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ABSTRACT There are two basic problems in sign language recognition (SLR): (a) isolated word SLR
and (b) continuous SLR. Most of the existing continuous SLR methods are extensions of the isolated
word SLR methods. These methods use the isolated word SLR results as the basic module and obtain
the sentence recognition results through sentence segmentation and word alignment. However, sentence
segmentation and word alignment are often not accurate, resulting in a low sentence recognition accuracy.
At the same time, continuous SLR usually requires strict sample labels, leading to the difficult task of
manual labeling and limited training data availability. To address these challenges, this paper proposes a
bidirectional spatial–temporal LSTM fusion attention network (Bi-ST-LSTM-A) for continuous SLR. This
approach avoids problems such as sentence segmentation, word alignment, and tedious manual labeling.
Our contributions are summarized as follows: (1) we proposed a sign language video feature representation
method using a convolutional neural network (CNN) and spatial–temporal LSTM (ST-LSTM) information
fusion technology; and (2) we constructed a uniform neural machine translation framework that can be used
for complex continuous SLR and gesture recognition of nonspecific people in nonspecific environments.
Experiments were carried out on some large continuous sign language datasets. The sign language recogni-
tion accuracy reached 81.22% on the 500 CSL dataset, 76.12% on the RWTH-PHOENIX-Weather dataset
and 75.32% on the RWTH-PHOENIX-Weather-2014T dataset, thereby illustrating the effectiveness of the
proposed framework.

INDEX TERMS Continuous SLR, attention, ST-LSTM, neural machine translation, CNN.

I. INTRODUCTION
The goal of video-based SLR is to convert a video sequence
into a sign language text representation [1]–[4]. SLR, and
particularly continuous SLR [1], [4], is a relatively new
field of human–computer interaction (HCI). Although many
researchers have explored this area [8], [9], there are still
many challenges and problems.

A key challenge of SLR is the design of visual descriptors
to capture SL semantics, such as facial expressions and the
shape, direction, and position of hands [1], [3]. As a result,
previous studies relied heavily on RGB-D data in the pos-
ture/gesture models [6], [7]. Moreover, most of the existing
sign language video sequences are recorded using normal
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cameras that lack depth sensors, thus limiting the practical
application of the existing SLR method.

Another challenge of continuous SLR involves time seg-
mentation [8], [9] because sign language actions are diverse
and difficult to detect. Accurate sign language video seg-
mentation is a difficult task, and inaccurate segmentation
during preprocessing can lead to errors in the subsequent
steps. In addition, labeling each isolated sign language word
in video is time-consuming, and extending isolated word SLR
to continuous SLR is difficult and involves many technical
challenges. Most existing SLR studies [6]–[8] are isolated
SLR methods; that is, they focus on the identification of
a word or phrase. Some methods [8], [9] have explored
the extension of the isolated word SLR methods to contin-
uous SLR, which involves the reconstruction of sentence
structures.
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Most existing methods of continuous SLR divide the prob-
lem of sentence recognition into three stages: video seg-
mentation, isolated word/phrase recognition, and sentence
synthesis. For example, DTW-HMM [8] proposed a coarse
segmentation step based on a threshold matrix, followed by
a dynamic time wrapping (DTW) algorithm and a bigram
model. Dan et al. [9] integrated a new HMM-based lan-
guage model. Recently, transition action modeling [10] has
attracted much attention because this approach can be used
for video segmentation. However, despite the popularity of
this approach, the sign language video segmentation task is
still challenging, and transition actions can be subtle and
vague. Ultimately, inaccurate segmentation can lead to sig-
nificant performance loss in the subsequent steps [11].

Video description generation [12]–[15] involves the gener-
ation of a short sentence that describes the scene/object/motion
of a given video sequence. A popular approach is based on
the video-to-text method [13], which connects two layers of
LSTM over a CNN. Hierarchical attention networks can be
incorporated into LSTM [14], which is characterized by the
automatic selection of the most relevant video frames for the
task. The LSTM algorithm also has some extensions, such
as bidirectional LSTM (Bi-LSTM), layered LSTM [15], and
layered attention GRU [16].

In view of some problems in continuous SLR, and inspired
by sequence-to-sequence methods [12]–[15], we propose
an RGB video continuous SLR method that identifies sign
language through data fusion and attention-based machine
translation. Our contributions in this paper are two-fold.
(1) To achieve the SLR task based on the RGB video data,
and inspired by the significant results achieved by deep learn-
ing technology in object detection, we proposed a sign lan-
guage detection and representation framework in RGB video.
The method includes a faster Region-CNN (R-CNN) mod-
ule, a compression tracking module, and a newly proposed
CNN-LSTM data fusion model. In previous sign language
video feature fusionmethods [15], the spatial–temporal infor-
mation was not fully considered. To fuse the spatial–temporal
information of sign language in RGBvideo sequences, we use
spatial–temporal LSTM (ST-LSTM) to fuse hand informa-
tion and body information in the LSTM units. (2) Inspired
by the LSTM video description methods [12], [14] and
video-to-text approaches [13], we combine structural infor-
mation and attention mechanisms to propose the use of recur-
rent attention networks to bypass time segmentation, which
is an extension of LSTM. The scheme involves encoding
the entire video and then outputting the complete sentence
verbatim. However, the attention network only partially opti-
mizes the probability of generating the next word in the case
of a given input video and the previous word, ignoring the
relationship between the video and the sentence. Therefore,
it may experience robustness issues. To compensate for this
consideration, we introduce an attention-based bidirectional
LSTM encode–decode model to clearly establish the cor-
relation between the video frame sequences and the text
sentences.

The remainder of the paper is organized as follows.
Section 2 presents a description of the recognition method,
Section 3 describes our experiments, and Section 4 draws
some conclusions.

II. RELATED WORK
Video sign language recognition systems are often composed
of a feature extraction module and a sequence signal model.
The feature extraction module is used to represent ges-
ture sequences. Moreover, the sequence signal model maps
sequence representations to labels. For better gesture recog-
nition, researchers have designed a variety of handmade fea-
tures, which generally use image gradients [11], [14], [28]
and motion trajectories [11], [18], [25] to represent hand
shape and skeleton structure.

In recent years, application of the deep neural network
to automatic learning feature representation has become
widespread. Wu and Shao [29] used a deep belief network
to extract high-level skeletal joint features for gesture recog-
nition. Some researchers used the convolutional neural net-
work [30], [31] and three-dimensional convolutional neural
network [19], [20] to collect hand visual cues. For example,
Molchanov et al. [17] applied a 3D CNN to extract the
spatiotemporal features of the color, depth, and optical flow
data from a video stream. Meanwhile, Neverova et al. [19]
used color, depth data, and custom-made gesture descriptors
to represent sign language features and then established a
multiscale deep structure for sign language recognition.

The time series model is a powerful tool for learning the
corresponding relationship between a sequence representa-
tion and tags. HMM is the most widely used time series
model in SL recognition [11], [20]. Dynamic time warping
(DTW) [24] and support vector machines [32] are also used
to measure the similarity between gestures. In recent years,
RNNs have been successfully applied to sequence problems
such as speech recognition [33] and machine translation [34],
[35]. Pigou et al. [26] proposed an end-to-end neural model
based on time convolution and bidirectional recursion for
sign language recognition. However, due to the weak super-
vision ability of the recurrent neural network at the sentence
level, it is difficult to match the extra-long input sequence
with the ordered label frame by frame. Unlike the aforemen-
tioned models, we use attention mechanisms to integrate time
dynamics before implementing bidirectional recursion.

Compared with existing models [21], [22], [27], [30],
the recurrent neural network sequence learning model with
end-to-end training presented in this paper has better learning
ability and performance with regard to dynamic dependence.
First, we do not use noisy frame markers as the training target
of the neural network; rather, we use the symbol graphics
method of human detection results to train our feature extrac-
tion module, which considers more local time dynamics, such
as the location of the human face and hands, and other key
information. Furthermore, by introducing the spatiotemporal
sequence signal model based on the attention mechanism,
namely, ST-A-LSTM, we not only integrate hand information
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FIGURE 1. Overview of the proposed continuous SLR method using a
Bi-ST-LSTM-A machine translation framework.

and human body structure information organically through
data fusion but also effectively solve the problem that the
samples and tags do not show one-to-one correspondence
in real time. Moreover, in our method, we do not introduce
additional monitoring information, such as hand annotation,
which requires expert knowledge and tedious annotation.

We can summarize our contributions in this paper as
follows: (1) a sign language video feature representation
method is proposed using a CNN and ST-LSTM information
fusion technology; and (2) a uniform neural machine trans-
lation framework is constructed that can be used for com-
plex continuous SLR and gesture recognition of nonspecific
people in nonspecific environments.

III. RECOGNITION METHODOLOGY
Our method is described in Fig. 1. The method can be broken
down into four steps. (1) The RGB video is inputted. For
each frame, we detect face and hand patches in the frame
image using a faster R-CNN [13]. The frame information
is then divided into two parts: local hand information and
spatial–temporal information of sign language. (2) These
two types of information are then fed into the basic unit
of the ST-LSTM and are fused using the proposed fusion
method. (3) To combine the attention mechanism with the
bidirectional ST-LSTM encode–decode framework, the fused
feature sequence is then translated into text sentences. (4) The
loss function is defined using the differences between the text
sentence labels and the outputted text sentence. The details
are discussed below.

A. FEATURE EXTRACTION USING A CNN
In our research, we used only the RGB image to calculate the
sign language feature. In many existing SLR methods [36],
[37], both the depth image and RGB image are used. In fact,
there are many sign language videos that are only recorded by

FIGURE 2. Illustration of feature fusion at the LSTM unit level. The above
unit shows calculation for x1, and the bottom unit shows calculation for
x2.

FIGURE 3. Illustration of image features extraction using a simple CNN.

RGB cameras, and therefore, research on RGB-based SLR is
more important.

Generally, normal-size images are used in SLR to reduce
the computational cost of training. Since the hand patch
is often small, it is difficult to obtain complete hand
information. In contrast to previous research, we used a
high-resolution image as the inputted image. Based on this
high-resolution image (250× 250), we used a faster R-CNN
[13] and compressive tracking [14] to detect the face and
hands, as shown in Fig. 2. The hand patches (reshape size to
50× 50) are sufficiently large to show subtle details. We use
I1 to denote the hand patch image, and this image is then fed
into the CNN to obtain feature x1:

x1 = fCNN 1 (I1). (1)

In this paper, we build a CNN model to extract features of
RGB images, as shown in Fig. 3. There are 15 layers in the
CNN, namely, an input layer, 3 convolution layers, 3 batch
normalization layers, 3 ReLU layers, 2 max pooling layers,
1 fully connected layer, 1 softmax layer and 1 classification
output layer. The first convolution layer is computed using
8 different 3 × 3 kernels, and 8 feature maps are obtained;
the second convolutional layer is computed with 16 different
3 × 3 kernels, and 16 feature maps are obtained; and the
3rd convolutional layer is computed with 32 different 3 × 3
kernels, and 32 feature maps are obtained. The convolutional
layers are used to find the local relationship of the input layer.
The corresponding pooling layer is the largest pooling layer
in the 2×2 neighborhood domain, and the original size of the
feature map is obtained. Similarly, the 3rd convolution layer
has 32 different 3× 3 kernels. The ReLU layer is connected
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FIGURE 4. Illustration of feature fusion in the LSTM unit level. The above
unit shows the calculation for x1, and the bottom unit shows the
calculation for x2.

to the fully connected layer. From the fully connected layer
of the CNN, the image features x is outputted, which is a
288-dimensional vector, as shown in Fig. 3.

In addition, we used cartoon pictures to simplify the
face and hand spatial–temporal information, as shown
in Fig. 2. We used three symbols and a thick, solid line
with uniform size to draw the cartoon picture. We used
‘‘◦’’, ‘‘�’’, and ‘‘4’’ to denote the face location, the left
hand’s location, and the right hand’s location, respectively.
The cartoons remove complex environmental factors that can
be used to identify tasks for nonspecific people and non-
specific environments. In cartoon pictures, the head and left
and right hands are represented by different symbols. The
different positions of the three important components and
their logical connections determine the spatial configuration
of different gestures. Therefore, cartoon pictures can directly
reflect the complete spatial information of gestures. We used
I2 to denote the cartoon picture and fed it into the CNN to get
feature x2:

x2 = fCNN 2 (I2). (2)

B. MULTI-INFORMATION FUSION
To effectively combine hand information with
spatial–temporal information, and inspired by Huang et al.
[38], we fused two channels of information together for better
SLR performance. However, Jie et al. [38] only considered
temporal factors of sign language and fused two data streams
in a fully connected layer of the CNN. The sign language
representation should actually consider spatial factors and
temporal factors together.

Inspired by Jun et al. [39], the ST-LSTM model was
used to represent the spatial–temporal dependencies and rela-
tionships among different frames and different body joints.
We fused features x1 and x2 in the ST-LSTM [38] unit,
as shown in Fig. 4. An ST-LSTM unit at time t is shown in
this figure. The unit contains 2 LSTM units: the first is an x1-
related LSTM unit (left box), and the second is an x2-related
LSTM unit (right box). To describe sign language in a video

frame, we use j and t to respectively denote the indices of
joints and frames, where j ∈ [1, J ] and t ∈ [1,T ]. The input
of the ST-LSTM unit is x jt , and h

j−1
t represents the hidden

state of the previous joint at time t , while hj−1t is the hidden
state of the joint at time t − 1.
In this paper, we use EM , ε and ζ to denote the maximum

epochs, gradient threshold, and initial learn rate, respectively;
the learn rate schedule is ‘piecewise’, and we use η, ξ , δ, nh
and bm to denote the learn rate drop period, learn rate drop
factor, embedding dimension, number of hidden units, and
minibatch size, respectively. To obtain better fusion results,
according to the actual samples in the sign language dataset,
we initialize the set LSTM parameters to select the adaptive
moment estimation (ADAM)method to train the data, and we
set EM = 250, ε = 3, and ζ = 0.001, η = 125, ξ = 0.1,
δ = 256, nh = 200, bm = 128.
The x2-related LSTM unit has two forget gates,

f T ,2t and f S,2t , to process the time-related information
and spatial-related information, respectively. According
to LSTM-based time series processing theory [39], the
x2-related LSTM unit can be calculated as follows:

i2t
f s,2t

f T ,2t
u2t
o2t

 =


σ

σ

σ

tanh
σ

×8
 x2t
h2t−1
h2t

 , (3)

c2t = i2t � u
2
t + f

T ,2
t � c2t−1 + f

S,2
t � c1t , (4)

where xt ∈ RD is the input signal of joint j at time t , and i, f , o
are the input gate, forget gate, and output gate, respectively.
c is the d-dimensional cell state, u is the modulated input,
and � denotes the element-wise product 8 : RD+d → R4d ,
which is an affine transformation.

Similar to x2, x1 can be calculated according to the
following:

i1t
f S,1t

f T ,1t
u1t
o1t

 =


σ

σ

σ

tanh
σ

×8
 x1t
h1t−1
h2t

 , (5)

c1t = i1t � u
2
t + f

T ,1
t � c1t−1 + f

S,1
t � c2t . (6)

Next, let

ct =
(
c1t
c2t

)
, ot = σ

8
 x1t

x2t
ht−1

 , (7)

where h is the fusion hidden state. Finally, the fusion output
in ST-LSTM is

ht = ot � tanh(ct ). (8)

C. ATTENTION-BASED BIDIRECTIONAL LSTM
TRANSLATION SYSTEM
According to the above, we input 2-feature sequence: x1 =
(x11 , · · · , x

1
T ) and x

2
= (x21 , · · · , x

2
T ), and through ST-LSTM
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feature fusion, we obtain the hidden state sequence h =
(h1, . . . , hT ), which can be considered an encode sequence.
In this paper, since we use bidirectional ST-LSTM as the
encoder, we have

V = q(h), ht = [h←t , h
→
t ], (9)

where q(.) is an encode function and V is an encoded vector
that includes all information of h. h→t is the hidden state
computed by the sign language sequence from beginning to
end at time t , and h←t is hidden state computed by the sign
language sequence from end to beginning at time t .

In the decode stage, let s be the hidden state vector in
the decode function and let y be the decode output vector.
Based on softmax function calculation, we obtain the optimal
decode output:

p(yt |yt−1, · · · , y1,V ) = max
exp(Wyst + by)∑
y∈D exp(Wyst + by)

, (10)

whereW is the weight matrix, b is the bias, and D is the dic-
tionary of sign language words. Generally, the LSTM decode
calculation using the attention mechanism can be expressed
as:

p(yt |yt−1, · · · , y1,Vt ) = g(yt |yt−1, st ,Vt ). (11)

We call Vt the context vector, and Vt can be computed by
Vt =

∑T
j=1 αtjhj, where hj is the encode vector and αtj is the

weight coefficient whose value corresponds to the decoding
output. A higher value of αtj corresponds to higher correlation
with the current decoding output. To obtain the weight of each
encoding vector at time t , we designed an alignment model:
f (st−1, hj). Since we aim to calculate the weight distribution
of each of the frame encoding features, we used hidden vector
st−1 in the decoding function to compare with the encoding
vector hj. We used the model f (st−1, hj) to align the decode
output with the encode input and then normalized the weight
of each encoding vector by the softmax function. We used
a simple perceptual machine layer to finish the alignment
calculations:

f (st−1, hj) = W T
att tanh(Wsst−1 + Uatthj + batt ), (12)

where W T
att ,Ws,Uatt and batt are parameters related to the

attention model. Letting etj = f (st−1, hj), we have αtj =
exp(etj)∑T
k=1 etk

. According to the LSTM calculation, we obtain the

decode output:
f dt
idt
odt
g̃t

 =


σ

σ

tanh
σ


8g

 yt−1
st−1
Vt

 , (13)

gt = f dt � gt−1 + i
d
t � g̃t , (14)

where f dt , i
d
t , and o

d
t are the forget gate, input gate, and output

gate of the decoding calculation, respectively. φg is an affine
transformation.

Finally, we obtain the sign language sentence translation
results:

st = odt tanh(gt ), (15)

yt = soft max(Wsst + bs). (16)

In summary, the input of the Bi-ST-LSTM-A system is the
image feature sequence X1, · · · ,XT , where T is the length
of the sign language image sequence and X = (x1, x2), x1

and x2 are image features corresponding to images I1 I2,
respectively, and the system output is the recognition results
of a continuous sign language sentence: (y1, · · · , yn), where
n is the length of the sentence. In training parts, the loss
function can be defined as:

Loss = 1− p(y1, · · · , yn|X1, · · · ,XT ; θ ). (17)

We also use the gradient descent method to train the
parameters:

θ ← θ + η
∂Loss
∂θ

. (18)

Finally, the optimization parameters are obtained: θ∗ =
argmaxθ p(y1, · · · , yn|X1, · · · ,XT ; θ ).

IV. RESULTS AND DISCUSSION
A. DATASET
We tested the performance of our method using 4 sign
language datasets: one is a continuous dataset collected by
us, and the other 3 datasets are open-source continuous sign
language datasets, namely, a Chinese sign language (CSL)
dataset [38] and a German sign language dataset, which are
both RWTH-PHOENIX-Weather [38] SL datasets, and the
RWTH-PHOENIX-Weather-2014T dataset.

In our experiments, only RGB video streams were used.
Our CSL dataset was collected in-house and can be used for
daily communication. This dataset consisted of 50 continuous
common CSL sentences, such as ‘‘What’s your name?’’,
‘‘Hello, everyone,’’ and so on. Each sentence consisted of 3–
5 signs, with a total of 150 different isolated signs in the
dataset, including ‘‘you,’’ ‘‘ID card,’’ and ‘‘home’’. There
were 500 instances of each isolated sign, for a total of 150 =
75, 000 instances. We used 70% of instances for training,
15% of instances for validation, and the remaining 15%
for testing. Some CSL examples in our dataset are given
in Fig. 6.

The 500 CSL dataset [38] contains 25,000 video instances.
The total video clip is 100+ hours long and was recorded
by 50 actors. Each video instance was labeled semantically
by a professional sign language teacher. We used 70% of the
instances for training, 15% for validation, and the remaining
15% for testing.

The RWTH-PHOENIX-Weather dataset contains 7,000
weather forecast sentences from nine sign language speakers.
All of the videos were 25 frames per second (FPS), with
a resolution of 210 × 260. Overall, 80% of the instances
were used for training, 10% for validation, and 10% for
testing. The RWTH-PHOENIX-Weather-2014T dataset is an
expansion of RWTH-PHOENIX-Weather and contains a total
of 8257 videos.

The evolution of sentence recognition is different from iso-
latedwords recognition. In sentence recognition, the length of
the output sentence may not be consistent with the length of
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FIGURE 5. Illustration of CSL words in our CSL dataset.

FIGURE 6. Training process of the proposed Bi-ST-LSTM-A sign language
recognition model.

the annotation sentence, which means that there may be an
increase in output, deletion, and replacement errors. To con-
sider various errors and describe the accuracy of sentence
recognition, we use the following metrics [43]:

Accuracy = 1−
S + I + D

N
× 100%, (19)

where S, I , and D represent the minimum number of replace,
insert, and delete operations, respectively, required to convert
the hypothetical sentences to true annotations.

B. PERFORMANCE EVALUATION ON OUR DATASET
1) ACCURACY
In our dataset, 50 sentences were established to test the con-
tinuous CSL recognition framework proposed in this paper.
These sentences were composed of 150 isolated sign words

TABLE 1. Results of continuous CSL recognition for various framework
settings. (In the experiment, the adaptive moment estimation (ADAM)
method is selected for data training with EM = 250, ε = 3, ζ = 0.001,
η = 125, ξ = 0.1, δ = 256, nh = 200, and bm = 128).

and included common phrases such as ‘‘Do not forget to bring
an umbrella,’’ ‘‘This is my business card,’’ and ‘‘Is there a
room?’’

The visual receptive field and time window length are
highly important for spatial feature fusion with a large time
span. The fusion effects of the proposed method under differ-
ent combinations are compared on our database. As shown in
Tab. 1 and Tab. 2, we obtain some recognition results based on
different parameter settings, and from the results, we observe
that our proposed method obtains the best performance
regardless of the parameter settings.

We also find that the combination of the time series model
and sequential neural network (LSTM + HMM model) can
effectively improve the accuracy of sign language recogni-
tion. The combination of the attention model and sequential
neural network (LSTM + attention) can obviously improve
the recognition accuracy of continuous sign language. Hence,
it is best to consider the temporal and spatial model sequence
neural network. One possible explanation for these findings
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TABLE 2. Results of continuous CSL recognition for various framework
settings. (In the experiment, the adaptive moment estimation (ADAM)
method is selected for for data training with EM = 250, ε = 5, ζ = 0.005,
η = 125, ξ = 0.05, δ = 256, nh = 200, and bm = 128).

FIGURE 7. Some examples of sign language feature representation in the
video frame image. Different gestures (left) correspond to different
features (right).

is that the time fusion layer usually focuses on capturing
information integration at different times, while visual input
involves more spatial attributes of a gesture but is closely
related to the dynamic correlation of hand shape. Therefore,
a suitable spatiotemporal fusion structure can be applied to
the visual input with a close temporal structure.

The proposed technique was tested on a PC with an Intel
Core i5 CPU with 8 GB of RAM and the Microsoft Windows
10 operating system. We used two Titan graphics cards for
training acceleration. The training process with our dataset
is shown in Fig. 6 for 75,000 video samples: 70% of the
samples were selected as training samples, there was a total
of 600 epochs, and the training time was 13 hours 54 min.
The value of the loss function decreased over time.

We compared continuous CSL recognition performance
for different data sizes and various frameworks. As shown
in Tab. 1 and Tab. 2, the recognition accuracy gradu-
ally decreased with increasing quantity of data, making
large-scale sign language recognition difficult. For exam-
ple, as shown in Tab. 1, the LSTM recognition accuracy
for 10 samples was 91.13%, but it decreased to 72.22%
with 50 samples; this result may have been caused by a
decline in the isolated word recognition or increased sentence
complexity. Regardless, the LSTM + attention and LSTM
+ HMM approach outperformed the LSTM method, with
Bi-ST-LSTM-A producing the highest recognition accuracy
(78.87%) across all 50 sentences. These results indicate that
multi-information fusion is beneficial for automated segmen-
tation of sign language sentences, independent of the data
sampling environment.

Additional details are shown in Figs. 7 and 8. In Fig. 7,
some examples for sign language feature presentation are
shown. We can see that our proposed sign language feature

representation is effective and that different gestures corre-
spond to different feature representations.

An attention matrix is also given in Fig. 8. We can see
that the sign language sentence can be translated well by the
attention model. Four attention score matrixes are presented
in Fig. 8, and the attention scores highlight the relationship
between the source and translated sequences. Each attention
score can be calculated by:

scoreattt = softmax(
T∑
j=1

αtjhjZ encj ), (20)

where the softmax(.) is an activation function, and the atten-
tion score at each time step is the dot product of the hidden
state hj and the learnable attention weights αtj multiplied by
the encoder output Z encj . The encoder output is obtained by
Z = embedding(X,Winput ), where the embedding function
maps numeric indices to the corresponding vector given by
the input weightsWinput .

2) TIME COST
We also test the time cost of proposed method, with the time
cost comparison results given in Tab. 3. From the results,
we can see that the LSTM method uses the shortest time
for training, and the testing time is 0.22 s, while at the same
time, our method uses the longest time for training. In total,
the testing time of all LSTM-based methods is almost same.
The disadvantage of our method is the longer training time,
while it has the advantage of the highest recognition accuracy,
and the testing time is almost the same as those of the other
methods.

C. PERFORMANCE EVALUATION ON THE OPEN-SOURCE
DATASET
We also compared our method with existing approaches on
3 open-source databases. For fair comparison, we set several
LSTM-based methods as baselines.

1) BASELINES AND CRITERIA
To fully evaluate our model, we compare the proposed
method with several baseline methods. The first baseline is
long-short term memory (LSTM). The LSTM-based method
[5] directly translates the video into natural language. In [19],
the ‘‘fc7’’ layer feature was extracted from each frame to
feed the feature sequences into the LSTM network at each
moment, and the LSTM outputs a corresponding word at
each moment. The second baseline is video-to-text (S2VT)
[13], which is a stacked two-layer LSTMwhere the first layer
encodes video frames. S2VT uses the CNN output as an input
feature, and once all the frames are read, the model generates
a sentence verbatim. The third baseline is LSTM combined
with an attention mechanism (LSTM-A) [16]. This model
takes advantage of the global time structure and focuses on
themost relevant time frames. The fourth baseline is LSTM-E
[41], a model based on visual semantic embedding. Here,
the CNN is used to extract the visual features of the selected
video frames for a given video. Video representations are
generated by pooling the values of these visual features.
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FIGURE 8. Example attention score matrix. The proposed end-to-end sign language translation system can
translate key words well by using the attention mechanism.

TABLE 3. Time cost comparison of the proposed method and other
methods.

Then, at the same time, the visual semantic embedding model
of LSTM is used to generate the video sentences and measure
the distance between the video and the sentences.

2) EVALUATION ON THE CSL DATASET
Tab. 1 summarizes the identification results compared with
those of the baseline methods on the continuous CSL dataset.
Because our framework is based on LSTM, it is compared
to LSTM [5], S2VT [13], LSTM-A [16], LSTM-E [41], and
HAN [38].

We tested the sentence recognition accuracy by compen-
sating for the missing alignment during the identification
process. The proposed method achieved the highest accuracy.
While this alignment is not a true alignment result, we still
believe that our proposed scheme is feasible. It is important
to note that although all of the LSTM-based models are
similar to our model, one of the key differences is that many
LSTM-based methods ignore or simplify temporal or spatial
information in order to simplify the calculation during the
embedding process. We chose to not only retain temporal
information but also retain spatial information and optimize
the alignment of video sentences. In addition, we compared
our model with the traditional continuous SLR algorithms,
such as CRF [45] and DTW-HMM [8]. These models require

TABLE 4. Results of continuous CSL recognition for various framework
settings in the open-source CSL dataset [38]. The ADAM method is
selected for data training, and for LSTM-based method, we set EM = 300,
ε = 3, ζ = 0.001, η = 100, ξ = 0.01, δ = 200, nh = 100, and bm = 50. The
other methods select optimal parameters for training.

presegmentation of the video when they are identified, pos-
sibly leading to segmentation errors. From the comparison
results, we can observe that our method presents improved
SLR accuracy due to the avoidance of time segmentation.
In Tab. 2, we compare recognition performances based on
different parameter settings, and it is observed that regardless
of the parameter values, our method always obtains the best
test results.

3) EVALUATION ON THE
RWTH-PHOENIX-WEATHER-2014 DATASET
We evaluate the performance of the proposed method
by comparison with some state-of-art methods on the
RWTH-Phoenix-Weather-2014 dataset, including HMM
[11], Deep Hand [21], recurrent CNN [44], CNN-LSTM-
HMMs [49], CNN-TEMP-RNN [46], CNN-Hybrid [22] and
SubUNet [53].

Tab. 6 shows the comparison results of continuous SLR on
the RWTH-PHOENIX-Weather dataset. Some CNN-based
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TABLE 5. Results of continuous CSL recognition for various framework
settings in the open-source CSL dataset [38]. The ADAM method is
selected for data training, and we set EM = 250, ε = 5, ζ = 0.005, η = 125,
ξ = 0.05, δ = 256, nh = 200, and bm = 128. The other methods select
optimal parameters for training.

TABLE 6. Performance comparison of different methods on the
RWTH-PHOENIX-Weather dataset. (For the LSTM-based method, we select
the ADAM method to train the data and set the LSTM parameters as
EM = 300, ε = 3, ζ = 0.001, η = 100, ξ = 0.01, δ = 200, nh = 100, and
bm = 50. The other methods select optimal parameters for training).

methods always obtain good recognition results, such as
deep hand and recurrent CNN. Both deep hand [21] and the
recurrent CNN [44] are extensions of the CNN: the former
combines the CNN with EM algorithms, while the latter
combines the RNN and the CNN. These methods not only
exploit the feature learning ability of the CNN but also utilize
the time-series modeling ability of the iterative EM and RNN.
Our approach uses a similar idea but additionally employs an
attention model to strengthen the key content of translation.
The approach also uses high-resolution image detection to
obtain subtle hand local information and improve the recog-
nition accuracy and robustness of identification. Then, our
approach uses the ST-LSTM attention network to generate
sign language sentences. The comparison results show that
the proposed Bi-ST-LSTM-A network is superior to the other
state-of-the-art methods.

4) EVALUATION ON THE RWTH-PHOENIX-WEATHER-2014T
DATASET
We also use the RWTH-Phoenix-Weather-2014T [4] contin-
uous sign language dataset, which is an extended database
of RWTH-Phoenix-Weather-2014, to evaluate the perfor-
mance of the proposed method. This dataset provides spo-
ken language translations and gloss-level annotations for
German sign language videos of weather broadcasts. The
dataset is built by 9 different signers and contains a total
of 8257 videos. The dataset includes 2887 different iso-
lated sign language words. The videos’ size is 210 × 260.
We also divide the dataset into three sets for training, val-
idation and testing, and there is no overlap with the pre-
vious version of the dataset in any subset. As shown in
Tab. 7, the Bi-ST-LSTM-A achieves 75.32% accuracy on the

TABLE 7. Performance comparison of different methods on the
RWTH-PHOENIX-Weather dataset.(For the LSTM-based method, we select
the ADAM method to train the data and set the LSTM parameters as
EM = 300, ε = 3, ζ = 0.001, η = 100, ξ = 0.01, δ = 200, nh = 100, and
bm = 50, while other methods select optimal parameters for training).

test set. Comparison to some state-of-the-art methods, such
as the CNN-LSTM-HMM method [49], Re-Sign [27] and
CNN-Temp-CNN [46], shows that ourmethod has the highest
recognition accuracy.

V. CONCLUSION
In this paper, a continuous SLR framework based on an
ST-LSTM fusion attention network is proposed. We call it
Bi-ST-LSTM-A, and it bypasses the sequence segmentation
steps. The SL video features are produced by a dual-stream
CNNmodel: one stream analyzes global motion information,
while the other focuses on local gesture representation. The
ST-LSTM is used for spatial–temporal information fusion,
and then,an attention-based Bi-LSTM framework is intro-
duced to measure the correlation between the video and the
sentence. Finally, the transformation between the video and
the sentence is established by the Bi-ST-LSTM-A network,
and the sentence recognition is realized through encoding and
decoding operations.
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