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ABSTRACT Developing lifelong learning algorithms are mandatory for computational systems biology.
Recently, many studies have shown how to extract biologically relevant information from high-dimensional
data to understand the complexity of cancer by taking the benefit of deep learning (DL). Unfortunately,
new cancer growing up into the hundred types that make systems difficult to classify them efficiently.
In contrast, the current state-of-the-art continual learning (CL) methods are not designed for the dynamic
characteristics of high-dimensional data. And data security and privacy are some of the main issues in the
biomedical field. This article addresses three practical challenges for class-incremental learning (Class-IL)
such as data privacy, high-dimensionality, and incremental learning problems. To solve this, we propose a
novel continual learning approach, called Deep Generative Feature Replay (DGFR), for cancer classification
tasks. DGFR consists of an incremental feature selection (IFS) and a scholar network (SN). IFS is used for
selecting the most significant CpG sites from high-dimensional data. We investigate different dimensions to
find an optimal number of selected CpG sites. SN employs a deep generative model for generating pseudo
data without accessing past samples and a neural network classifier for predicting cancer types. We use a
variational autoencoder (VAE), which has been successfully applied to this research field in previous works.
All networks are sequentially trained on multiple tasks in the Class-IL setting. We evaluated the proposed
method on the publicly available DNA methylation data. The experimental results show that the proposed
DGFR achieves a significantly superior quality of cancer classification tasks with various state-of-the-art
methods in terms of accuracy.

INDEX TERMS Computational biology, deep learning, class-incremental learning, continual learning, deep
generative model, variational autoencoder, DNA methylation, cancer classification.

I. INTRODUCTION
The study of human cancers has demonstrated that cancer
cells develop due to the accumulation of genetic and epige-
netic alterations [1]–[3]. Epigenetics refers tomitotic changes
in gene expression without modifications to the original DNA
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sequence. The most widely studied epigenetic mechanism
in mammals is DNA methylation, where a methyl group is
attached to cytosine in cytosine-phosphate-guanine (CpG)
dinucleotide [4]–[6]. Microarray-based Illumina Infinium
methylation assay [7] has commonly been used in epigenetics
analysis due to its small sample requirement, good accuracy,
high-throughput, and relatively low cost [8]. To estimate
the methylation level, the Illumina Infinium assay uses a
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pair of probes to measure the intensities of methylated and
unmethylated alleles at the interrogated CpG sites. Then the
methylation level is estimated by measuring the intensities of
this pair of probes, called beta-value, ranging from 0 to 1 [9].
The analysis of the DNAmethylation level is a key ingredient
in the development of cancer prognosis and personalized
treatment approaches [10]–[12]. Therefore, the development
of highly accurate statistical and computational techniques is
required for further DNA methylation-based human cancer
analysis.

In the domain of artificial intelligence (AI), the research
field of machine learning (ML) has increasingly gained atten-
tion in various research fields including bioinformatics and
computational biology [13]–[15]. More specifically, a critical
research field within ML methods is DL that develops a
biologically-inspired programming paradigm for manifold
applications, such as in computer vision, natural language
processing, audio recognition, speech recognition, social net-
work filtering, bioinformatics, medical image analysis, mate-
rial inspection, etc., [16]–[18]. DL technology can deliver
findings in medicine comparable in some cases superior to
human experts in the field of medical diagnosis of cancer and
other diseases [19]. Most DL approaches for DNA methy-
lation data focused on extracting biologically meaningful
lower-dimensional, and estimating methylation status (impu-
tation). As well as performing embeddings of CpG methyla-
tion states and classification and regression tasks [20]–[23].
Recent advances inDL, particularly unsupervised approaches,
have shown promise for extracting biological knowledge
through their application to genetic and epigenetic data [24].
An important advancement to DNA methylation-based
DL analysis was the application of VAE [25]. It is a generative
method that samples from the learned distribution of the
methylation profiles to generate new data in a way that repre-
sents the original data without losing accuracy and complex-
ity. By using these pre-trained generative models, researchers
attempt to develop similar frameworks for feature extraction.
That can be applied to downstream prediction tasks and
identify biologically meaningful relationships revealed by
VAE latent representation [26]–[31]. Although applications
of DL networks to DNA methylation data have become
ubiquitous, there still are challenging issues and a lack of
practical methods.

Globally, there are more than 100 types of cancer, each
has several subtypes [32], and an estimated 15 percent of all
human cancers worldwide may be attributed to viruses [33].
New types of diseases have been increasing rapidly and their
behaviors are unstable over time. For example, newly identi-
fied COVID-19 represents a significant portion of the global
disease burden in 2020 [34]. Computational systems biology
of cancer in the real world are exposed to continuous streams
of patient information and thus are required to learn and
remember multiple cancer and diseases from dynamic data
distributions [35]. Therefore, developing CL, also referred to
as lifelong learning [36]–[41] is highly needed in computa-
tional systems. Especially Class-IL [42]–[44], which consists

of learning sets of classes incrementally, techniques for can-
cer classification tasks are discussed in this article.

Another practical issue in the medical system is data
security and privacy [45]. CL remains a long-term chal-
lenge for DL models since the continuous accumulation of
incrementally available information from non-stationary data
distributions generally leads to catastrophic forgetting [46],
i.e., training a new model with new information without
losing previously learned knowledge. Catastrophic forgetting
can be a critical issue for organizations that have to delete
historic data for privacy reasons. For example, healthcare
facilities might not be able to retain patient data permanently.
Typical DL models require a large amount of data to learn
parameters, which is a computationally expensive process,
and it is needed to re-train a model repeatedly when new
data comes. To train DL models efficiently without accessing
past data, researchers attempted to use generative models
such as VAEs or generative adversarial networks (GAN) [47]
trained on past data [48]–[50]. Particularly, the deep gen-
erative replay [48] methods significantly improved the
CL research in the past years by simply replaying all previous
data using pre-trained generative models.

With the accumulation of high-dimensional low sample
size data (HDLSS) in computational systems of real-world
bioinformatics fields, Class-IL on these data is a critically
important task. Traditionally, the dimension reduction or fea-
ture selection (FS) techniques are conducted as preprocessing
before the classification tasks [51], [52]. After FS, some of
the lower-dimensional features selected in the earlier tasks
are not highly significant in the next tasks. Because some
pairs of genes are common or specific for some cancer
types [53], [54]. For example, assume that the highest signif-
icant 1,000 features are selected from breast and lung cancer.
When other cancers come, whether some of the selected
features are considered as significant or not. Most of the
previous studies [48]–[50] handle a fixed number of features,
e.g. image data, those are equally considered for all classes
during Class-IL. Due to these unstable characteristics of the
cancer data, IFS techniques are required to be developed.
To our best knowledge, there are no studies conducted on
incremental feature selection for high-dimensional data with
deep generative models for Class-IL tasks.

To tackle the aforementioned issues, in this article, we pro-
pose a novel Class-IL method based on generative models,
called DGFR, to incrementally select the most relevant fea-
tures from high-dimensional DNA methylation data and then
classify human cancer types when a new cancer type comes.
The primary contributions of this article are highlighted as
follows:
• We propose a novel DGFRmethod for high-dimensional
DNA methylation cancer classification tasks in a
Class-IL manner. DGFR is incrementally trained with-
out accessing past data when new cancer types come.

• Wealso propose a novel IFS techniquewith deep genera-
tive replay. IFS is theoretically simple and memory effi-
cient. It only stores mean and standard deviation (SD)
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values for all features in memory and rank all features
based on its variability.

• We introduce a soft replay, which is the updated version
of the replay. IFS continuously updates the previously
generated replays based on the newly selected features
when new cancer types come. For past data, the dupli-
cated features are kept, and not duplicated features are
generated again from a normal distribution.

• Comparison of state-of-the-art continual learning meth-
ods on publicly available DNA methylation can-
cer datasets for class-incremental cancer classification
tasks. Comprehensive experiments have demonstrated
the superior quality of the proposed DGFR method.
We explore the effect of the number of samples trained
in different ways such as randomly, ascending, and
descending orders. In real-world cases, that is important
to consider the number of samples for HDLSS data.
Experiments on the cancer datasets have fully demon-
strated the effectiveness of the proposed DGFR method
as it has significantly outperformed the baselines.

The remainder of this article is organized as follows.
We first review the related works in Section II. In Section III,
we formally describe the notations and explanations of the
proposed DGFR method. We then describe the experimental
settings in Section IV and show the experimental results,
including discussions and analysis in Section V. Finally,
we draw conclusions and future works in Section VI.

II. RELATED WORKS
In this section, we briefly summarize the recent research
studies sequentially on FS fromDNAmethylation data, DNA
methylation-based cancer classification, and continual life-
long learning.

A. FEATURE SELECTION
Discovering a lower number of CpG sites from high-
dimensional DNA methylation data relevant to specific
cancer disease could derive in more effective treatments.
Selecting only a small number of CpG sites from a large
number of sites strongly correlates with targeted cancer [55].
More studies suggested that only a small number of CpG
sites can be sufficient markers for specific cancer [56], where
the CpG sites’ biological relationship concerning the target
cancer can be easily identified. Generally, FS techniques
could be very useful for HDLSS data problems [57] and the
right FS strategy is crucially important for the classification
performance [58]. There are many FS techniques; they can
be divided into three categories such as filter, wrapper, and
embedded; are different in the way each technique copes with
a higher dimension to form a subset of features. Most of the
DNA methylation-based cancer studies used variance-based
filtering FS techniques to select the most variable CpG sites
across several samples before performingVAE and classifica-
tion algorithms [26]–[31]. The advantages of filter techniques
are simple and fewer computations compared to the other
two categories. The highly variable CpG sites are assumed

to be biologically more meaningful than the lower variable
sites. Filter techniques are performed in the selection model
as a pre-processing step and can be followed by one or more
classification algorithms.

B. CANCER CLASSIFICATION
Recently intensive studies of DNA methylation-based can-
cer analysis have been well conducted on effective train-
ing strategies for deep architectures, which are all based on
an unsupervised pre-training followed by supervised fine-
tuning. There is a lack of ground-truth labels in the bioin-
formatics domain. Therefore unsupervised DL approaches
such as GAN and VAE harness the modeling power of
DL without the need for accurate labels. Tybalt [26] was
developed to extract biologically relevant information from
cancer gene expression data with VAEs. The learned fea-
tures were generally non-redundant and can reveal biologi-
cally meaningful relationships among subgroups of samples.
Similar to this, an unsupervised DL framework with VAEs,
applied to the DNA methylation data from three breast can-
cer datasets [27] and two lung cancer datasets [28], [29].
Those DNAmethylation-based DL approaches have not been
designed as user-friendly for execution, training, model inter-
pretation. MethylNet [30] was developed to pre-train data,
generate new data, make predictions, and discover unknown
heterogeneity with minimal user supervision. However, pub-
lic cancer data is rapidly increasing, there is also a lack of
samples for specific cancer types in research. To alleviate this
issue, methCancer-gen [31] was presented to generate a user-
specified cancer type dataset by employing conditional VAE
and a neural network-based generative model. It estimates the
conditional probability distribution with latent variables and
data and produces samples for specific cancer types.

C. CONTINUAL LIFELONG LEARNING
One of the main challenges of the computational systems,
including computational systems biology, regarding con-
tinual lifelong learning is reducing catastrophic forgetting.
There are numerous continual learning techniques avail-
able to handle this issue, and are distinguished into four
types: regularization [39], [46], [59]–[63], dynamic archi-
tecture [60], [64], [65], rehearsal [39], [42], [66]–[74], and
generative replay [48], [75]–[79]. Many approaches use com-
binations of these techniques to allow better performance
and less computational and memory cost. Regularization
defines a loss that constrains weight updates to remember
past knowledge when retraining a model. In the Class-IL
setting, regularization-based techniques are unable to learn
the discrimination between tasks, and no regularization
method can learn alone to discriminate classes from differ-
ent tasks [80]. Dynamic architectures of neural networks,
i.e. progressive networks, create new weights automatically
when new classes come. New weights learn new tasks and
old weights are frozen (not modified anymore) for keeping
past information. Rehearsal strategy is another technique to
mitigate catastrophic forgetting consisting of storing past
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FIGURE 1. Overall structure of DGFR method.

samples and replaying them into the model while learning
new information. Dynamic architecture and rehearsal tech-
niques are effective techniques but require much memory
while increasing the number of new tasks and classes. When
past samples are not accessible that are common in the bioin-
formatics field, rehearsal techniques cannot be used anymore.
Instead of storing past samples, generative replay techniques
learn models that will produce artificial samples as a memory
of previous knowledge.

III. PROPOSED METHOD
In this article, we propose a novel continual learning approach
for high-dimensional DNA methylation data, called DGFR,
which consists of a memory-efficient IFS and SN. SN uses
a deep generative model as our generator and a neural net-
work (NN) classifier as our predictor for cancer classification
tasks in a Class-IL manner. IFS is used to select the most
relevant features from high-dimensional features by consid-
ering all classes and SN is used to learn the distributions of
the selected DNA methylation data and then predict cancer
types. The overall structure of the DGFR method is shown
in Figure 1.

For each task, high-dimensional DNAmethylation samples
(‘‘High Feature’’) and their corresponding labels (‘‘Targets’’)
from new cancer types are fed into a task network of DGFR as
inputs. Firstly, we perform a simple variance-based filtering
FS technique (‘‘Feature Selector’’) to select the most variable
CpG sites (‘‘Low Feature’’) across all samples. Secondly,
we pre-train a generator network (‘‘Generator’’) to learn
the distributions of inputs, and sample from it to produce
pseudo-inputs. Thirdly, we train a classifier that fine-tunes
the pre-trained generator network parameters, to classify can-
cer types on the selected features and their corresponding
labels and produce pseudo-targets. When the training data for
previous tasks are not accessible, pseudo-inputs (‘‘Replay’’)
and pseudo-targets (‘‘Soft-Target’’) produced by a memory
network can be replayed as inputs.

In practice, mostly no past information is available in
bioinformatics because of their data security and privacy.
For this reason and memory efficiency, we store selected

feature values, and only means and standard deviations
of non-selected features in each task. Here, all features
are ranked by their variability. Non-selected feature val-
ues should be removed due to the above reasons. When
new classes come, a mix of real inputs of new classes and
pseudo-inputs of old classes are fed into a task network
of DGFR. To replace the cancer-specific gene sets highly
relevant to old classes with other gene sets highly relevant to
new classes, we perform two updates on features (‘‘Feature
Updation’’) and replay (‘‘Replay Updation’’) values, respec-
tively. IFS generates normal distributions of new features
based on their means and standard deviations if previous
information is not available, and then it performs feature
selection on all of the previous and new feature values incre-
mentally. To match newly selected features, replay values are
also replaced (‘‘Soft Replay’’) by their normal distributions
if features are not selected.

A. NOTATIONS
Table 1 summarizes symbols and notations used in
this article. Given T= {T1,T2, . . . ,TK of K tasks and
D= {D1,D2, . . . ,DC of C datasets. For example, when
T = 6 and C = 12, two datasets are considered in each task.
A dataset is denoted by Di= {X1,X2, . . . ,XNi ∈ RNi×Hi ,
where Xji is an observation, Ni is the number of observations,
and Hi is the number of high-dimensions of i-th dataset,
respectively. Here, Xji consists of xji set of instances and yji
set of labels.
In each task, we incrementally calculate and update the

mean (µ) and standard deviation (σ ) for each CpG, which
are used for producing normal distribution (N). And so IFS
selects the most relevant low-dimensional (L) features XL

from high-dimensional raw features based on their
variability (σ 2). Deep generative models learn the distribu-
tions from the selected lower-dimensional data, and then
fine-tuning the pre-trained model allows us to perform cancer
type prediction. To achieve our goal, we perform IFS and
SN networks sequentially, and they contain feature selector
(Section III.B), generator (Section III.C.1), and predictor
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TABLE 1. Symbols and notations.

(Section III.C.2) functions, respectively. The algorithm of the
DGFR method is explained in Table 2.

In the following sections, IFS and SN (generative and pre-
dictive models) networks are explained in detail sequentially.

B. INCREMENTAL FEATURE SELECTION
IFS is a simple variance-based filtering technique that is
incrementally performed. High-dimensional data may con-
tain a large amount of irrelevant and redundant information,
which may use a lot of memories and greatly degrade the
performance of learning algorithms. Therefore, we need to
use flexible incremental feature selection techniques that can
execute in a memory space efficiently that would be empty
in the beginning and update features when new cancer types
arrive. So, firstly, we calculate µ and σ incrementally and
store only the calculated values instead of whole feature
values. In the first task (k = 0), µ, and σ are calculated in
Equations 1 and 2 as follows:

µ0 =
1
N0

N0∑
i=1

xi (1)

TABLE 2. DGFR algorithm.

σ0 =

√√√√ 1
N0

N0∑
i=1

(x i − µ0)2 (2)

At k-th task, µ and σ are incrementally calculated without
accessing past data in Equations 3 and 4 as follows:

µk =
1
2
µk−1 +

1
2
×

1
Nk

Nk∑
i=1

xi (3)

σk = σk−1 + (xk − µk−1)× (xk − µk ) (4)

As shown in Figure 2, we rank all features based on
their σ 2 after the calculations. In DNA methylation analysis,
the overall variance of methylation across the samples can
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FIGURE 2. Structure of IFS.

be an attractive covariate for filtering. Filtering techniques
are commonly used for reducing noise for DNA methylation
data with a linear time requirement and are very computa-
tionally intensive, especially if building learning models have
a high computational cost. But filtering techniques rank the
features by only single-feature associations with the class
labels, and the number of top-ranked features is determined
manually (L).

After selecting top-ranked L features, we mix new class
samples into the old class samples that are replayed from
previous tasks, called hard replay. If newly selected feature
values are not replayed, we produce its normal distribution
(N) using its µ and σ , called soft replay. For all tasks, N is
calculated in Equation 5 as follows:

N (x;µ, σ) =
1

√
2πσ

exp[
−

1
2 (x − µ)

2

σ 2 ] (5)

Thenwe perform a generator function to learn data samples
for each cancer type and a predictor function to predict cancer
types, sequentially. In the next sections, we explain a scholar
network that can both learn the new cancer types without
forgetting its knowledge.

C. SCHOLAR NETWORK
In the scholar network, introduced in [48], the generator-
predictor pair learns the selected low-dimensional features
and their corresponding target values, then produces the
pseudo-input (replay) and the pseudo-target (soft target) pairs
as shown in Figure 3. The produced pairs are mixed with

FIGURE 3. Structure of SN.

new data samples to update the generator and the predictor
networks. It contains a deep generative model (generator) and
a NN classifier (predictor).

1) GENERATIVE MODEL
The generative model refers to any model that generates
observable samples. In this article, we employ a VAE deep
generative model that maximizes the likelihood of generated
samples being given a real distribution. The architecture of
the VAE consists of encoder and decoder components.

The encoder component comprised an input layer, fully
connected encoding hidden layers, a distribution layer, and
a latent space layer. Here the distribution layer produces µ
and σ vectors. The latent space layer samples d-dimensional
latent vectors, which are used as the extracted and learned
features called latent variable (z). The encoder function (f enc)
can be summarized in Equation 6 as follows:

z = f enc (x) ∼ q∅(z|x) (6)

where q∅(z|x) is the approximate posterior of the latent vari-
able z and ∅ is a local variational parameter.

The decoder component comprised fully connected decod-
ing hidden layers, and an output layer. The output layer is
used as the reconstructed input (x ′). The decoder function
(f dec) can be summarized in Equation 7 as follows:

x ′ = f dec (z) ∼ pθ (x|z) (7)

where pθ (x|z) is the prior distribution of the latent variable z
and θ is a local variational parameter.

The objective function of the VAE is to reconstruct
the input data as much as possible, to maximize the
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log-likelihood probability pθ (x), to minimize mean squared
error between original data and reconstructed data. The objec-
tive function of the generator network (reconstruction loss) is
summarized in Equation 8 as follows:

Lr = log pθ (x)

= DKL(q∅ (z | x) ||pθ (x|z))+ ELBO(∅, θ; x) (8)

where DKL is the KL divergence of the approximate poste-
rior and the prior distribution and ELBO is the variational
lower-bound on the marginal likelihood of each data point.
The VAE network learns the knowledge about DNA methy-
lation data from the original low-dimensional inputs and tries
to reconstruct them that can be replayed for further tasks.

2) PREDICTIVE MODEL
To establish a predictive model, we employ a simple NN
classifier followed by the downstream of the generator which
fine-tunes the generator network’s encoder part and feature
extraction layers in an end-to-end manner for the task of
cancer type prediction. The predictor function (f pred ) can be
summarized in Equation 9 as follows:

y′ = f pred
(
f enc(x)

)
(9)

The objective function of the NN classifier is to predict the
true class labels, to minimize the cross-entropy loss between
the approximate distribution and the ground truth distribution.
The objective function of the predictor network (classifica-
tion loss) is summarized as shown in Equation 10:

Lc = −
∑

y log y′ (10)

The supervised predictor network provides predictions of
cancer types for the D datasets as any of the given C cancer
types among the K tasks. The predicted targets can be used
as soft targets for the further processing of the prediction of
cancer types in each task of Class-IL.

IV. EXPERIMENTAL SETTINGS
In this section, firstly, we describe the experimental dataset
used in this article. Then we briefly introduce the baseline
methods compared with the proposed DGFR method and
their hyperparameters. Finally, we show the metric used for
evaluating all methods.

A. DATASETS
Our experiments are conducted on twelve (C = 12) pub-
licly available datasets obtained from the Xenabrowser
(TCGA) [81] data portal, which have a total of 2,728 samples
listed in Table 3. Where twelve types of cancers such as ovar-
ian cancer (OV), kidney clear cell carcinoma (KIRC), breast
cancer (BRCA), glioblastoma (GBM), colon cancer (COAD),
acute myeloid leukemia (LAML), lung squamous cell car-
cinoma (LUSC), lung adenocarcinoma (LUAD), stomach
cancer (STAD), endometrial cancer (UCEC), rectal cancer
(READ), and kidney papillary cell carcinoma (KIRP) are
collected. For each cancer sample, we obtained 27,578 DNA

TABLE 3. Experimental datasets.

methylation data. To reduce noise, the top L features were
chosen by the variance-based feature selection algorithm
from DNA methylation beta values (across all cancers) on
each task repeatedly. The selected L features are used as
input data and sent to the SN.We performed stratified 10-fold
cross-validation for model evaluation. Themean and standard
deviation values are reported in the experimental results.

We split the experimental datasets into six (L = 6) tasks,
where each task has two cancer classification. For exam-
ple, the first task is the binary classification for BRCA and
COAD cancers and incrementally added the other five tasks.
To explore the effect of the number of samples among tasks,
three different dataset ordering strategies, such as randomly
(Rand), ascending (Asc), and descending (Desc).

In this article, we analyzed the effect of the number of
selected features, notated as L, which is set as {100, 200, 300,
400, 500, 600, 700, 800, 900, 1000}. For the feature analysis
and the performance evaluation, we selected the 1,000 fea-
tures with the highest variance across the 2,728 experimental
data samples. Figure 4 illustrates the global density of DNA
methylation among 1,000 CpG sites for all twelve cancer
types, each consists of the 1,000 features of cancer samples.

As shown in this figure, there are significant differences
in the methylation levels that drive the classification to good
accuracy results. Theoretically, DNA methylation can be
divided into three levels: low (hypomethylation), medium,
high (hypermethylation) [82]. In general, the density graph
shows that hypermethylation and hypomethylation are more
than medium methylation for all cancers. That means that
most of the CpG sites in this region are hypomethylated
and hypermethylated. The density of the hypomethylation
is more than the density of the hypermethylation in KIRP,
LUAD, LUSC, GBM, BRCA, KIRC, and OV cancer types.
By contrast, hypermethylation is more than hypomethylation
in other cancers. In some cancers such as STAD, the medium
methylation is more than the hypomethylation and hyper-
methylation levels. However, the differences between some
cancers are not showing clearly, for example in LUAD and
LUSC cancer types. That makes it difficult for many ML and
DL techniques to differentiate between them.
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FIGURE 4. DNA methylation density.

B. BASELINE METHODS
We compared the proposed DGFR method with the state-
of-the-art continual learning methods on the experimental
datasets in terms of the classification accuracy. The baseline
methods are divided into four categories as follows:

1. Regularization

• ElasticWeight Consolidation (EWC) [46]: The reg-
ularization term consisting of a quadratic penalty
term for each previously learned task. The number of
quadratic terms grows linearly in the number of tasks.

• Online Elastic Weight Consolidation (Online
EWC)[62]: This method is a modification of EWC to
determine weight importance by calculating the sum
of the previous tasks’ Fisher information matrices.
Synaptic Intelligence (SI) [63]: This method is similar
to online EWC to determineweight importance online
during stochastic gradient descent instead of Fisher
information.

2. Dynamic architecture

• Learning without Forgetting (LwF) [60]: This is
another type of regularization-based method focused
on data that attempts to preserve past learning experi-
ences from old models to a new one through knowl-
edge distillation [59]. That means that dynamic archi-
tecture methods create new weights automatically for
learning new tasks.

3. Rehearsal

• AveragedGradient EpisodicMemory (A-GEM) [39]:
This method is also another type of regularization
method that uses an episodic memory. It replays
the stored data as ‘‘exemplars’’ from given tasks to
perform it computationally and memory-efficient as
the regularization methods. A-GEM is an improved
version of Gradient Episodic Memory (GEM) [83],
by defining inequality constraints to avoid the
increase in the losses.

• Incremental Classifier and Representation Learn-
ing (iCaRL) [42]: This method uses an episodic
memory to replay the stored data and calculate
class means. Neural networks are used for feature
extraction and classification is performed based on a
nearest-class-mean rule [84] in that feature space.

• Experience Replay (ER) [74]: A basic rehearsal
method which uses an episodic memory to replay the
stored data and uses them to augment the incoming
data.

4. Generative replay
• Deep Generative Replay (DGR) [48]: A dual-model
architecture of a deep generative neural net-
work model, which creates pseudo-samples that
are then intermixed with recently observed data
instead of using stored data. We also employed the
dual-model architecture consisting of a deep gen-
erative model (generator) and a task solving model
(solver).

• Deep Generative Replay with distillation
(DGR+distill) [78]: This method is similar to DGR,
but instead of labeling the replayed inputs as the
most likely class according to the previous tasks’
model (hard targets), it pairs them with the pre-
dicted probabilities for all target classes (soft targets).
We also employed the dual-model architecture with
distillation.

• Replay-Through-Feedback (RtF) [79]: The inte-
grated architecture of the generative model and the
main model with distillation by equipping it with
generative feedback connections. It reduces the com-
putational cost of generative replay.

For a fair comparison, we used the same neural network
architecture for all the methods that have a multi-layer per-
ceptron with three hidden layers of 1,000 nodes, each with
ReLU non-linear activation functions. Except for iCaRL,
we used a softmax function as the final output layer and the
standard multi-class cross-entropy classification loss for the
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predictions of the model on the current task data. All models
are trained for 5,000 iterations (epochs) per task using the
Adam-optimizer (β1 = 0.9, β2 = 0.999) [85] with learning
rate 0.0001. For each iteration, classification loss is calculated
as an average of over 64 samples (same for replayed samples)
from the current task. For the generative models, symmetric
VAE networks with 100-dimensional stochastic latent vari-
able layers are pre-trained separately on all tasks. The stan-
dard normal distribution is calculated as prior. All the hyper-
parameters used in this article are summarized in Table 4.

TABLE 4. Hyperparameter setting.

C. EVALUATION METRIC
To measure the performance of the proposed DGFR method
and compare it with other baseline methods, we used classi-
fication accuracy. Accuracy is the ratio of the number of cor-
rectly predicted classes to the total number of tested samples
and calculated directly from the confusion matrix, which is a
specific table that is often used to describe the performance of
a classification model. In the confusion matrix, true–positive
(TP) and true–negative (TN) is interpreted to correct positive
and negative predictions, which are actual correct predictions.
False-positive (FP) and false-negative (FN) are incorrect pos-
itive and negative predictions. Accuracy is formalized in
Equation 10 as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(11)

All experiments are executed on the Intel Xeon E3 (32G
memory, GTX 1080 Ti) hardware platform and the Ubuntu
18.04 computational environment. We thank the authors [86]
for the great PyTorch implementations of all of the baseline
methods. We used all default parameters except for not listed
in Table 4.We also used the Scikit-Learn and Pytorch libraries
with Python programming language for all of the analyses.

V. EXPERIMENTAL RESULTS
In this section, we illustrate some experimental results,
including feature analysis that is selected by IFS, and perfor-
mance evaluation that is performed by SN. We also investi-
gate the effect of the number of selected features L to find the

optimal values. We then discuss comparative analysis with
other baseline methods and the efficiency of the proposed
DGFR method.

A. FEATURE ANALYSIS
At each of the six tasks, we incrementally selected the pre-
defined lower number (L) of features based on their variations
using IFS. First, we discuss the descriptive statistics of the
selected features concerning L = 1, 000 as shown in Figure 5.
In these figures, the number of the newly selected features
after feature selection and ranking is indicated as the red
rectangular bars. And the number of the kept features from
the previous tasks is indicated as the blue rectangular bars.
Other statistical results are listed in Appendix A.

In the first task, the initial feature sets that have 1,000 top-
ranked features were selected from the first two categories
(Asc = {READ, KIRP}, Desc = {OV, KIRC}, and Rand =
{BRCA, GBM}).When new data comes, the means and stan-
dard deviations were re-calculated, and the variance-based
feature ranking was updated. As shown in the left side of
Figure 5, the kept features are increasing by small values
when the number of samples is increasing in ascending order.
In every new task, 250-350 features were newly selected. That
shows that a small number of training samples from specific
cancer types cannot express the importance of the selected
features. As shown in the middle side of Figure 5, the kept
features are increasing by larger values when the number
of samples is decreasing in descending order. Especially in
the last three tasks, only 20-50 features were newly selected.
That shows how sample size influences feature selection.
As shown on the right side of Figure 5, the kept and newly
selected features are changed inconsistently when the number
of samples is given randomly. It depends on the order of the
cancer types, and it is most common in practice.

We also reported that the top-5 selected features were cal-
culated on their variances in every task of different ordering
strategies, as shown in Table 5. For example, the CpG site
‘‘cg11201229’’ is the most significant feature for the cancer
classification task. But it is not ranked first only from the
small number of samples of ‘‘READ’’, ‘‘KIRP’’ cancers.
In the sixth task, 40%, 60%, and 20% of the features were re-
selected from the first task, respectively, ascending, descend-
ing, and random ordering strategies. In the first task, the set of
selected features are much different in the ordering strategies.
In contrast, the same set of features are selected in the sixth
task. That means that the importance of specific CpG sites
is different for all cancers, and it is necessary to select them
adaptively in each task.

B. PERFORMANCE EVALUATION
We considered four different types of state-of-the-art algo-
rithms in terms of classification accuracy. The average accu-
racy results of the proposed DGFRmethod and the compared
algorithms are shown in Table 6. We also set L as 1,000. The
detailed and other performance evaluation results are listed
in Appendix B. We evaluated each model by using stratified
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FIGURE 5. Number of newly selected/kept features on each task. The left, middle, and right sides show the number of samples is in ascending,
descending, and random order, respectively.

TABLE 5. Top-5 features on each task.

TABLE 6. Top-5 features on each task.

10-fold cross-validation, then mean and standard deviation
values are reported.

We used the ‘‘None’’ method as lower-bound, which was
trained sequentially on all tasks in the standard way, also
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FIGURE 6. Performance evaluation on accuracy on each task. The number of samples is in ascending order.

called fine-tuning. And we used the ‘‘Offline’’ method as
upper-bound, which was trained on the whole data in all
tasks, also called joint-training. As we can see, the ‘‘None’’
and the regularization-based methods cannot learn the tasks
except for the first tasks. Another knowledge distillation-
based LwF and rehearsal A-GEM methods work better than
the other regularization-based methods but not enough to be
satisfied. Other methods achieved good comparable results.
The compared results show that the IFS technique is much
efficient and can boost classification accuracy. Firstly, when
considering the ascending order, DGFR and DGFR+ dis-
till methods achieved an average accuracy of 92.01% and
91.10%, respectively. It has greatly improved the other results
of 4.19% and 3.28%, respectively. Secondly, when consid-
ering the descending order, the rehearsal-based iCaRL and
ER methods achieved an average accuracy of 92.25% and
89.02%, respectively. iCaRL has greatly improved the other
results by 2.48%, and ER is also comparable to the gen-
erative and the ‘‘Offline’’ methods. The proposed DGFR
and DGFR+distill methods achieved an average accuracy
of 88.95% and 89.77%, respectively. We found that iCaRL
is very sensitive with different random seeds, and the other
generative models show robust results on the experimental
cancer datasets. Finally, when considering the random order,
DGFR andDGFR+distill methods achieved an average accu-
racy of 91.75% and 93.48%, respectively. It has also greatly
improved the other results by 1.4% and 3.13%, respectively.

We also reported the classification accuracy results of each
task. As shown in Figure 6-8, the left, middle, and right
sides show the results of regularization-based, rehearsal and
generative, and comparison of DGR and DGFR methods,
respectively. The gray color on the left side indicates the
regularization-based methods which had failed on the cancer
classification tasks except for the first task. The blue color
on the left side indicates the LwF method, which failed in
the beginning tasks and started learning the next tasks. The
orange color on the left side indicates the A-GEM method,
which showed satisfactory results in the beginning and failed
in the next tasks. The other methods are comparative, and
there are small differences shown in the figures.

As shown in Figure 6, the performances of the rehearsal
and generative methods are decreasing in the last tasks when
considering the number of samples is in ascending order. The
reason is that the features in the first tasks were selected
from a small number of samples, and those features struggled
to generalize models in the last tasks. All methods failed
and then showed accuracies of less than 60% in the sixth
task except for DGFR. DGFR and DGFR+distill methods
achieved an accuracy of 96.43% in the fifth task and 80.00%
and 66.67%, respectively, in the sixth task. Compared to
this, Figure 7 shows that all methods worked well and then
showed accuracies of greater than 60% in all tasks except
for the ‘‘Offline’’ method in the first task. The reason is
that the features were selected from a larger number of sam-
ples in all tasks when considering the number of samples
is in descending order. All the generative methods (DGR,
DGR+distill, RtF, DGFR, and DGFR+distill) achieved an
accuracy of 100% in the fifth task. Figure 8 shows the perfor-
mance evaluation when considering the number of samples
is in random order. Depends on the number of samples in
random order it shows different results. For example, all
methods show lower accuracies in the fifth task. Because
of the cancers ‘‘OV’’ and ‘‘KIRC’’ have a large number of
training samples. That means that a large set of features were
newly selected, and the previously trained models fail on the
new task. DGFR+distill archives an accuracy of 86.67% in
the fifth task. As we can see, DGFR and DGFR+distill meth-
ods significantly improved the accuracies of the DGR and
DGR+distill methods, respectively, in all tasks with different
ordering strategies.

C. EFFECT OF NUMBER OF SELECTED FEATURES
For high-dimensional data, finding the optimal number of
lower-dimensional features reduced by selection and trans-
formation stages is one of the important steps. We investi-
gated the effect of the number of selected features L, which
is set as {100, 200, 300, 400, 500, 600, 700, 800, 900,
1000}, and their optimal values in terms of classification
accuracy. The detailed results are listed in Appendix B.
Figure 9-11 shows the average accuracy results performed
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FIGURE 7. Performance evaluation on accuracy on each task. The number of samples is in descending order.

FIGURE 8. Performance evaluation on accuracy on each task. The number of samples is in random order.

FIGURE 9. Effect of number of selected features on average accuracy. The number of samples is in ascending order.

by all baseline and proposed DGFR methods with a different
number of features. As discussed above, we illustrated the
results of regularization-based, rehearsal and generative, and
comparison of DGR and DGFR methods on the left, middle,
and right sides, respectively. And we also used the same
color combinations for all methods. As shown in the figures,
the regularization-based methods failed at all. In contrast,
rehearsal and generative methods show satisfactory and com-
parative results except for A-GEM. But we found that iCaRL
is very sensitive with different random seeds, especially con-
sidering the number of samples is in random order, as shown

in Figure 10. DGFR and DGFR+distill methods significantly
improved the accuracy of the baseline methods in all exper-
iments. Figure 9 shows that accuracy is increasing when the
number of selected features increases. RtF shows an accuracy
of 87.82% with 1,000 features, which is the best result of
the baseline rehearsal and generative methods. As compared
to this, DGFR and DGFR+distill achieve an accuracy of
93.00% and 93.25%, respectively, which is already satisfied
with only 400 features. It also has greatly improved the DGR
results by approximately 10.60%. As shown in Figure 10, all
the methods achieve satisfactory results with 200 features.
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FIGURE 10. Effect of number of selected features on average accuracy. The number of samples is in descending order.

FIGURE 11. Effect of number of selected features on average accuracy. The number of samples is in random order.

For example, DGFR+distill with 200 features achieves an
accuracy of 92.84%, which improved the accuracy of the pre-
vious task by 8.85%. And compared with the baseline meth-
ods, it improved the accuracy of iCaRL by 2.43%. As same
as this, 200-dimensional DGFR+distill shows a satisfactory
accuracy of 94.24%, which improved the accuracy of the
previous task by 7.90%. It also improved the accuracy of
DGR+distill by and 4.53%, as shown in Figure 11. As con-
cluded, we found that the optimal lower number of features L
is between 200 and 400. That means that these sizes of dimen-
sions are the most convenient to reduce high dimensional data
into lower-dimensional space on the experimental datasets.

D. DISCUSSIONS AND ANALYSIS
Feature selection is one of the most important steps for high-
dimensional biomedical data. On the other hand, Class-IL
is mandatory in the development of computational systems
in bioinformatics. Most state-of-the-art Class-IL algorithms
are designed for a fixed set of features, e.g., visual features.
For cancer classification tasks, CpG sites can be highly sig-
nificant in specific cancers and not for others. When types
of cancers increase, the significance of specific CpG sites
can be changed based on their variability. We found that
‘‘cg11201229’’, ‘‘cg25600606’’, and ‘‘cg27592318’’ CpG
sites are the highest variable features, and reported the

changes among the tasks in Table 5. A predefined set of
features cannot express the characteristics of all cancer types,
which will come in the future. So it is needed to develop an
incremental feature selection algorithm that can handle pre-
viously learned features and new features adaptively. In prac-
tice, new cancer types with a lower number of samples will
be added to the learning system that already learned from a
higher number of samples of old cancer types. We prepared
different ordering strategies such as ascending, descending,
random. Then we compared the baseline and proposed meth-
ods for each ordering strategy in terms of accuracy.

In this article, we focused on feature selection from the
high-dimensional DNAmethylation data by taking the advan-
tage of the current state-of-the-art algorithms. We chose the
DGRmethod because of its generative capabilities. The other
generative method is RtF, which was designed for lower com-
putational cost of generative replay, but shows lower accuracy
than DGR at most tasks. We aimed to design the proposed
method to high accuracy with satisfactional computational
time. We also found that iCaRL is very sensitive to different
random seeds.

In bioinformatics, data security and privacy are some of
the critical challenges. We tested variance-based filtering
selection algorithms, which are simple but highly effective
for high-dimensional data. We hope that the experimental
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and analysis results give motivation to other researchers in
the field of computational biology. We can see the efficiency
of the proposed DGFR method in the experimental results
section as we discussed above.

VI. CONCLUSION AND FUTURE WORK
In this article, we proposed a Class-IL learningmethod, called
DGFR, which consists of an IFS and SN. SN contains a deep
generative model and a neural network classifier. We used
variance-based filtering as a feature selector, VAE as a gen-
erator, neural network classifier as a predictor. We ranked the
features on their variabilities, and IFS adaptively selects the
top-ranked features on each task. VAE pre-trained the gen-
erative models on the selected features for further analysis.
Finally, we used a simple neural network to classify cancer
samples into cancer categories.

We collected a total of 2,728 samples from 12 cancers
from the public data portal. The state-of-the-art Class-IL
algorithms are evaluated on the dataset and compared with
the proposed DGFR method in terms of accuracy. To find an
optimal number of features, we set it as {100, 200, 300, 400,
500, 600, 700, 800, 900, 1000}.We chose 200-400 features as
optimal values because of their satisfactional performances.
The proposed DGFR and DGFR+distill methods signifi-
cantly improved the accuracies of the DGR, DGR+distill,
and other baseline methods. We also tested three different
ordering strategies, such as ascending, descending, and ran-
dom. We achieved the highest average accuracy of 93.20%
(400 features), 93.25% (400 features) for ascending 92.74%
(300 features), 92.84% (200 features) for descending, and
95.08% (300 features), 95.52% (400 features) for ran-
dom settings, with the proposed DGFR and DGFR+distill,
respectively.

In future work, we will apply the proposed method to the
other high-dimensional biomedical tasks in a Class-IL way,
e.g., gene expression data. The feature selection step is the
most important. We will focus on developing improved fea-
ture selection algorithms in terms of performance, memory
efficiency, and computational time. As well, deep generative
models and classification algorithms will be considered most
efficiently.
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