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ABSTRACT We propose a novel Neyman-Pearson (NP) classifier that is both online and nonlinear as the
first time in the literature. The proposed classifier operates on a binary labeled data stream in an online
manner, and maximizes the detection power about a user-specified and controllable false positive rate.
Our NP classifier is a single hidden layer feedforward neural network (SLFN), which is initialized with
random Fourier features (RFFs) to construct the kernel space of the radial basis function at its hidden layer
with sinusoidal activation. Not only does this use of RFFs provide an excellent initialization with great
nonlinear modeling capability, but it also exponentially reduces the parameter complexity and compactifies
the network to mitigate overfitting while improving the processing efficiency substantially. We sequentially
learn the SLFN with stochastic gradient descent updates based on a Lagrangian NP objective. As a result,
we obtain an expedited online adaptation and powerful nonlinear Neyman-Pearson modeling. Our algorithm
is appropriate for large scale data applications and provides a decent false positive rate controllability with
real time processing since it only has O(N ) computational and O(1) space complexity (N : number of data
instances). In our extensive set of experiments on several real datasets, our algorithm is highly superior over
the competing state-of-the-art techniques, either by outperforming in terms of the NP classification objective
with a comparable computational as well as space complexity or by achieving a comparable performance
with significantly lower complexity.

INDEX TERMS Neyman-Pearson, online, nonlinear, classification, large scale, kernel, neural network.

I. INTRODUCTION
Designing a binary classifier with asymmetrical costs for
the errors of type I (false positive) and type II (false neg-
ative) [1]–[3], or equivalently designing a Neyman-Pearson
classifier [4], is required in various applications ranging from
facial age estimation [5], multi-view learning [6] and software
defect prediction [7] to video surveillance [8] and data impu-
tation [9]. For example, in medical diagnostics, type II error
(misdiagnosing as healthy) has perhaps more severe conse-
quences, whereas type I error (misdiagnosing as unhealthy)
may result in devastating psychological effects [10]. In this
example, the error costs must be set probably asymmetri-
cally for the cost sensitive learning [1], [2] of the desired
classifier, however, it could be difficult to determine the
right cost structure to be imposed on the errors. Another
example with the same difficulty is anomaly detection for the
security and surveillance applications. In such applications
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of detecting anomalies (e.g. accidents, crimes, frauds, vio-
lations), the type I error rate must certainly be controlled
since giving a false alarm, i.e., false anomaly, too often is
frustrating and costly as it draws unnecessary attention from
security agents. It is also important to maintain the reliability
of detections and not fail to draw attention in the case of
a true anomaly. Hence, the user must set the costs of both
error types to match the bearable false alarm rate, however,
setting that correctly could be again difficult to guarantee
to not give a false alarm, for instance, no more than once
a day or week. Therefore, it is often more convenient and
practical -but technically equivalent [4]- to describe the user
needs by the maximum tolerable type I error, cf. [11] and the
references therein, instead of having to determine the error
costs to meet the tolerance. This leads to the Neyman-Pearson
(NP) characterization of the desired classifier [4] and false
positive rate controllability, where the goal is to maximize
the detection power, i.e., minimize type II error, while upper-
bounding the false positive rate, i.e., type I error, by a user-
specified threshold. In this paper, we target and solve the
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problem of designing a computationally highly efficient NP
classifier while achieving powerful nonlinear data modeling
with potential applications in, for instance, security, surveil-
lance and diagnostics.

To this goal, as the first time in the literature, we introduce
a novel online and nonlinear NP classifier based on a sin-
gle hidden layer feedforward neural network (SLFN), which
is sequentially learned with a Lagrangian non-convex NP
objective (i.e. maximum detection power about a controllable
user specified false positive rate). We use stochastic gradient
descent (SGD) optimization for scalability to voluminous
data and online processing with limited memory require-
ments. During the SGD iterations, we a) sequentially infer
the value of the Lagrangian multiplier in a data driven manner
to obtain the correspondence between the asymmetrical error
costs and the desired type I error rate, and b) update all the
SLFNparameters tomaximize the detection power (minimize
the resulting cost sensitive classification error) at the desired
false positive rate. To achieve powerful nonlinear modeling
and improve scalability, we use the SLFN in a kernel inspired
manner, cf. [12] for the kernel approach to nonlinearity. For
this purpose, the hidden layer is initialized with a sinusoidal
activation to approximately construct the high dimensional
kernel space (of any symmetric and shift invariant kernel
underMercer’s conditions, e.g., radial basis function) through
the random Fourier features (RFFs) [12]. The output layer
follows with identity activation.

The main contribution of our work is that we are the first
to propose a Neyman-Pearson (NP) classifier that is both
online and nonlinear. Our algorithm -as an important novel
addition to the literature- is appropriate for contemporary fast
streaming large scale data applications that require real time
processing with capabilities of complex nonlinear modeling
and false positive rate controllability. In our extensive exper-
iments, the introduced classifier yields significantly better
results compared to the competing state-of-the-art NP tech-
niques; either performance-wise (in terms of the detection
power and false positive rate controllability) at a compara-
ble computational and space complexity, or efficiency-wise
(in terms of complexity) at a comparable performance. The
presented study is also the first to design a neural network (as
an SLFN) in the context of NP characterization of classifiers,
which is expected to open up new directions into deeper
architectures since the NP approach has been left surprisingly
unexplored in deep learning.

In the following Section II, we discuss state-of-the-art NP
classificationmethods.We provide the problem description in
Section III, and then introduce our technique for online and
nonlinear NP classification in Section IV. After the experi-
mental evaluation is presented in Section V, the results are
analyzed in Section VI and we conclude in Section VII.

II. RELATED WORK
Neyman-Pearson classification has found a wide-spread use
across various applications due to the direct control over the
false positive rate that it offers, cf. [11] and the references

therein. For example, an NP classifier is commonly employed
for anomaly detection, where the false positive rate control-
lability is particularly important. In the one class formula-
tion (due to the extreme rarity of anomalies) of anomaly
detection [13]–[16], the NP classification turns out (when the
anomalies are assumed uniformly distributed) estimating the
minimum volume set (MVS) that covers 1 − τ fraction of
the nominal data (τ is the desired false positive rate). Then,
an instance is anomalous if it is not in the MVS. A structural
risk minimization approach is presented in [13] for learning
the MVS based on a class of sets generated by a dyadic
tree partitioning. Geometric entropy minimization [14] and
empirical scoring [15] can also be used to estimate the MVS,
both of which are based on nearest neighbor graphs. The
scoring of [15] is later extended to the local anomaly detection
in [16] and a new one class support vector machines (SVM)
in [17]. Although the algorithms in these examples with batch
processing, i.e., not online, have decent theoretical perfor-
mance guarantees, they are not scalable to large scale data due
to their prohibitive computational as well as space complexity
and hence they cannot be used in our scenario of fast stream-
ing applications. Online extensions to the original batch one
class SVM [18], which can be shown to provide an estimator
of the MVS [19], have been proposed for distributed process-
ing [20] and wireless sensor networks [21]. However, nei-
ther these online extensions nor the original one class SVM
address the false positive rate controllability as they require
additional manual parameter tuning for that. In contrast,
our proposed online NP classifier directly controls (without
parameter tuning) the false positive rate and maximizes the
detection power with nonlinear modeling capabilities. Fur-
thermore, NP formulation in the one class setting requires
the knowledge of the target density (e.g., anomaly), which
is often unknown and thus typically assumed to be uniform;
but then the problem can be turned into a supervised binary
NP classification by simply sampling from the assumed target
density. On the other hand, when there is also data from
the target class, the one class formulation in aforementioned
studies does not directly address how to incorporate the target
data. Hence, our two class supervised formulation of binary
NP classification also covers the solution of the one class
classification, and our proposed algorithm is consequently
more general and applicable in both cases of target data
availability.

Among the two class binary NP classification studies
(cf. [11] for a survey), plug-in approaches (such as [22]
and [23]) based on density estimation as an application of
the NP lemma [24] are difficult to be applied in high dimen-
sion due to overfitting [14]. Particularly, [22] exploits the
expectation-maximization algorithm for density estimation
using a neural network with -however- batch processing and
manual tuning for finding the threshold to satisfy the NP
type I error constraint. In [25], a neural network is trained
with symmetric error costs for modeling the likelihood ratio,
which is thresholded to match the desired false positive
rate but determining the threshold requires additional work.
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Moreover, the approach of thresholding after training with
symmetric error costs (cf. [11] for other examples in addition
to [25]) does not yield NP optimality, since NP classification
requires training with asymmetric error costs corresponding
to the desired false positive rate. Unlike our presented work,
approaches in [22], [23], [25] are also not online and do not
allow real time false positive rate controllability. Recall that
NP classification is equivalent to cost sensitive learning [4]
when the desired false positive rate can be accurately trans-
lated to error costs, but achieving an accurate translation,
i.e., correspondence, is typically nontrivial requiring special
attention [4], [26]. This correspondence problem is addressed
i) in [4] as parameter tuning with improved error estimations,
and ii) in [26] as an optimization with the assumption of
class priors and unlabeled data. Besides the exploitation of
SVM [4], other classifiers such as logistic regression [27]
have also been considered in [28] and incorporated into a uni-
fying NP framework as an umbrella algorithm.We emphasize
that these approaches, the SVM based tuning approach [4]
and the risk minimization of [24] as well as the umbrella
algorithm [28] in addition to the optimization of [26], do not
satisfy our computational online processing requirements,
as they are batch techniques and not scalable to large scale
data.

In most of the contemporary fast streaming data appli-
cations, such as computer vision based surveillance [29]
and time series analysis [30], computationally efficient pro-
cessing along with only limited space needs is a crucial
design requirement. This is necessary for scalability in such
applications which constantly generate voluminous data
at unprecedented rates. However, the literature about the
Neyman-Pearson classification (cf. [11] for the current state)
appears to be fairly limited from this large scale efficient pro-
cessing point of view. Out of very few examples, a linear-time
algorithm for learning a scoring function and thresholding is
presented in [31], which is still not an online algorithm (i.e.
it is not designed to process data indefinitely on the fly) since
batch processing is assumed with large space complexity
and processing latency. Moreover, scoring of [31] is similar
to the one of [15] but -unlike [15]- trades off NP optimal-
ity for linear-time processing. Also, the technique of [31]
is restricted to linearly separable data only, and it requires
to adjust thresholding for false positive rate controllability
which can be seen impractical. The NP technique of [30]
is truly online (and one class) but it is strongly restricted
to Markov sources, thus fails in the case of general non-
Markov data (whereas our proposed algorithm has no such
restriction). Another online NP classifier is presented in [32]
without strict assumptions unlike [30], but for only linearly
separable data while leaving the online generalization to
nonlinear setting as a future research direction.

To our best knowledge, online NP classification has not
been studied yet in the nonlinear setting. Thus, as the first
time in the literature, we solve the online and nonlinear
NP classification problem based on a kernel inspired SLFN
within the non-convex Lagrangian optimization framework

of [32], [33], and use SGD updates for scalability. Our NP
classifier exploits Fourier features [12] and sinusoidal activa-
tions in the hidden layer of the SLFN (hence the name ker-
nel inspired) to achieve a powerful nonlinear modeling with
high computational efficiency and online real time processing
capability.

Random Fourier features (RFFs) and also kernels in gen-
eral have been successfully used for classification and regres-
sion of large scale data (please refer to [12], [34], [35]
and [36] for examples). Our presented work also exploits
RFFs (during SLFN initialization) for large scale learning but,
in contrast, for the completely different goal of solving the
problem of online nonlinear Neyman-Pearson (NP) classifi-
cation with neural networks in a non-convex Lagrangian opti-
mization framework. Furthermore, the presented work learns
the useful Fourier features with SGD updates beyond the
initial randomness. On the other hand, kernels and RFFs have
been previously studied in conjunction with neural networks.
For example, computational relations from certain kernels
to large networks are drawn in [37], and a kernel approx-
imating convolutional neural network is proposed in [38]
for visual recognition. In particular, RFFs have been used
to learn deep Gaussian processes [39], and for hybridization
in deep models to connect linear layers nonlinearly [40].
A radial basis function (rbf) network is proposed in [41]
with batch processing, i.e., not online, which briefly discusses
a heuristic by varying rbf parameters to manually control
the false positive rate. Note that our SLFN is not an rbf
network since we explicitly construct (during initialization)
the kernel space in the hidden layer without a further need
for kernel evaluations. We stress that the hidden layer of
our SLFN for NP classification is same as the RFF layer
of [42] for kernel learning (a simultaneous development of
the same layer). The RFF layer in [42] is proposed as a
building block to deep architectures for the goal of kernel
learning. However, our goal of designing an online nonlinear
NP classifier is completely different. Hence, our formula-
tion, network objective and the resulting training process
as well as our algorithm and experimental demonstration
in this paper are fundamentally different compared to [42].
Moreover, online processing is not a focus in these studies
except that [38] and [39] address scalability to voluminous
data; and none of those (including [42] for kernel learning,
and [38] and [39] for scalability) consider our goal of NP
classification. Finally, we note that the presented study com-
prehensively extends our previous conference paper [43] that
only had certain initial findings of the preliminary version of
our algorithmNP-NN presented here. In this paper, compared
to our conference paper [43], we additionally 1) introduced
Fourier feature learning (such features have been randomly
drawn and kept untrained in [43]) in the nonconvex opti-
mization framework of neural networks, 2) performed sig-
nificantly more extensive experiments with a larger number
datasets based on additional performance metrics (such as the
NP-score), and 3) analyzed from different perspectives such
as statistical significance and complexity.
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III. PROBLEM DESCRIPTION
We provide the problem description in this section. Regard-
ing the notation, all vectors are column vectors and they
are denoted by boldface lower case letters. For a vector
w, its transpose is represented by w′ and the time index
is given as subscript, i.e., wt . Also, a) 1{·} is the indicator
function returning 1 if its argument condition holds, and
returning 0, otherwise; and b) sgn(·) is the sign function
returning 1 if its argument is positive, and returning −1,
otherwise.

Neyman-Pearson (NP) classification [11] seeks a classifier
δ for a d dimensional observationRd

3 x to choose one of the
two classes Hy : x ∼ py(x) as δ(x) = ŷ ∈ {−1,+1}, where
y ∈ {−1,+1} (non-target: −1, target: 1) is the true class
label and py(x) are the corresponding conditional probability
density functions. The goal is to minimize the type II error
(non-detection) rate Pnd

Pnd(δ) =
∫
∀x∈Rd

1{ŷ=−1}p1(x)dx

= E1[1{ŷ=−1}] (1)

(thus, the detection power Ptd = 1−Pnd is maximized) while
upper bounding the type I error Pfa (false positive) rate by a
user specified threshold τ as

Pfa(δ) =
∫
∀x∈Rd

1{ŷ=1}p−1(x)dx

= E−1[1{ŷ=1}] ≤ τ (2)

with Ey being the corresponding expectations. Namely, δ∗ is
an NP classifier, if it satisfies

δ∗ = argmin
δ

Pnd(δ) subject to Pfa(δ) ≤ τ.

The Neyman-Pearson (NP) lemma [24], [44] states that
the likelihood ratio test provides an optimal solution to the
constrained optimization above once the false alarm rate of
the test is equated to the user specified threshold τ . Moreover,
such a likelihood ratio test always exists, and it is unique up to
a subset in the observations space that has a zero probability
mass under both hypotheses. We refer to [44] for a rigorous
proof. Thus, the likelihood ratio p1(x)

p−1(x) provides the NP test,
i.e.,

δ∗(x) = −1, if u(x) =
p1(x)
p−1(x)

− v(τ ) ≤ 0, and

δ∗(x) = 1, otherwise, (3)

where the offset v(τ ) is chosen to satisfy the false positive
rate constraint. Hence, finding the discriminant function u is
sufficient for NP testing.

The discriminant function u can be simplified in many
cases, and it might be linear or nonlinear as a function of
x after full simplification. We provide two corresponding
examples in the following. For instance, if the conditional
densities py(x) are both Gaussian with same covariances,
then the discriminant is linear. On the other hand, in the
example of one class classification [18] with applications

to anomaly detection, there is typically no data from the
target (anomaly) hypothesis because of the extreme rarity of
anomalies, and there is also not much prior information due
to the unpredictable nature of anomalies. Hence, the usual
approach is to assume that the target density is uniform (with
a finite support) [15], i.e., p1(x) = c. Then, the critical region
MVS = {x ∈ Rd

: 1/p−1(x) ≤ v(τ )} for the NP test to
decide non-target, i.e., δ∗(x) = −1, is known as the mini-
mum volume set (MVS) [13] covering 1 − τ fraction of the
non-target instances, i.e., v(τ ) is set with simplification such
that

∫
x 6∈MVS⊂Rd p−1(x)dx = τ . Consequently, MVS has the

minimum volume with respect to the uniform target density
and hence maximizes the detection power. Here, the MVS
discriminant u(x) = 1/p−1(x) − v(τ ) (after simplification)
is generally nonlinear, for instance, even when p−1(x) is
Gaussian with zero mean unit-diagonal covariance. There-
fore, we emphasize that the discriminant u of the NP test1

might be arbitrarily nonlinear in general. Furthermore, since
the discriminant definition requires the knowledge of the con-
ditional densities py which are unavailable in most realistic
scenarios, the discriminant u is unknown. For this reason, NP
classification refers to the data driven statistical learning of
an approximation f ∗ ∈ H of the unknown discriminant u
based on given two classes of data {(xt , yt )}, where H is an
appropriate set of functions which is sufficiently powerful to
model the complexity of u.
As a result, the data driven statistical learning of the NP

classifier f ∗ is obtained as the output of the following NP
optimization:

u ' f ∗ = argmin
f ∈H

P̂nd(f ) subject to P̂fa(f ) ≤ τ, (4)

where

P̂nd(f ) =

∑
∀t:yt=1 1{f (xt )≤0}∑
∀t:yt=1 1

and

P̂fa(f ) =

∑
∀t:yt=−1 1{f (xt )>0}∑
∀t:yt=−1 1

empirically estimates the type I (expectation in (1)) and
type II (expectation in (2)) errors, respectively. For exam-
ple, [32] studies this optimization in (4) for the setH of linear
discriminants, in which case -however- the resulting linear
NP classifier is largely suboptimal in most realistic scenar-
ios; for example, the MVS estimation for anomaly detection
requires to learn nonlinear class separation boundaries with a
nonlinear discriminant.

Our goal in the presented work is to develop, as the first
time in the literature to our best knowledge, an online non-
linear NP classifier for any given user-specified desired false
positive rate τ with real time processing capability. In partic-
ular, we use a kernel inspired single hidden layer feed forward

1Note that knowing the continues valued discriminant u is equivalent
to knowing the discrete valued test δ∗ due to one-to-one correspondence,
i.e., δ∗(x) = sgn(u(x)). Hence, in the rest of the paper, we refer to the
discriminant as the NP classifier as well.
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FIGURE 1. The single hidden layer feed forward neural network (SLFN)
that we use for online nonlinear Neyman-Pearson (NP) classification is
illustrated. The hidden layer is initialized to approximately construct the
high dimensional kernel space (e.g., radial basis function) via random
Fourier features (RFFs) with sinusoidal activation. The output layer
follows with identity activation. This network is compact and strongly
nonlinear with expedited learning ability thanks to i) the exponential
convergence of the inner products (w.r.t. the number of hidden nodes) in
the space of RFFs to the true kernel with an excellent random network
initialization, and ii) the learning of Fourier features (instead of relying on
randomization) by the data driven network updates. We learn the
network parameters sequentially via SGD based on a nonconvex
Lagrangian NP objective. The result is an exptedited powerful nonlinear
NP modeling with high computational efficiency and
scalibility.

neural network (SLFN), cf. Fig. 1, to model the set H of
nonlinear candidate discriminant functions in (4) as

H = {f : f (x) = ho(hh(αx)′w+ b),∀α,∀w,∀b}, (5)

where α and (w, b) are the hidden and output layer param-
eters, and hh and ho are the nonlinear hidden and identity
output layer activations. We sequentially learn the SLFN
parameters based on the NP objective (that is maximizing
the detection power about a user-specified false positive rate
as given in (4)) with stochastic gradient descent (SGD) to
obtain the nonlinear classification boundary, i.e., to estimate
the unknown discriminant u, in an online manner while main-
taining scalibility to voluminous data.

The data processing in our proposed algorithm is compu-
tationally highly efficient and truly online with O(N ) com-
putational and O(1) space complexity (N is the total number
of processed instances). Namely, we sequentially observe the
data xt ∈ Rd indefinitely without knowing a horizon, and
decide about its label ŷt ∈ {1,−1} as ŷt = 1 if the SLFN
ft ∈ H at time t provides ft (xt ) > 0, and as ŷt = −1,
otherwise. Then, we update our model ft , i.e., update the
SLFN at time t , to obtain ft+1 ∈ H based on the error
yt − ŷt via SGD and discard the observed data, i.e., xt and
yt , without storing. Hence, each instance is processed only
once. In this processing framework, ft → f ∗ ∈ H models
the NP discriminant u in (3). As a result of this processing
efficiency, our algorithm is appropriate for large scale data
applications.

IV. SLFN FOR ONLINE NONLINEAR NP CLASSIFICATION
In order to learn nonlinear Neyman-Pearson classification
boundaries, we use a single hidden layer feed forward neural
network (SLFN), illustrated in 1, that is designed based on the
kernel approach to nonlinear modeling (cf. [12] and the ref-
erences therein for the mentioned kernel approach). Namely,
the hidden layer is randomly initialized to explicitly transform
the observation space (via φα1 ) into a high dimensional
kernel space with sinusoidal hidden layer activations by using
the random Fourier features [12]. We use a certain variant of
the perceptron algorithm [45] as the output layer with identity
activation followed by a sigmoid loss. Based on this SLFN,
we sequentially (in a truly online manner) learn the network
parameters, i.e., the classifier parameters wt , bt as well as the
kernel mapping parameters αt , through SGD in accordance
with the NP optimization objective (4).

In the hidden layer of the SLFN, the randomized initial
transformation φα1 : R

d
→ R2D at time t = 1,

Rd
3 x→ x̃ = φα1 (x) ∈ R2D, (6)

is constructed based on the fact (as provided in [12]) that
any continuous, symmetric and shift invariant kernel can be
approximated as k(xi, xj) , k(xi − xj) ≈ φα1 (x

i)′φα1 (x
j)

with an appropriately randomized kernel feature mapping.
Note that the kernel k(xi, xj) is an implicit access to the
targeted high dimensional kernel space as it encodes the
targeted inner products. This kernel space is explicitly and
approximately constructed by the sinusoidal hidden layer
activations of the SLFN in which the new inner prod-
ucts across activations approximate originally targeted inner
products. Hence, linear techniques applied to the sinu-
soidal hidden layer activations can learn nonlinear mod-
els. In our method, we use the radial basis function (rbf)
kernel2 k(xi, xj) = exp(−g||xi − xj||2) with the band-
width parameter g (that is inversely related to the actual
bandwidth).

In order to obtain a randomized mapping that explicitly
constructs the kernel space, one can apply here the Bochner’s
theorem by using the derivation in [12]. This theorem states
that (quoting from [12]) ‘‘a continuous kernel k(xi, xj) =
k(xi − xj) on Rd is positive definite if and only if k(xi − xj)
is the Fourier transform of a non-negative measure’’. Then,

k(xi − xj) =
∫
Rd
p(ᾱ1) exp(ᾱ1′(xi − xj))d ᾱ1

=

∫
Rd
p(ᾱ1) cos(ᾱ1′(xi − xj))d ᾱ1

=

∫
Rd
p(ᾱ1)(cos(ᾱ1′xi) cos(ᾱ1′xj)

+ sin(ᾱ1′xi) sin(ᾱ1′xj))d ᾱ1
= Eᾱ1

[rᾱ1
(xi)rᾱ1

(xj)′], (7)

2We use the rbf kernel in this study as an example but it is not required.
Thus, the presented technique can be straightforwardly extended to any sym-
metric and shift invariant kernel satisfying the Bochner’s theorem, cf. [12].
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where the Fourier feature is

rᾱ1
(x) = [cos(ᾱ1′x), sin(ᾱ1′x)] (8)

and ᾱ1 is sampled from the d dimensional multivariate Gaus-
sian distribution p(ᾱ1) = N (0, 2gI) (which is the Fourier
transform of the kernel in hand) with Eᾱ1

being the corre-
sponding expectation. From the first equation above to the
second, we use that p(ᾱ1) is real since the kernel is real and
even. Hence, by replacing the expectation in (7) with the
independent and identically distributed (i.i.d) sample mean
of the ensemble {r ¯αq1

(xi)r ¯αq1
(xj)′}Dq=1 of sizeD, we define our

kernel mapping as

x̃ = φα1 (x)

=

√
1
D
[r ¯α1

1
(x), r ¯α2

1
(x), · · · , r ¯αD1

(x)]′, (9)

which can be directly implemented in the hidden layer of the
SLFN, cf. Fig. 1, along with the sinusoidal activation due to
the definiton of rᾱ1

.
Note that αt keeps all the hidden layer parameters at time

t as a matrix of size 2D× d consisting of ¯αit ’s corresponding
to the hidden units, i.e., αt = [ ¯α1t ,

¯α1t ,
¯α2t ,
¯α2t , · · · ,

¯αDt ,
¯αDt ]
′.

And the hidden layer activation is sinusoidal: hh(m) = cos(m)
and hh(m) = sin(m) for the odd and even indexed hidden
nodes, respectively, due to the definition in (8). At time
t = 1, α1 is randomly initialized with an appropriate g of
the rbf kernel so that the SLFN starts with approximately
constructing the high dimensional kernel space H̄ = {f :
f (x) = ho(hh(α1x)′w+ b),∀w,∀b} in its hidden layer, and in
relation to (6), x̃ = φα1 (x) = hh(α1x). Note that H̄ of the rbf
kernel readily provides a powerful nonlinear modeling to the
SLFN even if the hidden layer is kept untrained. Thanks to
this excellent network initialization, we achieve an expedited
process of learning from data. Moreover, in the course of our
sequential processing, the SLFN continuously updates and
improves the hidden layer, i.e., kernel mapping, parameters
as αt . Therefore, we optimize a nonlinear NP classifier in
actually the larger space H ⊃ H̄ (as our optimization is not
restricted to α1 of the random initialization, cf. the definition
of H in (5)) for greater nonlinear modeling capability com-
pared to the rbf kernel.

The SLFN in Fig. 1 that we use for online and nonlinear
NP classification is compact in principle since the required
number of hidden nodes is relatively small. The reason is that
the convergence of the sample mean of the i.i.d. ensemble
{r ¯αq1

(xi)r ¯αq1
(xj)′}Dq=1 of size D to the true mean k(xi, xj) is

exponentially fast with the order of O(e−D) by Hoeffding’s
inequality [12]. On the other hand, since random Fourier
features are independent of data, further compactification
is possible by eliminating irrelevant, i.e., unuseful, Fourier
features in a data driven manner, cf. the examples of feature
selection in [35] and Nyström method in [46] for this pur-
pose. In contrast, and alternatively, we distill useful Fourier
features in the hidden layer activations as a result of the
sequential learning of the kernel mapping parameters, i.e., ¯αit ,

via SGD. Hence, nodes of the SLFN are dedicated to only
useful Fourier features, and thus we achieve a further net-
work compactification by reducing the necessary number of
hidden nodes as well as reducing the parameter complex-
ity. Then, one can expect to better fight overfitting with
great nonlinear modeling power and NP classification perfor-
mance. This compactification does also significantly reduce
the computational as well as space complexity of our SLFN
based classifier, which -together with the SGD optimization-
yields scalability to voluminous data. Consequently, the pro-
posed online NP classifier is computationally highly efficient
and appropriate for real time processing in large scale data
applications.
Remark 1:We obtain a sequence of kernel mapping param-

eters αt in the course of data processing. This means that at
the end of processing N instances, one can potentially con-
struct a new non-isotropic rbf kernel by estimating the mul-
tivariate density of the collection {ᾱjN }

D
j=1 (here, we assume

that D is large and the density is multivariate Gaussian. If it
is not Gaussian, then one can straightforwardly incorporate
a Gaussianity measure into the overall network objective)
and then finding out the corresponding non-isotropic rbf
kernel by taking back the inverse Fourier transform of the
estimated density. Therefore, our algorithm is also kernel-
adaptive since it essentially learns a new kernel (and also
improves the previous one) at each SGD learning step. This
kernel adaptation ability can be improved. For instance, one
can start with a random mapping as described and estimate
the density of the mapping parameters after convergence,
and then re-start with new samples from the converged
density. Multiple iterations of this process may yield bet-
ter kernel adaptation (but re-running would hinder online
processing and define batch processing, hence it is out of
scope of the present work), which we consider as future
work.

In the output layer of the SLFN, we use a certain
variant of perceptron [45] with the identity activation,
i.e., ho(m) = m. Then, the classification model is defined
linearly after the hidden layer kernel inspired transformation
as f (x) = ho(〈w, x̃〉) + b = 〈w, x̃〉 + b = hh(αx)′w + b,
where w ∈ R2D is the normal vector to the linear separator
and b ∈ R is the bias. Thus, the decision of the SLFN is
ŷ = sgn(f (x)).
Regarding the overall network objective for sequential

learning of the network parameters αt ,wt , bt and solving
the NP optimization in (4) to obtain our SLFN based online
nonlinear NP classifier, we next formulate the NP objective
similar to [32] as

f ∗ = argmin
f ∈H

λ

2
||f ||2 + P̂nd(f )

subject to P̂fa(f ) ≤ τ, (10)

where the first term λ/2||f ||2 is the regularizer for which we
use the magnitude of the classifier parameters in the output
layer, i.e., λ/2||w||2, and λ is the regularization weight. For
differentiability, the non-detection P̂nd and false positive P̂fa
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error rates are estimated based on data until time t as

P̂nd(f ) =
1
nt+

∑
t ′∈S t1

l(f (xt ′ )) and

P̂fa(f ) =
1
nt−

∑
S t
−1

l(−f (xt ′ )) (11)

with S tc = {t
′
: 1 ≤ t ′ ≤ t, yt ′ = c}, nt+ = |S

t
1| (set

cardinality) and nt− = |S
t
−1|. Note that another appropriate

function can be used here to obtain a differentiable surrogate
for the 0 − 1 errors in (4) for estimating the error rates.
However, our results in the rest of this paper are based on
the sigmoid loss l(m) = 1/(1+ exp(m)).

For sequential optimization of the NP objective in (10),
we next define the following Lagrangian

L(f , γ ) =
λ

2
||f ||2 + P̂nd(f )+ γ (P̂fa(f )− τ ), (12)

where τ is the user-specified desired false positive rate and
γ ∈ R+ is the corresponding Lagrange multiplier.
Since the saddle points of (12) correspond to the local

minimum of (10), cf. [32] and [33] for the details, we apply
the Uzawa approach [33] to search for the saddle points
of (12) and learn our parameters in the online setting with
SGD updates. To be more precise, we follow the optimization
framework of [32] and solve the minmax optimization f ∗ =
argminf maxγ L(f , γ ) via an iterative approach with gradient
steps, where one iteration minimizes L(f , γ ) for a fixed γ and
the other maximizes L(f , γ ) for a fixed f . Note that the fixed-
γ minimization

argmin
f ∈H

L(f , γ ) = argmin
f ∈H

λ

2
||f ||2 + P̂nd(f )+ γ (P̂fa(f )− τ )

= argmin
f ∈H

λ

2
||f ||2 + P̂nd(f )+ γ P̂fa(f )

is a regularized weighted error minimization, where the ratio
of the type I error rate cost to the one of type II error rate is
γ . Hence, the unknown Lagrange multiplier γ defines (up
to a scaling with the prior probabilities) the asymmetrical
error costs that correspond to the false positive rate con-
straint in (4). On the other hand, the gradient ascent updates
γ ← γ + β∇γ L(f , γ ) = γ + β(P̂fa(f ) − τ ) in the fixed-f
maximization determines the unknown multiplier γ so that
the type I error cost is decreased (increased) if the error esti-
mate is below (above) the tolerable rate τ in favor of detection
power (true negative detection). This provides an iterative
learning of the correspondence between the asymmetrical
error costs and the NP constraint.

To this end, inserting the definitions in (11) and (11) into
(12) with the regularization λ/2||f ||2 = λ/2||w||2 yields the
overall SLFN objective as follows

L(f , γ ) =
λ

2
||w||2 +

1
nt+

∑
1≤t ′≤t:yt′=1

l
(
yt ′ f (xt ′ )

)
+
γ

nt−

∑
1≤t ′≤t:yt′=−1

l
(
yt ′ f (xt ′ )

)
− γ τ

=
1
t

t∑
t ′=1

(
λ

2
||w||2 + µt ′ l

(
yt ′ f (xt ′ )

)
− γ τ

)

=
1
t

t∑
t ′=1

s(f , γ, t ′), (13)

where s(f , γ, t ′) =
(
λ/2||w||2 + µt ′ l

(
yt ′ f (xt ′ )

)
− γ τ

)
and

µt ′ = t/nt+ if yt ′ = +1, and γ t/nt− , otherwise.
In order to learn the SLFN parameters for obtaining

the proposed online nonlinear NP classifier via the NP
optimization explained above, we use stochastic gradient
descent (SGD) to sequentially optimize the overall network
objective defined in (13). These network parameters are 1) α,
to project input x to the higher dimensional kernel space, 2)w
and b, which are the perceptron parameters of the output layer
to classify the projected input x̃, and 3) γ , to learn the corre-
spondence between the error costs and the NP constraint.

Suppose at the beginning of time t , we have an existing
model ft learned with the past data as well as the error
costs corresponding to γt ; and a little later, we observe the
instance xt . SGD based optimization takes steps to update
ft and γt to obtain ft+1 and γt+1 with respect to the partial
derivatives of the instantaneous objective s(ft , γt , t). Namely,
ft+1 = ft − ηt∇f s(ft , γt , t) and γt+1 = γt + βt∇γ s(ft , γt , t).
Based on the partial derivatives of the instantaneous objective
s(ft , γt , t) defined in (13), the SGD updates for the SLFN
parameters can be computed ∀i ∈ {1, · · · ,D} aswt+1 = wt−
ηt

(
λwt+µt∇wl

(
yt ft (xt )

))
, bt+1 = bt−ηt

(
µt∇bl

(
yt ft (xt )

))
,

¯αit+1 =
¯αit − ηt

(
µt∇ ¯αi l

(
yt ft (xt )

))
, and γt+1 = γt +

βt

(
(1{yt=−1}t/nt− )l

(
yt ft (xt )

)
− τ

)
, where ηt is the learning

rate and βt is named as the Uzawa gain [33] controlling the
learning rate of the Lagrange multiplier. Using the sigmoid
l(m) = 1/(1 + exp(m)) yields the partial derivatives with
x̃t = hh(αtxt ) as

∇wl
(
yt ft (xt ))

)
= −x̃t l2(yt ft (xt )) exp(yt ft (xt ))yt , (14)

∇bl
(
yt ft (xt ))

)
= −l2(yt ft (xt )) exp(yt ft (xt ))yt , and (15)

∇ ¯αi l
(
yt ft (xt ))

)
= −xt l2(yt ft (xt )) exp(yt ft (xt ))yt

×
(
− w2i−1

t sin( ¯αi
′

t xt )+ w
2i
t cos( ¯αi

′

t xt )
)
,

(16)

which can be straightforwardly incorporated into the
backpropagation.

In our experiments, we obtain an empirical false positive
rate estimate P̂fa based on a sliding window keeping the
0 − 1 errors for a couple hundreds of the past negative data
instances, and use the following γ update instead of the
aforementioned stochastic one:

γt+1 = γt

(
1+ βt

(
P̂fa − τ

))
, when yt = −1, (17)

which has been observed to yield a more stable and robust
performance. Note that this update is directly resulted from
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Algorithm 1 Proposed Online Nonlinear Neyman-Pearson
Classifier (NP-NN)
1: Set the desired (or target) false positive rate (TFPR) τ ,

regularization λ, number 2D of hidden nodes and band-
width g for the rbf kernel

2: Initialize the SLFN parameters α1, w1, b1, and learning
rates η1, β1, γ1

3: Set nt+ = nt− = 0, and sliding window size Ws = 200
4: for t = 1, 2, . . . do
5: Receive xt and calculate x̃t = hh(αtxt ) and

ft (xt ) = w′t x̃t + bt
6: Calculate the current decision as ŷt = sgn(ft (xt )) and

observe yt
7: Calculate nt+ = nt++1{yt=1} and nt− = nt−+1{yt=−1}

8: Calculate µt = t/nt+1{yt=1} + γ t/nt−1{yt=−1}
9: Update wt+1 = wt − ηt

(
λwt + µt∇wl

(
yt ft (xt )

))
,

cf. (14)
10: Update bt+1 = bt − ηt

(
µt∇bl

(
yt ft (xt )

))
, cf. (15)

11: Update ¯αit+1 =
¯αit − ηt

(
µt∇ ¯αi l

(
yt ft (xt )

))
, cf. (16)

12: Update γt+1 = γt

(
1 + βt

(
P̂fa − τ

))
, if yt = −1,

cf. (17) and the explanation about the estimate P̂fa of
the false positive rate

13: Update ηt+1 = η1(1+λt)−1 and βt+1 = β1(1+λt)−1

14: end for

(12), and does certainly not disturb real-time online process-
ing since a past window of positive decisions requires almost
no additional space complexity (only 200 bits in the case of,
for instance, storing binary decisions for 200 past negative
instances).

Based on the derivations above, we sequentially update the
SLFN at each time in a truly online manner with O(N ) (here,
N : total number of processed data instances) computational
and O(1) space complexity in accordance with the NP objec-
tive. Hence, we construct our method called ‘‘NP-NN’’ in
Algorithm 1 that can be used in real time for online nonlinear
Neyman-Pearson classification. We refer to the Section V
of our experimental study for all the details about the input
parameters and initializations.
Remark 2: Recall that the goal in NP classification is to

achieve the minimum miss rate (maximum detection power)
while upper bounding the false positive rate (FPR) by a
user-specified threshold τ . Therefore, both aspects (minimum
miss rate and its FPR constraint) of this goal should be
considered in evaluating the performance of NP classifiers.
The NP-score of [4], [47] is defined as

NP-score = κ max(P̂fa(f )− τ, 0)+ P̂nd(f ), (18)

where f is the NP model to be evaluated and κ controls the
relative weights of the miss rate (with weight 1) and its FPR
constraint (with weight κ if the desired rate is exceeded, and

with weight 0 otherwise). Namely, κ controls the hardness
of the NP FPR constraint, and a smaller NP-score indicates
a better NP classifier. By enforcing a strict hard constraint
on FPR with a very large κ ' ∞, one can immediately
reject models (while evaluating various models) that violate
FPR constraint with even a slight positive deviation from
the desired FPR τ (a negative deviation does not violate).
However, even though the original NP formulation requires
a hard constraint, we consider that it is not appropriate to use
a hard constraint in practice, as also extensively explained
in [47], based on the following two reasons: (1) An NP
classifier is typically learned using a set of observations, and
that set is itself a random sample from the underlying density
of the data. Hence, the estimated FPR P̂fa(f ) of the model is
also a random quantity, which is merely an estimator of the
unknown true FPR Pfa(f ). Note that the true FPR Pfa(f ) is
actually the one to be strictly constrained, but unavailable.
Thus, it is unreliable to enforce a strict hard constraint (with
a very large κ ' ∞) on the random estimator P̂fa(f ), and a
relatively soft constraint has surely more practical value by
allowing a small positive deviation from the desired FPR τ .
(2) Also, one might be willing to exchange true negatives in
favor of detections with a small positive deviation from the
desired FPR τ , when the gain is larger than the loss as the
NP-score improves. Consequently, for parameter selections
with cross validation in our algorithm design as well as for
performance evaluations in our experiments, we opt for a
relatively soft constraint and use κ = 1/τ in accordance with
the recommendation by the authors [47]. This choice allows
a relatively small positive deviation from the desired FPR,
and normalizes the deviation by measuring it in a relative
percentage manner. For example, the positive deviations 0.1
and 0.001 both degrade the score equally by 50% when the
desired rates are 0.2 and 0.002, respectively. Various other
NP studies in the literature do also practically allow small
positive deviations from the desired FPR τ . For instance,
we observe such a deviation in [32] with theirs and compared
algorithms [4] in the case of spambase dataset, in [31] with
theirs in the case of heart and breast cancer datasets, and
finally in [26] with one of the compared algorithms [48] in
all datasets.

A comprehensive experimental evaluation of our proposed
technique is next provided based on real as well as synthetic
datasets in comparison to state-of-the-art competingmethods.

V. EXPERIMENTS
We present extensive comparisons of the proposed kernel
inspired SLFN for online nonlinear Neyman-Pearson classi-
fication (NP-NN), described in Algorithm 1, with 3 different
state-of-the-art NP classifiers. These compared techniques
are online linear NP (OLNP) [32], as well as logistic regres-
sion (NPROC-LOG) [27] and support vector machines with
rbf kernel (NPROC-SVM) [49] in the NP framework of the
umbrella algorithm described in [28]. Among these, OLNP
(linear NP classification) is an online technique with O(N )
computational complexity, whereas NPROC-LOG (linear NP
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classification) and NPROC-SVM (nonlinear NP classifica-
tion) are batch techniques with at least O(N 2) computational
complexity, where N is the number of processed instances.
In contrast, we emphasize that to our best knowledge, the pro-
posed NP classifier NP-NN is both nonlinear and online
as the first time in literature, with O(N ) computational and
negligible space complexity resulting real time nonlinear
NP modeling and false positive rate controllability. Conse-
quently, the proposed NP-NN is appropriate for challenging
fast streaming data applications.

Since our proposed algorithm NP-NN is the first online
and nonlinear NP classifier, there is technically no fully
comparable algorithm in the literature. Nevertheless, we set
our experiments in the fairest manner by considering com-
parisons among all possibilities: batch nonlinear (NPROC-
SVM), batch linear (NPROC-LOG), online nonlinear (our
proposed NP-NN) and online linear (OLNP). Although we
compare with NPROC-LOG, it is not particularly strong
in terms of efficiency with small computational and space
complexity, and it is also not particularly strong in terms of
nonlinear modeling capability. For this reason, we mainly
concentrate on comparisons to NPROC-SVM in terms of the
classification performance, and on comparisons to OLNP in
terms of the complexity. NPROC-SVM is extremely powerful
and well-known with regards to nonlinear modeling, whereas
OLNP is extremely powerful with regards to efficiency both
computationally and space-wise. Otherwise, there is no algo-
rithm (except our proposed online and nonlinear algorithm
NP-NN) in the literature which is powerful in terms both
nonlinear modeling and efficiency. In order to further ensure
fairness in our experiments, we pay special attention to the
followings. 1) Through extensive cross validations, we opti-
mize the parameters for each algorithm and for each dataset
separately in their respective contexts. 2) We run the algo-
rithms on the same exact sequence in each case of our
datasets, which is particularly important while comparing
online algorithms (our algorithmNP-NN andOLNP). 3) Note
that a specific data sequence can favor one algorithm by
luck. In order to remove this dependency on sequence order,
we run the algorithms on 10 different random permutations
(all algorithms are run on the same exact set of randomly
permuted data sequences) and report the mean performance
along with the standard deviations. 4) We do not rely on a
specific performance measure. Instead, we report the perfor-
mance in terms of the area under the ROC (receiver operating
characteristics) curve (AUC) as well as the NP-scores for
each target false alarm rate separately. Furthermore, we also
report the achieved false alarm rate and the true positive rate.
5) The proposed algorithm NP-NN and the OLNP are online
algorithms and thus they do not have separate training and
test phases. However, NPROC-SVM is a batch algorithmwith
separate training and test phases. Hence, to ensure fairness,
we use separate training and test phases while comparing
with NPROC-SVM (although it is certainly NOT needed for
OLNP and the proposed NP-NN). Otherwise, while com-
paring the proposed online algorithm NP-NN with OLNP

on large scale datasets, we test them (NP-NN and OLNP)
in the online data processing framework (without separate
training and test) that they (NP-NN and OLNP) are originally
designed for. 6) We present detailed statistical significance
(for fairly evaluating the performance differences) and com-
plexity analyses (for fairly evaluating the complexity and
running time differences) in the end as two separate sections.
After providing this summary and important remarks about
our experimental paradigm, next, we continue with the details
and present our results.

We conduct experiments based on various real and
synthetic datasets [50], [51] from several fields such as bioin-
formatics and computer vision, each of which is normalized
by either unit-norm (each instance is divided by its magni-
tude) or z-score (each feature is brought down to zero mean
unit variance) normalization before processing. For each
dataset, smaller class is designated as the positive (target)
class. The details of the datasets are provided in Table 1,
where the starred ones and unstarred ones are normalized
with unit norm and z-score, respectively. For performance
evaluations, we generate 15 random permutations of each
dataset, and each random permutation is split into two as
training (%75) and test (%25) sequences.We strongly empha-
size that the processing in the proposed algorithm NP-NN is
truly online, meaning that, there are no separate training and
test phases. However, since NPROC-LOG and NPROC-SVM
are batch algorithms requiring a separate training, we opt to
use training/test splits in this first set of experiments for a fair
and statistically unbiased robust performance comparison.
Such a split is in fact not needed in practice in the case of
the proposed NP-NN that -by design- processes data on the
fly. Additional experiments based on two larger scale datasets
to demonstrate the ideal use-case (i.e. online processing with-
out separate training/tests phases) of the proposed algorithm
NP-NN are presented in Fig. 4.

The rbf kernel bandwidth parameter g (for the proposed
NP-NN as well as NPROC-SVM), the error cost parameter
C (for NPROC-SVM) and the number 2D of hidden nodes
(for the SLFN in the proposed NP-NN) are all 3-fold cross-
validated (based on NP-score) for each random permutation
using the corresponding training sequence by a grid search
with g ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10}, C ∈
{0.1, 1, 2, 4} andD ∈ {2, 5, 10, 20, 40, 80, 100}×d , where d
is the data dimension. As the regularization has been observed
to help little, we opt to use λ ∼ 0 along with SGD learning
updates ηt = 0.01 and 0.1 ≥ βt/ηt ≥ 0.01, randomly
initialized w1 and b1 (around 0) and γ1 = 1 for both the
proposed NP-NN and OLNP uniformly in all of our exper-
iments. We directly use the code provided by the authors [28]
for NPROC-LOG and NPROC-SVM and also optimize it
by the aforementioned cross validation in terms of parame-
ter selection. We observe that for the datasets of relatively
short length, algorithms using SGD optimization, i.e., OLNP
and NP-NN, improve with multiple passes over the train-
ing sequence. Hence, the length of the training sequence of
each random permutation is increased by concatenation with
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FIGURE 2. Visual presentations of the results in Table 1 are provided via the receiver operating characteristics (ROC) curves for all
compared algorithms of OLNP, NPROC-LOG, NPROC-SVM and the proposed NP-NN, based on the achieved true positive rates and
achieved false positive rates, i.e., TPR vs FPR, corresponding to the targeted false positive rates TFPR ∈ {0.05,0.1,0.2,0.3,0.4}. Note that
the presented ROC curves (TPR vs FPR) are mean curves over 15 trials of random data permutations for which the standard deviations can
be followed from Table 1. Overall, in terms of the area under ROC (AUC), we observe that the proposed NP-NN and NPROC-SVM (due to
their nonlinear modeling) outperform the other two. On the other hand, the proposed NP-NN performs similarly with NPROC-SVM while
providing significant computational advantages. For the quantification of the false positive rate tractability alone, AUC alone and both as
a combined measure, we refer to the results in Fig. 3, the AUC scores in Table 1 and the NP-scores in Table 1, respectively.

additional randomizations for only OLNP and NP-NN (not
for NPROC-LOG and NPROC-SVM) during training of both
the cross-validation and actual training, resulting in an epoch-
by-epoch training procedure. This concatenation is only for
training purposes, and hence it is not used in testing and
validation, i.e., the actual data size is used in all types of
testing to avoid statistical bias and multiple counting. Our
proposed algorithm NP-NN does certainly not need such a
concatenation approach for data augmentation in the targeted
fast streaming data applications (cf. Fig. 4), where data is
already abundant and scarcity is not an issue.

We run all the algorithms on the test sequence of each
of the 15 random permutations (after training on the corre-
sponding training sequences), and record in each case the
achieved false positive rate, i.e., FPR, and true detection
rate, i.e., TPR, for the target false positive rates (TFPR)
τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. For performance evaluation,
we compare the mean area under curve (AUC) of the result-
ing 15 receiver operating characteristics (ROC) curves of
TFPR vs TPR, as well as the mean of the resulting 15 NP-
scores [47], cf. (18) with κ = 1/τ . Note that the mean
AUC (higher is better) accounts only for the resulting detec-
tion power without regard to false positive rate tractability,
whereas themeanNP-score (lower is better) provides an over-
all combined measure. We evaluate with the both (Table 1)
in addition to visual presentation of the mean ROC curves
(Fig. 2) of FPR and TPR. Table 1 additionally reports the
mean TPRs and mean FPRs. We also provide the decision
boundaries and the mean convergence of the achieved false
positive rate during training for the visually presentable
2-dimensional Banana dataset (Fig. 3). All of our
results are provided with the corresponding standard
deviations.

We exclude the results of NPROC-LOG in Table 1 (instead
we keepNPROC-SVM since it generally performs better than
NPROC-LOG) due to the page limitation, as the table gets
too wide otherwise. One can access the results of NPROC-
LOG from our Fig. 2. Based on our detailed analysis pre-
sented in Table 1 along with the visualization with ROC
curves in Fig. 2, we first conclude that in general the algo-
rithms NPROC-SVM and the proposed NP-NN with power-
ful nonlinear classification capabilities significantly outper-
form the linear algorithms OLNP and NPROC-LOG in terms
of both AUC and NP-score, hence the proposed NP-NN and
NPROC-SVM better address the need for modeling complex
decision boundaries in the contemporary applications. This
significant performance difference in favor of nonlinear algo-
rithms NPROC-SVM and the proposed NP-NN is muchmore
clear (especially in terms of the AUC) in highly nonlin-
ear datasets such as Banana, Spiral, Iris, SVMguide1 and
Fourclass, as shown in Fig. 2. In the case of a small size
dataset that seems linear or less nonlinear (e.g., Bupaliver),
although OLNP and NPROC-LOG are both linear by design
and targeting this dataset with the right complexity and hence
expected to be less affected by overfitting, the proposed NP-
NN competes with the both well and even slightly outper-
forms them in terms of AUC (while staying comparable in
terms of NP-score). We consider that this is most probably
due to the successful compactification of the SLFN in the
proposed NP-NNwhich reduces the parameter complexity by
learning the Fourier features in the hidden layer.

As for the comparison between the nonlinear algorithms
NPROC-SVM and the proposed NP-NN, we first strongly
emphasize that NPROC-SVM has computational complexity
(in the worst case of full number of support vectors) between
O(N 2) and O(N 3) in training and O(N ) in test, where the
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FIGURE 3. Using the visually presentable 2-dimensional Banana dataset, upper graphs show the variation in the decision boundary of the
proposed NP-NN as the target false positive rate (TFPR) changes as TFPR ∈ {0.05,0.1,0.3,0.4}, and the lower graphs show the mean
convergence as well as the standard deviation of the achieved false positive rate (TPR) of the proposed NP-NN over 15 trials of random
data permutations with respect to the number of processed instances during training. To better show the convergence, in each trial, length
of the training sequence is increased with concatenation resulting in an epoch-by-epoch training of multiple passes. Overall, as indicated
by these results, we observe a decent nonlinear modeling as well as a decent false positive rate controllability with the proposed NP-NN.

space complexity is O(N ). On the other hand, the proposed
NP-NN is truly onlinewithout separate training or test phases,
which only requires O(N ) computational and O(1) negligible
space complexity. Hence, NPROC-SVM cannot be applied in
our targeted large scale data processing applications due to its
prohibitive complexity; nevertheless, we opt to include it in
our experiments to set a baseline that is achievable by batch
processing. According to the numeric results in Table 1 and
the ROC curves in Fig. 2, we first observe that NPROC-SVM
and the proposed NP-NN perform comparably in terms of
the AUC, hence our technique (thanks to its computationally
highly efficient implementation) can be used in large scale
applications (where NPROC-SVM computationally fails)
without a loss in classification performance. In addition, our
algorithm NP-NN outperforms NPROC-SVM in terms of
AUC in 3 datasets; and for small target false positive rate
(τ = 0.05), the proposed NP-NN has higher TPR compared
to NPROC-SVM in 6 datasets. On the other hand, comparing
in terms of the NP-score, NPROC-SVM performs better as
a result of enhanced false positive rate controllability due to
batch processing. However, this advantage of NPROC-SVM
over the proposed NP-NN seems to disappear or decrease as
the data size (relative to the dimension) and/or the desired
false positive rate increases as observed in the cases of, for
instance, Banana and Cod-rna datasets. Therefore, we expect
no loss (compared to NPROC-SVM) with the proposed NP-
NN in terms of false positive rate controllability as well, when
data size increases as in the targeted scenario of the big data
applications where NPROC-SVM cannot be used. Indeed,
we observe a decent nonlinear classification performance and
false positive rate controllability with the proposed NP-NN
on, for example, the Banana dataset (5300 instances in only

2 dimensions), as clearly visualized in Fig. 3 which shows
the false positive rate convergence as well as the nonlin-
ear decision boundaries for various desired false positive
rates. Lastly, NPROC-SVM seems to be failing when TFPR
requires only a few mistakes in the non-target class. In this
case, NPROC-SVM picks zero mistake resulting in zero
TPR and a poor NP-score in return. In contrast, the propsed
NP-NN successfully handles such situations as demonstrated
by, for instance, TFPR = 0.05 at Iris dataset in Table 1.
Our experiments in Table 1, Fig. 2 and Fig. 3 include

comparisons of the proposed NP-NN with certain batch
processing techniques (NPROC-SVM and NPROC-LOG).
Hence, we utilize separate training and test phases, alongwith
multiple passes over training sequences (due to small sized
datasets in certain cases such as Iris), in those experiments
for statistical fairness. However, we emphasize that in the tar-
geted scenario of large scale data applications: 1) one can only
use computationally scalable online (such as the proposed
NP-NN and OLNP) algorithms, 2) multiple passes are not
necessary as the data is abundant, and also 3) one can target
for even smaller false positive rates such as 0.01 and 0.005.
Therefore, to better address this scenario of large scale data
streaming conditions, we conduct additional experiments to
compare the online methods (OLNP and the proposed NP-
NN) when processing 2 large datasets (after z-score nor-
malization and 15 random permutations) on the fly without
separate training and test phases based on just a single pass:
covertype (581012 instances in 54 dimensions) and Cod-rna
(488565 instances in 8 dimensions, this is the original full
scale, for which we previously use in Table 1 a relatively
small subset for testing the batch algorithms). We run for
τ (TFPR) ∈ {0.005, 0.01} and present the resulting TPR
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and FPR at each time (in a time-accumulated manner after
averaging over 15 random permutations) in Fig. 4. Parameters
are set with manual inspection based on a small fraction of the
data.

Although the false positive rate constraint is set harder (i.e.
smaller as τ (TFPR) ∈ {0.005, 0.01}) in this experiment
(compared to the smallest TFPR value 0.05 in Table 1), both
techniques (OLNP and the proposed NP-NN) successfully
converge (the proposed NP-NN appears to converge slightly
better) to the target rate (FPR → TFPR) uniformly in all
cases. Therefore, both techniques promise decent false pos-
itive rate controllability (almost perfect) when the data is
sufficient. On the other hand, the proposed NP-NN strongly
outperforms OLNP in terms of the TPR (again uniformly in
all cases), which proves the gain due to nonlinear modeling in
the proposed NP-NN. In terms of the NP-score, the proposed
NP-NN again strongly outperforms OLNP (except one case,
where we observe comparable results). We finally emphasize
that the proposed NP-NN achieves this high performance
while processing data on the fly in a computation- as well as
space-wise extremely efficient manner, in contrast to failing
batch techniques in large scale streaming applications due to
complexity and failing linear techniques due to insufficient
modeling power.

VI. ANALYSIS OF RESULTS AND DISCUSSION
In the previous Section V, we have compared our proposed
online algorithm NP-NN with the competing algorithms
OLNP and NPROC-SVM based on 10 datasets in terms
of NP-scores and AUC. In this section, we next provide a
statistical significance analysis of the observed performance
differences as well as a detailed complexity analysis with
running times, and then discuss our findings.

A. STATISTICAL SIGNIFICANCE ANALYSIS
A manual inspection of the error bars (Table 1) is already
indicative about the significance of the performance dif-
ferences among the compared algorithms, which reinforces
our previous discussions/conclusions. In this section, we
further quantify the statistical significance for all pairwise
performance differences by following the recommendations
of the highly comprehensive study in [52], and opt to use
the Wilcoxon signed-rank test (WSRT) for this purpose.
Note that a paired t-test can also be considered to measure
the significance for each dataset separately across the 10
different runs. However, since such runs are based on ran-
dom permutations of the dataset with k-fold cross validation,
the train/test sets inevitably overlap and the independence
assumption of the t-test fails to hold, compromising (under
estimating) the standard error estimation. Thus, a paired t-test
is not recommended after k-fold cross validation. Then, one
can use 5 × 2 cross validation as a remedy, again followed
by the paired t-test. However, the paired t-test has its own
weaknesses such as the failing Gaussian assumption when the
number of data samples is relatively small (≤ 30), the issue
of commensurability and the sensitivity to the outliers. Thus,

we use the Wilcoxon signed-rank test (WSRT) across all
datasets as recommended (as a better alternative to the paired
t-test) in [52]. The advantages of WSRT are: testing across
datasets (not separately for each) satisfies the independence,
ranking is less sensitive to outliers, Gaussian distribution is
not assumed, and the issue of commensurability is relieved
as it is considered only qualitatively. We refer to [52] for
an elegant treatment of this topic of comparing classifiers
statistically.

We conduct the WSRT for all pairwise performance dif-
ferences (in Table 1) of the compared algorithms across
all datasets, and present the corresponding T-statistics
(of WSRT) in Table 2. We consider the AUC differences as
well as the NP-score differences for the target false posi-
tive rates τ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. Note that when the
T-statistic is less than 3 (or less than 8 but greater than 3), then
the difference is highly statistically significant at the level
p < 0.01 (or still significant but not highly at the level 0.01 <
p < 0.05). We consider that a difference is insignificant if
the corresponding T-statistic is greater than 8 since then the
significance is p > 0.05. The critical values here (3 and 8) are
from the two sided t table [52]. We observe that all pairwise
performance differences are statistically highly significant,
except the three single-starred (Table 2) ones that are only
significant (not highly) and except the three double-starred
ones that are insignificant. Note that the sign ‘‘+’’ (or ‘‘−’’)
in Table 2 is used to indicate that the performance difference
is in favor of the algorithm x (or y) in the comparison x vs y.

This statistical significance analysis firmly supports our
performance conclusions in Section V. First, our algorithm
strongly (cf. the high performance differences in favor of
our online algorithm NP-NN within each dataset of Table 1)
outperforms OLNP (uniformly in all cases of NP-scores or
AUC across datasets as seen in Table 2) and the performance
difference is statistically either highly significant (in four
cases of Table 2) or significant (in the remaining two cases
of Table 2). Second, our algorithm performs comparably
with NPROC-SVM in terms of AUC as well as in terms of
NP-score (two cases of τ = 0.01 and τ = 0.05) since the
corresponding performance differences are not significant.
In the remaining three cases, NPROC-SVM performs better
thanNP-NN. On the other hand, we emphasize that our online
algorithm NP-NN provides huge computational advantages
compared to NPROC-SVM despite their, for instance, com-
parable AUC performance as well as comparable NP-score
performances in two cases. We next provide our complexity
analysis.

B. COMPLEXITY ANALYSIS
Recall that our algorithm NP-NN is an online algorithm
with the computational complexity O(NDd), where N is the
number of data instances, 2D is the number of hidden units
and d is the data instance dimension. The compared algo-
rithmOLNP is also online with the computational complexity
O(Nd). Note that the online algorithms (NP-NN and OLNP)
do not have separate training and test phases. Whereas the
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FIGURE 4. We demonstrate the proposed online algorithm NP-NN on two large scale datasets (Cod-rna and Covertype) with relatively
small target false positive rates, i.e., TFPR ∈ {0.01,0.005}. The data processing in this case is truly online, and based on only a single pass
over the stream without separate training and test phases. Hence, this experiment better demonstres the typical use-case of our algorithm
in large scale scenarios. Time accumulated false positive error rate (FPR) and detection rate (TPR) are obtained after averaging over 15
trials of random data permutations. Overall, we observe that the proposed NP-NN and OLNP are both decent and comparable in terms of
the false positive rate controllability, whereas the proposed NP-NN strongly outperforms OLNP in terms of both the detection power and
NP-score.

TABLE 2. We present the T-statistics of Wilcoxon signed-rank significance
tests [52] for the pairwise comparisons of the algorithms based on their
performance results (across all 10 datasets) in Table 1. The last row is
based on the AUC scores whereas the others are based on the NP scores.
All performance differences are highly significant with the level p < 0.01,
except the three single-starred cases where the performance differences
are significant (but not highly) since the level is 0.01 < p < 0.05 as well
as the three double-starred cases where the performance differences are
considered insignificant since the level is p > 0.05. Also, for a comparison
x vs y, we use the sign ‘‘+’’ (or ‘‘−’’) if the performance difference is in
favor of the algorithm x (y).

compared NPROC-SVM is a batch algorithm (not online)
with the computational complexity O(N 2

trNSVd) in training
and O(NtestNSVd) in test (cf. [53]), where the number of
support vectors NSV ≤ Ntr can be as large as Ntr (Ntr and Ntest
are the number of instances in training and test sets). Hence,
the online algorithms (NP-NN and OLNP) are computation-
ally highly efficient and scalable, however, the batch algo-
rithm NPROC-SVM is prohibitively complex both computa-
tionally and space-wise. Note that, also, the online algorithms
(NP-NN and OLNP) require negligible space complexity that
is only O(1).
We point out that the main complexity difference between

the algorithm NPROC-SVM and the online algorithms NP-
NN and OLNP stems from the number of data instances (N )
whereas the same difference between our proposed algorithm

TABLE 3. Mean running times are reported along with standard
deviations for all algorithms across 10 different trials. Datasets are
generated randomly as bimodal Gaussian distributed with random mean
and covariances around 0. Training and test observations are provided
separately for the algorithm NPROC-SVM since it is not online.

NP-NN and OLNP stems from the number of hidden units
(2D), i.e., the kernel space expansion cost, inNP-NN.We next
observe these differences in terms of the actual running times,
and devise an experiment for this purpose that is controlled
with respect to the variables N and D. This experiment is
based on three datasets with the properties (n−, n+, d) ∈
{(5000, 5000, 5), (50000, 50000, 5), (150000, 150000, 5)}.
Here, D is set as D = 5 × d = 25, N = n− + n+ and
n+ (n−) is the number of class 1 (class -1) labeled instances,
and the datasets are randomly generated as bimodal Gaussian
distributed with random means and covariances around 0.
We run the algorithms 10 times on random permutations of
such datasets and report in Table 3 the mean running times
in seconds (s) with the corresponding standard deviations.
Note that we report separately for training and test phases
in the case of NPROC-SVM. TFPR is set as τ = 0.1. Our
online algorithm NP-NN and the compared algorithm OLNP
are implemented in MATLAB, and the compared algorithm
NPROC-SVM is implemented in Python with the original
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code provided in [28]. Computations are conducted on a
computer containing 2.2 GHz Quad-Core Intel i7. Our mean
running time observations (Table 3) are in line with the
complexity analysis above. The online algorithms NP-NN
and OLNP both run fast where NP-NN takes slightly more
time due to the cost of the hidden layer of our SLFN
with 2D hidden units. Note that, here, we use a straight-
forward unoptimized MATLAB implementation (for both
NP-NN and OLNP), and thus the kernel space expansion
cost in the hidden layer of our algorithm NP-NN can be
significantly reduced with a more CPU-friendly and opti-
mized implementation in a low level language. Therefore,
our algorithm NP-NN can significantly speed up and the
running time difference between NP-NN and OLNP can
further decrease. On the other hand, the algorithm NPROC-
SVM quickly becomes impractical and prohibitively com-
plex, as the required running time polynomially increases as
∼ 2000× when the number of data instances increases only
30×. Hence, NPROC-SVM is not scalable.

C. DISCUSSION
As extensively demonstrated in Section V, Section VI-A and
Section VI-B, in summary, our performance results (in terms
of both the AUC and NP-score) and significance as well as
complexity analyses statistically significantly and firmly con-
clude that our online algorithm NP-NN either outperforms
the state-of-the-art (e.g. the compared algorithm OLNP in
our experiments) at a comparable complexity, or performs
comparably (to the compared algorithm NPROC-SVM in
our experiments) while providing huge computational and
space advantages. In the following, we explain the underlying
reason for the superiority of our proposed algorithm NP-NN
over the state-of-the-art (i.e. the competing algorithms OLNP
and NPROC-SVM).

The kernel inspired SLFN of the proposed NP-NN has
two benefits: expedited powerful nonlinear modeling and
scalability. Namely, first, it enables an excellent network
initialization as random Fourier features (RFFs) are already
sufficiently powerful to learn complex nonlinear decision
boundaries even when kept untrained. This speeds up and
enhances the learning of complex nonlinearities by relieving
the burden of network initialization. Second, the hidden layer
is compactified thanks to the exponential rate of improve-
ment in approximating the high dimensional kernel space
due to Hoeffding’s inequality [12]. As a result, the number
of hidden nodes, parameter complexity and the computa-
tional complexity of forward-backward network evaluations
reduce, and therefore the scalability substantially improves
while also mitigating overfitting. Moreover, thanks to the
learning of the hidden layer, the randomly initialized Fourier
features are continuously improved during SGD steps for
even further compactification and better nonlinear model-
ing. We point out that the competing algorithm NPROC-
SVM is also powerfully nonlinear but it does not exploit
Fourier features and explicit kernel space expansion for scal-
ability and computational as well as space-wise efficiency.

Whereas the competing algorithm OLNP is also online and
efficient but it is not designed to model nonlinearities. Hence,
our online NP classifier is powerfully nonlinear (which
clearly explains the superiority over the competing algo-
rithmOLNP) and computationally highly efficient withO(N )
processing and negligible O(1) space complexity (which
clearly explains the superiority over the competing algorithm
NPROC-SVM), where N is the number of data instances.
While the learning (i.e. optimizing) of Fourier features

significantly strengthen the capability of nonlinear modeling,
our method can find features that are only locally optimal
due to the nonconvexity of the optimization we studied. This
appears as a limitation of our technique. On the other hand,
those learned locally optimal Fourier features do not neces-
sarily define a proper kernel which satisfies the Bochner’s
theorem that we use to initialize the network with the radial
basis function kernel. This is perhaps not a limitation but
certainly an indicator of that our method is not appropriate
for learning a nonisotropic rbf kernel. Then, if desired, one
can attempt to enforce positive definiteness of the weights in
the hidden layer of our SLFN as a constraint to the network
optimization, which would be a point of improvement. Sim-
ilarly, it is true that Fourier features is a powerful means for
nonlinear classification but it also makes it prone to overfit-
ting. For this reason, one has to carefully tune the parameters
kernel bandwidth and the hidden layer size for which we suc-
cessfully use extensive cross validations. However, in the case
of a very large dimensionality (e.g. images), overfitting may
still appear as a limitation. For this issue, we suggest using
a strong regularization while incorporating the introduced
network as the fully connected layers of a deep architecture.
Then, as a remedy, the earlier layers can be designed to extract
features and reduce dimensionality for our network following
in the deeper layers.

VII. CONCLUSION
We considered binary classification with particular regard to
i) a user defined constraint on the type I error (false positive)
rate that requires false positive rate (FPR) controllability,
ii) nonlinear modeling of complex decision boundaries, and
iii) computational scalability to voluminous data with online
processing. To this end, we propose a computationally highly
efficient online algorithm to determine the pair of asymmetri-
cal type I and type II error costs to satisfy the FPR constraint
and solve the resulting cost sensitive nonlinear classification
problem in the non-convex sequential optimization frame-
work of neural networks. The proposed algorithm is essen-
tially a Neyman-Pearson classifier, which is based on a single
hidden layer feed forward neural network (SLFN)with decent
nonlinear classification capability thanks to its kernel inspired
hidden layer. The SLFN that we use for Neyman-Pearson
classification is compact in principle for two reasons. First,
the hidden layer exploits -during initialization- the exponen-
tial convergence of the inner products of random Fourier
features to the true kernel value with sinusoidal activation.
Second, learning of the hidden layer parameters, i.e., Fourier
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features, help to improve the randomly initialized Fourier
features. Consequently, the required number of hidden nodes,
i.e., the required number of network parameters and Fourier
features, can be chosen relatively small. This reduces the
parameter complexity and thus mitigates overfitting while
significantly reducing the computational as well as space
complexity. Then the output layer follows as a perceptron
with identity activation. We sequentially learn the SLFN
parameters through stochastic gradient descent based on a
Lagrangian non-convex optimization to goal of Neyman-
Pearson classification. This procedure minimizes the type II
error rate about the user specified type I error rate, while
producing classification decisions in the run time. Overall,
the proposed algorithm is truly online and appropriate for
contemporary fast streaming data applications with real time
processing and FPR controllability requirements. Our online
algorithm was experimentally observed to either outperform
(in terms of the detection power and false positive rate con-
trollability) the state-of-the-art competing techniques with
a comparable processing and space complexity, or perform
comparably with the batch processing techniques, i.e., not
online, that are -however- computationally prohibitively com-
plex and not scalable.
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