop the Monte Carlo methods for quasi-random
methodswith low discrepancies. However, other initialization
schemes such as those based on probability distributions
exist in literature. The descriptions of the three quasi-random
methods adopted for our work are given in the next sections.

C. VAN DER CORPUT SEQUENCE
The Van der Corput sequence is the basis for most
low-discrepancy sequences. It was initially defined for
one-dimensional space and base (b ≥ 2) [28]. It is defined
as follows. Given that ϕb = N0 → [0, 1) , if n ∈ N0 then
n can be expanded as

n =
T∑
j=0

ajbj−1 (10)
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TABLE 1. Application area of KH.

where aj ∈ {0, . . . , b− 1}, and T =
⌊
logbn

⌋
.ϕb, and the

parameter ϕb can be formally defined as

ϕb (n) =
T∑
j=0

aj
bj+1

(11)

where ϕb (n)n≥0 is the Van der Corput sequence with base b.
Once defined, the sequence members are densely popu-
lated around the unit interval. Figure 4 shows how the
Van der Corput sequence is distributed as compared to the
distribution according to a pseudorandom number scheme.
In our paper, we use the Van der Corput to generate a
low-discrepancy sequence to initialize the krill positions,
forming a dense population around the search space of the
problem [49].

D. FAURE SEQUENCE
The Halton sequence [32] is one of Van der Corput’s exten-
sions, and the Faure sequence [33] is a permutation of the
Halton sequence. The Faure sequence is known to be better
distributed uniformly in the search space when compared to
that of Sobol (see Figure 5). It is defined as follows.

Given Zk ≡ (C1,C2, . . . ,Cd ) (12)

where Ci is the Halton sequence. The parameter m is the
smallest prime number greater than or equal to the dimension
of the problem and not less than 2. The Faure sequence is
generated as follows

If Cn = bm−10 + bm−21 + . . .+ bm−(r+1)r (13)
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FIGURE 4. Pseudorandom sequence vs. Van der Corput sequence.

FIGURE 5. Pseudorandom vs. Faure population spread.

then

Cn−1 = am−10 + am−21 + . . .+ am−(r+1)r (14)

where

bj ≡
∑r

i≥j

(
i
j

)
ai mod m. (15)

The Halton and Faure sequences are known to perform
poorly when the search space has large dimensions. However,
the distribution around the search space is satisfactory, as sim-
ilarly highlighted in [2]. In Figure 5, we demonstrate, through
a simulation run, the population spread or distribution topol-
ogy of the Pseudorandom and Faure sequences.

E. SOBOL SEQUENCE
A Sobol function (X (j)

n ), generates sequences faster com-
putationally than the Faure method. It is defined as
follows [40]–[42].

Given F2 = {0 1} and a linear nonrecurrence relation
defined over it, n > 0 can be expanded as

n = n120 + n221 + · · · + nw2w−1 (16)

X (j)n = n1v
(j)
1 ⊕ n2v

(j)
2 ⊕ . . .⊕ nwv

(j)
w (17)

where

v(j)i = a1v
(j)
i−1 ⊕ a2v

(j)
i−2 ⊕ . . .⊕ aqv

(j)
i−q+1

⊕v(j)i−q ⊕ . . .⊕ (v(j)i−q/2
q) (18)

i > q, ai is the coefficient of the qth primitive polynomial of
F2 and this is used to generate the Sobol sequence. Figure 6
shows the sample simulation output, indicating how the Sobol
sequence is distributed.

FIGURE 6. Pseudorandom vs. Sobol distributions.

F. PROPOSED ALGORITHM
The population of krill in the basic KH algorithm [29] are
initialized using the pseudorandom number generator, which
has been proven to have sub-optimal discrepancy [43]. With
the advantages of low-discrepancy sequences like the Van der
Corput, Sobol, and Faure sequences, we evaluate the effects
of these sequences on the basic KH initialization.

1) VAN DER CORPUT SEQUENCE-BASED KH ALGORITHM
Here, we initialized the krill population using the Van
der Corput sequence (equation 11). A function that gen-
erates the Van der Corput sequences was implemented
in MATLAB. The random number generator used in the
basic KH is replaced with this function, which generates the
Van der Corput sequence at every iteration of the algorithm,
thereby providing a better spread of the krill over the solution
search space. This spread then increases the probability of
convergence to the optimal solution. The steps of the Van
der Corput KH (VcKH) algorithm are depicted in algorithm
listing 2.

The Van der Corput function, vdcorput (k, b), takes two
parameters; k is the maximum sequence index, which is
a non-negative integer, and b is the sequence base integer
exceeding 1. The output: s, is a (k + 1) ∗ 1 array, with s(i)
storing (i+ 1) Van der Corput sequences.

2) FAURE SEQUENCE-BASED KH ALGORITHM
Using equation 14, the Faure function that generates the
Faure sequences is used in place of the random number
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TABLE 2. Benchmark functions.

210894 VOLUME 8, 2020



O. J. Agushaka, A. E.-S. Ezugwu: Influence of Initializing KH Algorithm With Low-Discrepancy Sequences

TABLE 2. (Continued.) Benchmark functions.

Algorithm 2 Pseudocode for the Van der Corput Sequence Improved KH Algorithm
Begin
Initialization. Set generation counter; initialize population NP krill; set the foraging speed Vf , maximum diffusion speed
Dmax , and maximum induced speed Nmax ; probability of crossover pc.
Evaluate population. Evaluate the krill population based on its position.
For dimension d

Krill position = (between upper bound and lower bound). ∗ vdCorput( )
End
Krill = evaluate (krill position)
WhileMaxGeneration do

Sort all the Krill according to their fitness.
For all Krill do

Perform the three motions.
Update position for Krill
Evaluate each Krill based on its new position

End for
Sort all the Krill and find the current best.

End while
Return the best solutions.
End

generator in the KH algorithm to initialize the krill positions.
Algorithm listing 3 gives the procedure for the Faure

sequence improved KH (FaKH) algorithm. The Faure func-
tion, faure (k, d, b), takes three parameters; k is a non-negative
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Algorithm 3 Pseudocode for the Faure Sequence Improved KH Algorithm
Begin
Initialization. Set generation counter; initialize population NP krill; set the foraging speed Vf , maximum diffusion speed
Dmax , and maximum induced speed Nmax ; probability of crossover pc.
Evaluate population. Evaluate the krill population based on its position.
For dimension d

Krill position = (between upper bound and lower bound). ∗ Faure ( )
End
Krill = evaluate (krill position)
WhileMaxGeneration do

Sort all the Krill according to their fitness.
For all Krill do

Perform the three motions.
Update position for Krill
Evaluate each Krill based on its new position

End for
Sort all the Krill and find the current best.

End while
Return the best solutions.
End

Algorithm 4 Pseudocode for the Sobol Sequence Improved KH Algorithm
Begin
Initialization. Set generation counter; initialize population NP krill; set the foraging speed Vf , maximum diffusion speed
Dmax , and maximum induced speed Nmax ; probability of crossover pc.
Evaluate population. Evaluate the krill population based on its position.
For dimension d

Krill position = (between upper bound and lower bound). ∗ Sobol ( )
End
Krill = evaluate (krill position)
WhileMaxGeneration do

Sort all the Krill according to their fitness.
For all Krill do

Perform the three motions.
Update position for Krill
Evaluate each Krill based on its new position

End for
Sort all the Krill and find the current best.

End while
Return the best solutions.
End

integer for the maximum sequence index, d is a positive
integer for the sequence dimension, and b is the sequence
base, integer exceeding 1. The output: s is a d ∗ (k + 1) array,
with s(:, i) storing (i+ 1) Faure sequences.

3) SOBOL SEQUENCE-BASED KRILL HERD ALGORITHM
In the same vein, using equation 17, we generate a Sobol
sequence that we use to initialize the krill herd position.
The Sobol sequence KH algorithm is given in the Algo-
rithm listing 4. The function fnc_getSobolSetMatlab (dim,
N ), provides a Sobol quasi-random distribution, it takes
two parameters inputs: dim is the number of variables, the

maximum number of variables is 40, and N is the number
of samples. The output: X is a [N × dim]matrix of the quasi-
random samples.

IV. EXPERIMENTAL SETUP
To test the performance of our approach and compare the
three proposed quasi-random sequence distribution mecha-
nisms with those from the basic KH algorithm, which used a
pseudorandom number generator sequence to initialize krill
population, we implemented three versions of the KH algo-
rithm in MATLAB (R2020a), run on Windows 10 OS, Intel
Core i7-8550U CPU, 8G RAM. We applied them on a set

210896 VOLUME 8, 2020



O. J. Agushaka, A. E.-S. Ezugwu: Influence of Initializing KH Algorithm With Low-Discrepancy Sequences

TABLE 3. Results for functions having a maximum of 10 dimensions.

of standard benchmark functions in [44]–[46]. For each of
the three variants of the improved KH algorithms, namely,
VcKH, SoKH, and FaKH, the corresponding quasi-random
number sequence is used to generate the initial krill. Oth-
erwise, the KH algorithm is the same as the basic KH with
parameters as presented in [29].

Like most metaheuristic algorithms, the random nature
of the KH algorithm makes it difficult to achieve excel-
lent performance in one trial; in reality, multiple trials are
needed to judge their performance. In this study, the function
evaluations are set to 10,000 for high dimensional functions
(F1-F10, F16), and 1000 for low dimensional functions
(F11-F20); this is done because the dimension of a func-
tion affects the ease of obtaining an optimal solution [45].

The value of Ct is set to 0.5 and ωn, ωf starts at 0.9. We use
two cases to tune the parameters of the algorithms. These two
cases are described below,

Case 1:
We set the number of replications to 10 runs for the first

set of experiments. The krill population is 25, and the max-
imum number of iterations is set at 200. The dimensions of
(F1-F10, F16) are set at 10, 20 and 30, and each algorithm
is evaluated accordingly. The effect of these dimensional
changes is recorded, as shown in Tables 3, 4, and 5.

Case 2:
We set the number of replication to 20 runs, dimension

is set to 30, and the maximum number of iterations (MI)
and krill population are varied as (50 krill and 300 MI,
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TABLE 4. Results for functions having a maximum of 20 dimensions.

TABLE 5. Results of functions having a maximum 30 dimensions.

100 krill and 400 MI, 150 krill, and 500 MI, and 200 krill
and 600 MI, respectively). The effect of the number of krill
and a maximum number of iterations on the performance of
the four (4) algorithms are presented in Tables 6, 7, 8, and 9.
In all the experiments, the value of the best run, the mean
value of the objective function for all the runs, CPU time,
and standard deviation are recorded for each algorithm after
20 experimental trials.

A. BENCHMARKED TEST FUNCTIONS
We chose 20 commonly used and standard mathemat-
ical benchmark optimization functions available in the
literature to test the performance of the proposed algo-
rithms. The functions are given in Table 2; they are
a combination of multimodal, unimodal, non-separable,
and separable functions. F1-F10, F16 are high dimen-
sional functions (which we varied from 10 to 30) while
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TABLE 6. Results for 50 krill and maximum iteration 300.

TABLE 7. Results for 100 krill and maximum iteration 400.

F11-F16, F17-F20 are low dimensional functions (less
than 10).

B. RESULTS AND DISCUSSION
In this section, we present and discuss the results obtained in
our experiments. As our experimental setup is divided into
two cases, we present our results accordingly.

1) CASE 1: EXPERIMENTS WITH LOW DIMENSIONAL TEST
FUNCTIONS
The numerical results of the experiments conducted for this
study to evaluate the algorithms’ performance are presented
in Tables 3, 4, and 5. For each test function (F1-F20), all
four (4) algorithms are evaluated, and the results for the
best run, mean value of the objective function for all the
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TABLE 8. Results for 150 krill and maximum iteration 500.

TABLE 9. Results for 200 krill and maximum iteration 600.

runs, CPU time, and standard deviations are recorded. In the
literature, it was stated that the performance of most meta-
heuristic algorithms would diminish or scale down as the test
function’s dimension increases [47]; to verify this influence,
the dimension of function (F1-F10, F16) is varied at 10, 20,
and 30, respectively.

The numerical results for the test benchmark function
dimension that is less or equal to 10 are given in Table 3.
We see clearly from the table that the standard devia-
tions (SD) for VcKH, FaKH, and SoKH are less than that of
the basic KH algorithm. These low SD show that the different
values of the objective function obtained at different runs of
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TABLE 10. CPU time for Case 1.

the algorithms are close to the best run value; hence, this
means better results are obtained for each successive run. This
is because, with each subsequent run, the krill become more
uniformly distributed across the search space, which is in line
with the characteristics of low-discrepancy sequences [39]
used to initialize the krill population. It is also clear that the
values of the best runs for the three improved quasi-random
sequence-based KH algorithms are less than that of the basic
KH algorithm with few exceptions (F2, F7, F9). These best
run values show that the algorithm’s performance was signifi-
cantly improved by the initial uniform distribution of the krill
across the search space using the low-discrepancy sequences.

From Table 4, it is noticeable that the performance of
the algorithms decreases as the dimension of the problem is
increased. From Table 4, it can also be seen that the value of

TABLE 11. CPU time for Case 2.

the best run is significantly far from the global optimum of the
respective functions (F4, F7, F16). However, the performance
of the three improved KH algorithms is better than the that of
the basic KH in most cases here, and the standard deviations
are significantly lower than for the basic KH algorithm in
most of the instances presented.

Overall, the FaKH algorithm performed better in seven out
of eleven functions. Comparing Tables 3 and 4, we see that
the values for the best krill are significantly lower (closer to
optimal) in Table 3 than in Table 4. This can be attributed to
the performance of the algorithms decreasing as the problem
dimension increases.

In Table 5, for all the algorithms, the value of the best
run is significantly close to the global optimal for F1-F3, F9.
However, only SoKH did well in F4; by contrast, the value
of the best run for all other algorithms is significantly far
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FIGURE 7. Best-run error curves for 25 krill and maximum iteration 200.
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FIGURE 7. (Continued.) Best-run error curves for 25 krill and maximum iteration 200.
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FIGURE 7. (Continued.) Best-run error curves for 25 krill and maximum iteration 200.

from the global optimal for F5-F8, F16. Overall, SoKH
outperforms all the other algorithms (doing well in 6 out
of 11 functions). This shows that, as the dimension increased,
the performance of the algorithms reduced. Also, comparing
Tables 3, 4, and 5, shows that the best-run values are higher
(far from global optimal) in Table 5 than in Tables 3 and 4.
Nevertheless, in cases where our improved algorithm did
well, it outperforms the basic KH algorithm.

2) CASE 2: EXPERIMENTS WITH HIGH DIMENSIONAL TEST
FUNCTIONS
We have seen in case 1 the effect of problem dimension on
the performance of the algorithms. Next, we evaluated the
impact of the size of the krill population and maximum iter-
ation (MI) on the performance of the algorithms. Looking at
Table 6, we see significant improvements in all the algorithms
as compared to the case in Table 5. The dimensions being
the same for both tables gives a basis for comparison and
clearly shows the positive effect of increasing the krill herd
to 50 and iterations to 300. A significant improvement can be
seen in the VcKH algorithm, which did well in 8 out of the
11 functions to outperform the remaining three algorithms.

Increasing the krill population size to 100 and maximum
iteration to 400, Table 7 shows that the algorithms per-
formed well for all functions except for F6-F8, and F16.
Only the VcKH and FaKH algorithms performed well in
F5 and here outperformed the rest of the algorithms. While
Table 7 showed improvement in the performance of the algo-
rithm, comparing it with Table 6 shows that the performance
of VcKH reduced from 8 out of 11 to 7 out of 11 with
increased population size and iterations. The performance
of the other algorithms remained unchanged. The best run
value of the algorithms for each function showed significant
improvement, being close to the global optimal.

In Table 8, it can be seen that VcKH and FaKH outper-
formed the remaining algorithms in 8 out of 11 functions.
The best-run values of the algorithm for each function showed
significant improvement as compared to results in Table 7;
this showed the positive effect of increasing krill herd to
150 andMI to 500. Table 9 shows a similar pattern to previous
observations. The performance of SoKH algorithm has been
consistent throughout the second set of experiments, doing
well or poorly for the same set of functions.

The CPU time for all experiments run in case 1 is given
in Table 10. We see clearly that the KH has less CPU time
as compared with the other three algorithms in most cases
when the dimension is low. This can be attributed to the
extra cost of implementing the function calls that generate
the Van der Corput, Faure, and Sobol sequences. Unlike
in the case of the random number generator, which is an
in-built function in MATLAB, and so it has less effect on the
CPU time.

SoKH consumed more CPU time as compared to FaKH
and VcKH because the Sobol function is known to generate
sequences in more computational time than do the Faure or
Van der Corput [49]. As the dimension gets bigger, we see
the FaKH algorithm and VcKH having less CPU time. No
clear pattern can be deduced from Table 11, which shows
the CPU time for case 2. Here, all algorithms consumed
more CPU time, which increases as the number of krill and
MI increases.

In addition, to further evaluate the performance accuracy of
the proposed improved KH algorithms, we used the best-run
error metrics. The best run error is defined as the absolute
difference between the best-run value f (x∗) obtained for
each algorithm and the actual global minimum f (x) for each
function. Mathematically, the best error function is defined as
error = |f (x∗)− f (x)|.
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FIGURE 8. Best-run error curves for 50-200 krill and maximum iteration 300-600.
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FIGURE 8. (Continued.) Best-run error curves for 50-200 krill and maximum iteration 300-600.
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TABLE 12. Average rankings returned by the Friedman’s non-parametric test for the 4 methods.

Figure 7 gives the evaluation of the best-run error curve
for the experiment case 1; clearly, we see that in most cases,
especially when the dimension is high, the improved krill
herd algorithms outperform the basic krill herd algorithm.
The algorithms perform more or less the same when the
dimension is low. It can also be seen from Figure 1 that
the SoKH performs better than do the other algorithms for
higher dimensions, which is in line with results presented
in [2]. The FaKH and VcKH algorithms have relatively sim-
ilar performances, and KH performs poorly as the dimen-
sion grows beyond 10. This is plausible because as the
search space becomes larger, the randomly distributed krill
are not uniformly distributed across the search space, con-
trasting with the case when the krill are distributed using the
low-discrepancy sequences.

Figure 8 gives the evaluation of the best run error curve
for experiment case 2, which shows the FaKH and VcKH
algorithms performing better than do the remaining algo-
rithms. This is plausible because, in the study presented in [3],
it was reported that Faure and Van der Corput sequences are
useful only when the dimension is not more than 30. All the
algorithms showed improvements as we tuned the number of
krill herd and maximum iterations; this can be attributed to
the search space remaining the same, while the number of
uniformly distributed krill increased, thereby covering more
space and leading to better results. However, this does not
guarantee that continued increments in the krill population
will lead to a better solution; this is seen in the case of
SoKH whose performance deteriorated as we increased the
population size.

C. STATISTICAL ANALYSIS
In order to validate the initial claim of the superior perfor-
mances of the three proposed algorithms, a further statistical
analysis test was carried out using the computed average
solution as the response variable. The one-way ANOVA
test was initially applied, and the three main assumptions,
namely, normality, homoscedasticity and independence, were
first tested. It was discovered that the normality test was
not satisfied. Therefore, the Friedman non-parametric test
was performed. For the experimentation with small dimen-
sion dataset of 10-dimension, the Friedman test revealed that

there was no statistically significant (p = 0.126) difference
in the algorithms performance whilst running: χ2 (3, N =
20) = 5.370. However, there was a noticeable statistically
significant difference among the performances of the three
algorithms as the dimension of the test problem increases.
Specifically, with the 30-dimension test problems, the VcKH
showed outstanding performance whilst running, χ2(3) =
18.193, p = 0.001. Further, Table 12 presents the aver-
age rankings returned by Friedman’s non-parametric test for
the traditional KH and the three new methods. In addition,
it provides insight as to how each method performs overall
considered problem instances [71].

V. CONCLUSION AND FUTURE WORK
This article has shown that it is worth using the quasi-random
topology sequence or low-discrepancy sequences instead of
a random number generator for the initialization of a krill
herd. This is because the low-discrepancy sequences are more
uniformly distributed across the search space than are the
random numbers. Hence, optimal results are obtained, espe-
cially for large dimensions. We used three low-discrepancy
sequences (Faure, Sobol, and Van der Caput) to initialize the
krill population in the basic KH algorithm. Most existing
improvements on the KH algorithm have not focused on the
initialization of the krill, and therefore, our improvements can
easily be incorporated into these earlier variations.

Our experimental results showed significant improvements
in the performance of the modified KH algorithm, particu-
larly for high dimensioned test problems, where our proposed
improvements outperformed the basic KH for all functions
evaluated. The results for low dimensions showed some vari-
ations, as the performance of our proposed improvements was
much the same as for the basicKH algorithm. Specifically, the
proposed improved mechanisms outperformed the basic KH
in most cases when the dimension of the problem instance
is set at 20. When the number of krill is set at 25, on the
one hand SoKH is seen to be the best-performing algorithm
for high-dimension test problems. This is in line with the
findings in [2], [5], where the PSO was initialized using a
low-discrepancy sequence. On the other hand, the perfor-
mance of VcKH and FaKH are interchangeable for dimen-
sion set at 20. Furthermore, as we vary the number of krill
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(for example 50, 100, 150, and 200), we saw the performance
of SoKH deteriorate, whereas FaKH and VcKH continue to
outperform the other algorithms. This could mean that SoKH
is sensitive to the population size.

In all cases, there were significant improvements in the
performance of KH when initialized with low-discrepancy
sequences. Although our work is limited to initialization,
other motions of the krill such as physical diffusion, which
is random motion adopted by the krill, could be influenced
using low-discrepancy sequences or by other metaheuristic
algorithms. Therefore, this mechanism of diffusion could
be explored in future work. In addition, we plan to extend
the initialization schemes used here with other probability
distributions such as the exponential distribution, beta distri-
bution, and so on, to improve the performance of other new-
generation metaheuristics algorithms.
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