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ABSTRACT Parallel magnetic resonance (MR) imaging is an important acceleration technique based
on the spatial sensitivities of array receivers. The recently proposed Parallel low-rank modeling of local
k-space neighborhoods (PLORAKS) approach uses the low-rankmatrixmodel based on local neighborhoods
of undersampled multichannel k-space data for reconstruction purposes. The joint total variation (JTV)
regularization term was then combined with the PLORAKS model to improve the quality of reconstructed
images. To further improve the quality of parallel MR imaging, we propose combining adaptive transform
learning and joint sparsity with the PLORAKSmodel to obtain two algorithms, and reconstruction problems
are solved by using the alternating direction method of multipliers (ADMM) and conjugate gradient
techniques. The experimental results show that the two proposed algorithms can achieve higher performance
than the PLORAKS algorithm and the PLORAKS-JTV algorithm with the JTV regularization term in terms
of the signal-to-noise ratio (SNR), normalized root mean square error (NRMSE), high-frequency error norm
(HFEN), and structural similarity index measure (SSIM).

INDEX TERMS Parallel magnetic resonance imaging (MRI), parallel low-rank modeling of local k-space
neighborhoods (PLORAKS), transform learning, alternating direction method of multipliers (ADMM).

I. INTRODUCTION
Magnetic resonance (MR) imaging is an important imaging
tool for modern medical diagnoses because it has no ionizing
radiation and can provide good contrast between different
soft tissues. However, the scanning speed of MR imaging
is fundamentally limited due to physical and physiological
constraints. Increasing the scanning speed ofMR imaging has
been a research hotspot in recent years. Reducing the amount
of acquired data is a commonly used method to accelerate
MR imaging. Therefore, it is very important to reconstruct a
high-qualityMR image from the undersampled data. Accord-
ing to the emerging compressed sensing (CS) theory [1], [2],
if the signal is sparse in some transform domains, it can likely
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be accurately reconstructed the signal from highly undersam-
pled observation data by using nonlinear optimization meth-
ods. Since MR images are sparse in some transform domains,
such as wavelet transforms and spatial finite differences,
they can be reconstructed from highly undersampled k-space
data according to CS theory [3]. Some CS-based MR image
reconstruction methods have been proposed. The authors in
[3]–[6] proposed using the composite regularization terms of
`1 norms of wavelet coefficients and total variation (TV) to
improve the reconstruction quality of the MR images. The
authors in [7], [8] proposed using the patch-based directional
wavelets (PBDW, PBDWS) to improve the quality of recon-
structed MR images. The authors in [9] proposed integrating
a novel iterative feature refinement (IFR) module with CS to
restore meaningful structures and details without introducing
too much additional complexity.
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In addition to the above methods of fixed sparse represen-
tation, researchers have also developed reconstruction meth-
ods based on adaptive sparse representation; these include
MR image reconstruction algorithms based on dictionary
learning [10] and reconstruction algorithms based on sparse
transform learning [11]. In dictionary learning based MR
image (DLMRI) reconstruction algorithm [10], dictionary
learning and reconstruction are performed simultaneously,
and k-means-based singular value decomposition (K-SVD)
and orthogonal matching pursuit (OMP) are used for dic-
tionary learning and sparse coding, respectively. However,
dictionary learning and sparse coding require iteration, and
this results in high computational complexity. Therefore,
sparse transform learning based reconstruction algorithms
for MR images (TLMRI) [11]–[16] have been proposed.
In these algorithms, since transform learning and sparse cod-
ing have analytical solutions, the computational complexity
is reduced.

Parallel MR imaging technology is another method for
accelerating MR imaging, that is often combined with com-
pressed sensing technology to improve the quality of recon-
structed images. Parallel MR imaging uses multiple coils
with different spatial sensitivities to receive data [17], [18].
Some methods, such as simultaneous acquisition of spatial
harmonics (SMASH) [19], and sensitivity encoding (SENSE)
[20], use the sensitivity information explicitly. The authors
in [21]–[24] combined the SENSE model with the TV reg-
ularization term, and improved the reconstruction quality.
However, it is difficult to measure sensitivity information
with high accuracy in practical applications. Small errors
in sensitivity can cause artifacts to persist in a recon-
structed image. Uecker et al. proposed an ESPIRiT model
[25] that could estimate multiple sets of coil sensitivities.
Duan et al. [26] proposed combining the ESPIRiT model
with the joint TV regularization term, and effectively
improved the reconstruction quality. Another class of meth-
ods utilizes the sensitivity information implicitly to avoid
the difficulty of measuring or estimating sensitivity; these
methods include generalized auto-calibrating partially par-
allel acquisitions (GRAPPA) [27], which requires only
a small amount of fully sampled auto-calibration sig-
nals (ACSs) for calibration. Iterative selfconsistent parallel
imaging reconstruction (SPIRiT) [28] was a GRAPPA-based
auto-calibrating method, that enforced calibration consis-
tency for every point (acquired and unacquired) on the grid.
Murphy et al. proposed combining the SPIRiT model with
the regularization terms of the joint `1 norms of wavelet
coefficients, and solving the reconstruction problem by using
the projection over convex sets (POCS) algorithm [29]. The
authors in [30], [31] proposed combining the SPIRiT model
with the joint TV regularization term, and solving reconstruc-
tion problems by using the alternating direction method of
multipliers (ADMM) and the operator splitting (OS) tech-
nique, respectively.

Recently, several calibrationless parallel imaging recon-
struction methods have been proposed. The calibration-free

locally low-rank encouraging reconstruction (CLEAR)
method [32] uses the locally low rank (LLR)matrix constraint
of the image domain for reconstruction, and Saucedo et al.
proposed improving the computational efficiency of LLR
based parallel MR imaging reconstruction [33]. The authors
in [34], [35] proposed using the joint sparse model of the
image domain for the reconstruction process. The joint TV
regularization term was used for the reconstruction process
in [36]. Both simultaneous autocalibrating and k-space esti-
mation (SAKE) [37] and PLORAKS methods [38] use the
low-rank matrix model based on the local neighborhoods of
undersampled multichannel k-space data. Haldar et al. also
proposed combining the PLORAKS model with the joint
TV regularization term to further improve the reconstruction
quality [38]. To further improve the reconstruction accuracy
of parallel MR imaging, the authors in [39] proposed learn-
ing joint-sparse codes for calibrationfree parallel MR imag-
ing (LINDBERG) by formulating the parallel MR imaging
problem as an `2 − `F − `2,1 minimization objective.
In addition, researchers have proposed algorithms based

on deep learning for parallel MR imaging and dynamic
MR imaging. Specifically, Wang et al. proposed a dynamic
MR imaging method with both k-space and spatial prior
knowledge integrated via multi-supervised network training
(DIMENSION) [40]; the authors in [41] exploited a residual
complex convolutional neural network for fast parallel MR
imaging.

In this paper, we propose two new parallel MR image
reconstruction methods to further improve the quality of
reconstructed parallelMR images by combining joint sparsity
and adaptive transform learning with the PLORAKS model.
In summary, our contributions can be summarized as fol-
lows: Since adaptive patch-based transforms can capture local
image features effectively, we propose combining adaptive
transform learning with the PLORAKSmodel to improve the
quality of reconstructed parallel MR images. To make full
use of the correlations between multicoil images, we propose
to introduce the joint sparsity of multiple coils. And then,
reconstruction problems are solved by using the ADMM
and conjugate gradient (CG) techniques. Experimental results
show that the proposed methods are superior to PLORAKS
and PLORAKS-JTV, and these results demonstrate the effec-
tiveness of this method in parallel MR imaging.

The structure of this paper is as follows: In Section II,
we review the LORAKS and PLORAKS models. Then,
we combine joint sparsity and adaptive transform learning
with the PLORAKS model, and we present our algorithms
(PLORAKS-TL and PLORAKS-JTL) for solving optimiza-
tion problems in Section III. Simulated experimental results
and analyses are provided in Section IV. Finally, Section V
concludes this paper.

II. OVERVIEW OF LORAKS AND PLORAKS
The LORAKS model was a new MR image reconstruction
model based on the fact that low rank matrices could be
constructed from fully-sampled k-space data when the given
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image had limited support or a smooth phase. The reference
work [42] described three matrices: the C matrix generated
from the linear dependence of the image, the S matrix, and
the G matrix constructed using the smoothly varying spatial
image phase. We employ the S matrix for reconstruction due
to its high reconstruction quality.

The S matrix [38], [42] can be constructed by a linear
operator RS (·) : CQ

→ R2K×2NR that performs linear
operations on k-space data f (nx , ny) (nx ∈ [−NX ,+NX ],
ny ∈ [−NY ,+NY ]). The definition of RS (·) is as follows:

RS (f ) =
[
Sr+ (f )− Sr− (f ) −Si+ (f )+ Si− (f )
Si+ (f )+ Si− (f ) Sr+ (f )+ Sr− (f )

]
(1)

where Sr+ , Sr− , Si+ , and Si− ∈ RK×NR are expressed as:[
Sr+(f )

]
km = Real

[
f
(
n(k)x − pm, n

(k)
y − qm

)]
(2)[

Sr−(f )
]
km = Real

[
f
(
−n(k)x − pm,−n

(k)
y − qm

)]
(3)[

Si+(f )
]
km = Imag

[
f
(
n(k)x − pm, n

(k)
y − qm

)]
(4)[

Si−(f )
]
km = Imag

[
f
(
−n(k)x − pm,−n

(k)
y − qm

)]
(5)

where k = 1, . . . ,K , m = 1, . . . ,NR, and (n(k)x , n
(k)
y )

K
k=1

represents K different k-space positions. −Nx + R ≤ nx ≤
Nx−R,−Ny+R ≤ ny ≤ Ny−R,R is the neighborhood radius,
{(pm, qm)}

NR
m=1 denotes the ordered combination of different

elements in the set 3R =
{
(p, q) ∈ Z2

: p2 + q2 ≤ R2
}
,

and NR denotes the cardinality of 3R. The structure of the
operator RS (·) allows R∗SRS = R∗S (RS (·)) to form a Q × Q
diagonal matrix.

The undersampled k-space data can be expressed as:
d = Af (6)

where f ∈ CQ is the fully-sampled k-space data, d ∈ CM

is the undersampled k-space data, and A ∈ CM×Q is the
undersampling matrix.

The LORAKS reconstruction problem can be formulated
as the following optimization problem:

f = argmin
f
‖Af − d‖22 + λJr (RS (f )) (7)

where λ represents the regularization parameter, and Jr (X )
is a regularization function. In reference work [42], Jr (X ) is
defined by:

Jr (X) =
∑
k>r

σ 2
k = min

T : rank(T )≤r
‖X − T‖2F (8)

where X ∈ R2K×2NR , and σk is the k th singular value of
matrix X .

PLORAKS extends the LORAKS model to paral-
lel MR image reconstruction. In parallel MR imaging,
f1, . . . , fl, . . . , fL ∈ CQ are fully-sampled k-space data from
L different receiver coils, and f P = [f1, . . . , fl, . . . , fL] ∈
CLQ. In PLORAKS, themodified Smatrix can be constructed
by a linear operator RPS (·) : CLQ

→ R2K×2LNR , which is
defined by:

RPS (f P) = [RS (f1), . . . ,RS (fl), . . . ,RS (fL)] (9)

The PLORAKS reconstruction problem can be expressed
as the following optimization problem:

f P = argmin
f P

∥∥∥APf P − dP∥∥∥2
2
+ λJr

(
RPS (f P)

)
(10)

where dP = [d1, . . . , dl, . . . , dL] ∈ CLM , and dl ∈ CM is the
undersampled k-space data of the l th coil.

Reference [38] also combined the joint TV (JTV) reg-
ularization term with the PLORAKS model, and the
corresponding reconstruction problem is as follows:

f P = argmin
f P

∥∥∥APf P − dP∥∥∥2
2
+ λJr

(
RPS (f P)

)
+α

∥∥∥F−1f P∥∥∥
JTV

(11)

where F represents the coil-by-coil two-dimensional Fourier
transform, ‖·‖JTV represents the JTV regularization term,
and α is the regularization parameter. For convenience of
expression, we omit the superscript ‘P’ for the variables in
the following description.

III. THE PROPOSED ALGORITHMS
A. PROBLEMS FORMULATION
Although the PLORAKS model combined with the JTV
regularization term can effectively improve the quality of
reconstructed images, there is still much room for improve-
ment. To further improve the reconstruction quality of par-
allel MR imaging, this paper combines adaptive transform
learning [11], [13] with the PLORAKS model and obtains
the following optimization problem:

min
f ,W
‖Af − d‖22 + λJr (RS (f ))+ α

Q∑
j=1

∥∥∥WPj(F−1f )
∥∥∥
0

s.t. W TW = I (12)

where Pj(·) : CLQ
→ Rn×L is the jth linear operator that

extracts an image patch of size
√
n×
√
n from each coil image,

and then converts these L image patches into a Cn×L matrix.
W ∈ Rn×n represents an adaptive sparse transform learned
from those image patches.

To make full use of the correlations between multicoil
images, we propose to introduce the joint sparsity of multiple
coils, and we formulate this problem as follows:

min
f ,W
‖Af − d‖22 + λJr (RS (f ))+ α

Q∑
j=1

∥∥∥WPj(F−1f )
∥∥∥
0,2

s.t. W TW = I (13)

where ‖w‖0,2 =
∥∥∥∑L

l=1 |wl |
2
∥∥∥
0
is a joint `0-norm similar to

the joint `1-norm [29], [43].

B. PROBLEMS SOLUTIONS
By introducing the auxiliary variables x = F−1f ∈ CLQ and
Bj = WPj(x) ∈ Cn×L , and their corresponding Lagrange
multipliers (ux ∈ CLQ, and uBj ∈ Cn×L , respectively), prob-
lem (12) can be transformed into the following subproblems
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by using the ADMM method:

min
W

µ2

2

Q∑
j=1

∥∥WPj(x)−(Bj − uBj )
∥∥2
2 s.t.W

TW = I (14)

min
B

Q∑
j=1

{
α
∥∥Bj∥∥0 + µ2

2

∥∥Bj −WPj(x)− uBj
∥∥2
2

}
(15)

min
x

µ2

2

Q∑
j=1

∥∥WPj(x)−(Bj−uBj )
∥∥2
2+

µ1

2

∥∥∥x−F−1f −ux∥∥∥2
2

(16)

min
f
‖Af −d‖22 + λJr (RS(f ))+

µ1

2

∥∥∥F−1f −(x−ux)∥∥∥2
2

(17)

ux = ux +
(
F−1f − x

)
(18)

uBj = uBj +
(
WPj(x)− Bj

)
(19)

whereB ∈ Cn×LQ is amatrix concatenatingB1, . . . ,Bj, . . . ,BQ,
i.e., B = [B1, . . . ,Bj, . . . ,BQ], and uB ∈ Cn×LQ is
a matrix concatenating uB1 , . . . , uBj , . . . , uBQ , i.e., uB =
[uB1 , . . . , uBj , . . . , uBQ ].
TransformUpdate: letX = [P1(x), . . . ,Pj(x), . . . ,PQ(x)] ∈

Rn×LQ; then, problem (15) can be rewritten as:

Ŵ =argmin
W

µ2

2
‖WX−(B−uB)‖22 s.t. W

TW = I (20)

According to references [11], [13], ifX (B− uB)H has a full
singular value decomposition (SVD) of U6VH , the solution
of problem (20) is given by:

W = VUH (21)

Sparse coding: problem (15) can be written as:

Bj = argmin
Bj
α
∥∥Bj∥∥0 + µ2

2

∥∥Bj −WPj(x)− uBj
∥∥2
2 (22)

The solution of problem (22) is given by:

Bj = H
(
WPj(x)+ uBj , α/µ2

)
(23)

where H (x, θ) denotes the hard-thresholding operator [11],
which is defined as:

H (x, θ) =

{
0, |x| < θ

x, |x| ≥ θ
(24)

where x and θ represent the input matrix and threshold,
respectively.

When considering the joint sparsity of multiple coils, prob-
lem (22) should be modified to the following joint denoising
problem:

Bj = argmin
Bj
α
∥∥Bj∥∥0,2 + µ2

2

∥∥Bj −WPj(x)− uBj
∥∥2
2 (25)

Problem (25) can be solved by:

Bj = HJ
(
WPj(x)+ uBj , α/µ2

)
(26)

where HJ (x, θ) is defined as:

HJ (x, θ) =

0,
√∑L

l=1 |xl |
2 < θ

x,
√∑L

l=1 |xl |
2
≥ θ

(27)

Image update: Let the derivative of the objective function
of (16) be zero; then, we can obtain:µ2

Q∑
j=1

PHj W
HWPj + µ1I

 x

= µ2

Q∑
j=1

PHj
(
WH (Bj−uBj )

)
+ µ1

(
F−1f + ux

)
(28)

Since WHW = I and
∑Q

j=1 P
H
j Pj is a diagonal matrix,

the analytical solution is given by:

x =

µ2

Q∑
j=1

PHj
(
WH (Bj−uBj )

)
+ µ1

(
F−1f + ux

)
µ2

Q∑
j=1

PHj Pj + µ1I

(29)

Reference [44] introduces a majorizer for the function
Jr (Rx(f )) at point f̂ i−1:

hS
(
f , f̂ i−1

)
1
=

∥∥∥RS (f )Nr (RS (f̂ i−1))∥∥∥2
F

(30)

where Nr (X) is an operator that generates a 2LNR×(2LNR−
r) matrix whose columns are equal to the right singular vector
associated with the smallest q−r value or zero singular value
in the generalized SVD of X . Then, problem (17) can be
reformulated as follows:

f̂ i = argmin
f
‖Af − d‖22 + λ

∥∥∥RS (f )Nr (RS (f̂ i−1))∥∥∥2
F

+
µ1

2

∥∥∥F−1f − (x − ux)
∥∥∥2
2

(31)

Problem (31) can be solved using the CG method.
All subproblems can be solved, so we obtain parallel MR

imaging reconstruction algorithms based on transform learn-
ing and joint transform learning called: PLORAKS-TL and
PLORAKS-JTL, which are summarized in Algorithm 1.

IV. SIMULATION EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETUP
In the following experiments, we compare the PLORAKS-TL
and PLORAKS-JTL algorithms with the PLORAKS (with
no regularization term), and PLORAKS-JTV (with the
JTV regularization term) models. All the compared algo-
rithms are implemented using MATLAB (MathWorks,
Natick, MA).

To compare the reconstruction performance of all the
algorithms, we used four sets of fully-sampled in vivo
human data sets, namely dataset1, dataset2, dataset3, and
dataset4, as shown in Fig. 1. Dataset1 and dataset2 are human
brain slices acquired by using an eight-channel head coil.
Dataset3 is cine data set acquired by using a 28-channel coil,
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Algorithm 1 Joint Sparsity and Transform Learning Based
PLORAKS Parallel MR Imaging Reconstruction Algo-
rithms (PLORAKS-TL and PLORAKS-JTL)

1: Set B1 = 0,W 1
= 0, x1 = 0, f 1 = 0, u0x = 0, u1Bj =

0, i = 0
2: repeat
3: i = i+ 1
4: W i+1

= VUH , X (Bi − uB)H has the full SVD of
U6VH

5: Bji+1 = H
(
W i+1Pj(x)+ uBj , α/µ2

)
for

PLORAKS-TL
6: Or Bji+1 = HJ

(
W i+1Pj(x)+ uBj , α/µ2

)
for

PLORAKS-JTL
7: x i+1 is given by using the equation (29)
8: f i+1 is given by solving the problem (31) using the

conjugate gradient method
9: ux i+1 = ux i +

(
F−1f i+1 − x i+1

)
10: uBj

i+1
= uBj

i
+
(
W i+1Pj(x)− Bji+1

)
11: until some stopping criteria met
12: Output: f = f i+1

FIGURE 1. The reference images from fully sampled data sets,
(a) dataset1, (b) dataset2, (c) dataset3, and (d) dataset4.

which is then compressed to 12 virtual coils. Dataset4 is a
knee data set acquired by an 8-channel HD knee coil. The
testing data sets are generated by retrospectively undersam-
pling the fully-sampled data sets using the 2D Poisson-disc
undersampling mask with an acceleration factor of R (exclud-
ing ACSs), as shown in Fig. 2.

All the following experiments are carried out on a lap-
top computer with an Intel (R) Core (TM) i5-10210U pro-
cessor @ 1.6 GHz, 12 GB memory and a Windows 10

FIGURE 2. A 2D Poisson-disc undersampling mask with 4× acceleration
and 24 × 24 ACSs.

operating system (64 bit). All the parameters of the compared
algorithms are tuned to achieve the optimal signal-to-noise
ratio (SNR) [30] values. In the following experiments, we use
the SNR, normalized root mean square error (NRMSE) [28],
high-frequency error norm (HFEN) [10], and structural simi-
larity index measure (SSIM) [45] as metrics to quantitatively
evaluate the quality of reconstructed images. Higher SNR and
SSIM values or lower NRMSE and HFEN values indicate
better image reconstruction quality. The SNR is defined as
follows:

SNR = 10log10

(
Var
MSE

)
(32)

where MSE represents the mean square error between the
reconstructed image x̂ and the reference image x, Var rep-
resents the variance of x, and x and x̂ are calculated from
the fully sampled k-space data and the reconstructed k-space
data, respectively by using SoSF(f ). SoSF(f ) is defined as
follows:

x = SoSF(f ) =

√√√√ L∑
l=1

∣∣(F−1f )l ∣∣2 (33)

The NRMSE is defined as follows:

NRMSE =

∥∥x̂ − x∥∥2
max (x)−min (x)

(34)

The HFEN is defined as follows:

HFEN =

√√√√∥∥LoG(x̂)− LoG(x)∥∥2F
‖LoG(x)‖2F

(35)

where LoG (·) is a Laplacian Gaussian filter, which is used to
capture the edges of the image, the size of the filter kernel is
15× 15 pixels, and the standard deviation is 1.5 pixels.
The SSIM is defined as follows:

SSIM =
(2uxux̂ + c1) (2σxx̂ + c2)(

u2x + u
2
x̂ + c1

) (
σ 2
x + σ

2
x̂ + c2

) (36)

where ux and ux̂ are the means of x and x̂, respectively, σ 2
x

and σ 2
x̂ are the variances of x and x̂, respectively, and σxx̂ is

the covariance of x̂ and x.
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FIGURE 3. The comparison of parallel MR image reconstructions for dataset1 using the Poisson-disc undersampling with 6× acceleration and
24 × 24 ACSs. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

FIGURE 4. The comparison of parallel MR image reconstructions for dataset2 using the Poisson-disc undersampling with 6× acceleration and
24 × 24 ACSs. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

B. COMPARISON OF RESULTS WITH A 2D POISSON-DISC
UNDERSAMPLING SCHEME
Visual comparisons of the images reconstructed by the com-
pared algorithms on the four data sets with an acceleration

factor of 6 are shown in Figs. 3-6. As shown in Figs. 3-6,
we can see that the images reconstructed by the PLORAKS
method exhibit severe grainy artifacts, the PLORAKS-JTV
method alleviates those artifacts but results in oversmoothed
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FIGURE 5. The comparison of parallel MR image reconstructions for dataset3 using the Poisson-disc undersampling with 6× acceleration and
24 × 24 ACSs. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

FIGURE 6. The comparison of parallel MR image reconstructions for dataset4 using the Poisson-disc undersampling with 6× acceleration and
24 × 24 ACSs. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

edges in the reconstructed images, and the PLORAKS-TL
and PLORAKS-JTL models further alleviate the artifacts and
preserve the details missing in the images output by other
algorithms. As shown in Fig. 6, the PLORAKS-JTL model

solves the problem of oversmoothed edges observed in the
image reconstructed by the PLORAKS-TL model.

We quantitatively evaluate the quality of the images
reconstructed by the four compared algorithms using 2D
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TABLE 1. The values of SNRs, NRMSEs, HFENs and SSIMs of the
compared reconstruction algorithms for dataset1 using the Poisson-disc
undersampling with different sampling ratios and 24 × 24 ACSs.

TABLE 2. The values of SNRs, NRMSEs, HFENs and SSIMs of the
compared reconstruction algorithms for dataset2 using the Poisson-disc
undersampling with different sampling ratios and 24 × 24 ACSs.

Poisson-disc undersampling with different sampling ratios
and 24 × 24 ACSs for dataset1-dataset4. Tables 1-4 tabulate
the SNRs, NRMSEs, HFENs, and SSIMs of all the compared
algorithms.

As shown in Tables 1-3, PLORAKS-JTV can achieve
average SNRs that are approximately 1 dB, 1.4 dB, and
0.3 dB higher than those of PLORAKS for dataset1,
dataset2, and dataset3, respectively. The PLORAKS-TL
and PLORAKS-JTL models can obtain comparable average
SNR values, which are approximately 1.3 dB, 1.8 dB, and
0.9 dB higher than those of the PLORAKS-JTV model,
for dataset1, dataset2, and dataset3, respectively. As shown
in Table 4, PLORAKS-JTV can achieve an average SNR
that is approximately 1.6 dB higher than that of PLORAKS.
The PLORAKS-TL model can obtain an SNR that is approx-
imately 2.3 dB higher than that of PLORAKS-JTV. The
average SNR of PLORAKS-JTL is approximately 0.9 dB

TABLE 3. The values of SNRs, NRMSEs, HFENs and SSIMs of the
compared reconstruction algorithms for dataset3 using the Poisson-disc
undersampling with different sampling ratios and 24 × 24 ACSs.

TABLE 4. The values of SNRs, NRMSEs, HFENs and SSIMs of the
compared reconstruction algorithms for dataset4 using the Poisson-disc
undersampling with different sampling ratios and 24 × 24 ACSs.

higher than that of PLORAKS-TL. Overall, introducing
an additional regularization term contributes to improving
the quality of the image reconstructed by PLORAKS. The
PLORAKS-JTL algorithm always achieves the best perfor-
mance in terms of the SNRs, NRMSEs, HFENs, and SSIMs
among the compared algorithms.

C. ALGORITHMIC PERFORMANCE COMPARISON WITH
DIFFERENT ACS SIZES
In addition, PLORAKS is a calibration-less parallel image
reconstruction method that does not require ACSs [38].
We also compare PLORAKS and PLORAKS-JTL with a
coil-by-coil auto-calibrating reconstruction method using the
joint TV regularization term (SPIRiT-JTV) [31] from the
undersampled k-space data with an acceleration factor of 3
and different ACS sizes. As shown in Table 5, SPIRiT-JTV
can achieve an SNR of 21.24 dB when the size of the ACSs
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FIGURE 7. Contour plots show the values of (a) SNR, (b) NRMSE and (c) HFEN versus λ and µ2 when reconstructing dataset1 using the
Poisson-disc undersampling with 4× acceleration and 24 × 24 ACSs.

TABLE 5. SNRs, NRMSEs, HFENs and SSIMs of the compared
reconstruction algorithms for the dataset1 from the Poisson-disc
undersampling with different sampling ratios and 24 × 24 ACSs.

FIGURE 8. The values of the SNR, NRMSE and HFEN versus the number of
iterations when reconstructing dataset1 using the 2D Poisson-disc
undersampling with 4× acceleration and 24 × 24 ACSs.

is 24× 24; when the size of the ACSs is reduced to 12× 12,
the SNR value decreases by approximately 2 dB; and the
SNR value dramatically decreases to 10.04 dB when the
ACSs is 8 × 8. Therefore, we do not perform reconstruction
experiments for the 4 × 4 and 0 × 0 ACS sizes. For the
PLORAKS algorithm, when the size of the ACSs gradually
reduced from 24×24 to 0×0, the SNR of reconstructed image
decreases from 20.85 dB to 17.52 dB, with a reduction of only
3.33 dB. PLORAKS-JTL can effectively improve the quality
of images reconstructed by PLORAKS and reduce the impact
of the size of the ACSs on the reconstruction performance.
Specifically, when the size of the ACSs decreases from
24×24 to 0×0, the SNR of the reconstructed image decreases
from 22.23 dB to 20.77 dB, with a reduction of only 1.46 dB.

In general, the SPIRiT-JTV method depends heavily on
the size of the ACSs. When the size of the ACSs gradually
decreases from 24 × 24 to 0 × 0, the SNR of the image

TABLE 6. Comparison of run time of the compared reconstruction
algorithms for the dataset1 from the 2D Poisson-disc undersampling with
6× acceleration and 24 × 24 ACSs.

FIGURE 9. 1D undersampling masks with 3× acceleration and 20 ACS
lines. (a) 1D uniform undersampling, (b) 1D random undersampling.

reconstructed by PLORAKS decreases by 3.33 dB, while the
SNR of the image reconstructed by PLORAKS-JTL reduces
by only 1.46 dB. PLORAKS-JTL is insensitive to the size of
the ACSs.

D. SENSITIVITY TO PARAMETER SETTINGS
In this subsection, we discuss the sensitivity of the proposed
algorithm’s parameters by adjusting one parameter and fixing
the others. The regularization parameter α exists in the form
of α/µ2 in our method, and we set α as 2 × 10−7. We have
found thatβ andµ1 are insensitive to reconstruction accuracy,
so we set β as 10−4 and µ1 as 10−4. We then evaluate the
proposed algorithm on dataset1 with a 2D Poisson sampling
mask with 4× acceleration and 24× 24 ACSs using different
parameter sets, i.e.,µ2 ∈ [10−4, 10−1] and λ ∈ [10−6, 10−3],
logarithmically spaced. Contour plots show the values of the
SNR, NRMSE and HFEN versus λ and µ2 when recon-
structing dataset1 from the Poisson-disc undersampling with
4× acceleration and 24 × 24 ACSs, as shown in Fig. 7.
We choose λ and µ2 that maximize the SNR and minimize
the NRMSE and HFEN, respectively. The optimal λ = 10−5

and the optimal µ2 = 10−3; and these values are roughly
consistent for all three metrics (SNR, NRMSE and HFEN).
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FIGURE 10. The comparison of parallel MR image reconstructions for dataset1 using the 1D uniform undersampling with 3× acceleration and
20 ACS lines. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

FIGURE 11. The comparison of parallel MR image reconstructions for dataset1 using the 1D random undersampling with 3× acceleration and
20 ACS lines. (a), (b), (c), and (d) are reconstructed by PLORAKS, PLORAKS-JTV, PLORAKS-TL, PLORAKS-JTL, respectively. (e), (f), (g), and (h) are
their corresponding error maps, respectively.

E. CONVERGENCE PROPERTY
To reflect the convergence property of the proposed method
(PLORAKS-JTL), we explore the development of three met-
rics (SNR, NRMSE and HFEN) with respect to the number
of iterations. Fig. 8 illustrates the values of the SNR, NRMSE

and HFEN versus the number of iterations when reconstruct-
ing dataset1 from the 2D Poisson-disc undersampling with
4× acceleration and 24 × 24 ACSs. As shown in Fig. 8,
all three metrics achieved approximate convergence after
30 iterations.
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F. COMPARISON OF RUN TIME
Wealso compare the run time of PLORAKS, PLORAKS-JTV,
PLORAKS-TL, and PLORAKS-JTL. Table 6 tabulates the
run time of all the compared algorithms for parallel MR
reconstructions from the 2D Poisson-disc undersampling
with 6× acceleration and 24 × 24 ACSs for the dataset1.
As shown in Table 6, the PLORAKS-JTL method is the
slowest among the compared algorithms. The run time of
PLORAKS-JTL is Kout × (KCG × TCG + TJTL), where Kout
is the number of outer iterations, KCG is the number of CG
iterations, TCG is the run time of one CG iteration, and TJTL
is the run time of one JTL denoising iteration. In the future,
we will try our best to solve problem (13) more efficiently,
and we will optimize the algorithm by using the graphics
processing unit (GPU) to greatly reduce the run time of each
JTL denoising iteration.

G. COMPARISON RESULTS WITH A 1D UNDERSAMPLING
SCHEME
We also compare the MR image reconstructions for
dataset1 from a 1D uniform undersampling and 1D ran-
dom undersampling with 3× acceleration and 20 ACS lines,
as shown in Fig. 9. The visual comparisons are shown
in Figs. 10-11. As shown in Figs. 10-11, we can see that
PLORAKS-TL and PLORAKS-JTL greatly improve the
imaging accuracy and reduce the artifacts exhibited in the
images output by other algorithms, and PLORAKS-JTL has
slightly better imaging quality than PLORAKS-TL.

V. CONCLUSION
In this paper, we propose two algorithms that combine joint
sparsity and adaptive sparsifying transform learning with the
PLORAKS model to improve the reconstruction quality of
parallel MR imaging, and the reconstruction problems are
solved by using the ADMM and conjugate gradient tech-
niques. The experimental results show that the two proposed
algorithms can achieve higher performance than the PLO-
RAKS algorithm and the PLORAKS-JTV algorithm with
the joint TV regularization term in terms of their SNR,
NRMSE, HFEN, and SSIM values. In addition, the proposed
algorithms are insensitive to the size of the ACSs.
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