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ABSTRACT The goal of the study was to research different communication modalities needed for intuitive
Human-Robot Interaction. This study utilizes aWizard of Oz prototyping method to enable a restriction-free,
intuitive interaction with an industrial robot. The data from 36 test subjects suggests a high preference for
speech input, automatic path planning and pointing gestures. The catalogue developed during this experiment
contains intrinsic gestures suggesting that the two most popular gestures per action can be sufficient to
cover the majority of users. The system scored an average of 74% in different user interface experience
questionnaires, while containing forced flaws. These findings allow a future development of an intuitive
Human-Robot interaction system with high user acceptance.

INDEX TERMS Activity recognition, cooperative systems, gesture recognition, human-robot interaction,
intelligent robots, interactive systems, robot control, robot learning, telerobotics.

I. INTRODUCTION
The factory of the future, the so-called smart factory, relies
on intelligent, independently operating and globally net-
worked systems [1]. As part of the fourth industrial revo-
lution (Industry 4.0), a new possibility for production was
introduced: Human-Robot Interaction (HRI). Robots are not
operated behind a protective barrier as usual, but work in the
same space as humans. Three levels of cooperation between
humans and robots have been established: coexistence, coop-
eration and collaboration [2].

To enable collaboration and integrate humans into these
smart surroundings, intelligent systems and sensors are
required, since humans lack a direct digital interface. Human
communication is complex. Only a part of a spoken message
depend on the actual words, while the vocal information (tone
and other sounds) and nonverbal information (body stance,
mimic, gestures), depending on the context, sometimes play
the major role, as observed by Albert Mehrabian in his
studies [3]. That is why the quality of interaction is crucial
and a lot of testing is needed. What is the use of a great
expensive system that is not safe or not applicable? The effort
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of programming as many scenarios as possible would not be
economical. One way to overcome this issue is to use the
well-established method of Wizard of Oz (WoZ), to evaluate
and adapt existing, unfinished systems.

A. WIZARD OF OZ
The WoZ methodology allows the use of technology as a
rapid prototype that would be too costly or time consum-
ing to implement otherwise or is generally not available
yet [4], [5]. The subjects are tricked into thinking that they
interact with an autonomous machine when in reality they are
interacting with a human operator instead. For the duration
of the experiment, the operator secretly controls the sys-
tems actions, unknown to the test subjects. The operator is
concealed from the participants by remotely working from
another room, or hidden in plain sight, e.g. as an experi-
ment observer, pretending to be taking notes or as a fake
participant.

This method has been proven useful throughout many dif-
ferent Human-Machine Interaction (HMI) studies [6]–[10].
It can also be used repetitively to further improve the
design of the system [11]. WoZ gives us the opportunity
to take a more general approach that facilitates a natural,
intuitive HMI.
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B. RELATED WORK
Many ideas have been developed to further improve the
human interaction with industrial robots [12]–[16]. Among
others, they propose augmented reality (AR) concepts to
give visual feedback [12], [16] or use external tools as
interface [12], [14]. For example, Zaeh & Vogl [12] success-
fully presented an interactive laser-projection system for pro-
gramming industrial robots. And although noise in industrial
environments is a challenge for automatic speech recognition
systems, Pires [13] has shown that it is possible to overcome
with the use of headsets.

Serrano and Nigay [10] propose a component-based
WoZ-approach for prototyping of multimodal user inter-
faces. Another approach has been undertaken by Speicher
and Nebeling [17] with ‘‘GestureWiz’’, a tool that uses
the WoZ-technique to quickly model gesture interfaces.
Hoffman [18] describes another framework, ‘‘OpenWoZ’’,
which is specifically made for HRI studies.

We implemented our own WoZ-framework in order to
allow a restriction-free, multimodal HRI, since none of the
mentioned techniques provided all of the necessary features
(speech, gesture, head pose, gaze, posture, touch).

II. STUDY DETAILS
Experiments were conducted by an experimenter who pro-
vided guidance to the subjects for the duration of the experi-
ment and a second experimenter who operated the robot, from
now on referenced as ‘‘wizard’’. The wizard sat in another,
well isolated chamber, invisible to the subjects, equipped
with two surveillance monitors and headphones, along with
a control unit. This was necessary to preserve the illusion
of an independently, intelligently acting robot. To improve
uniformity and standardization, the same people and roles
were used for all experiments. The control unit consisted of
a handheld controller (Dual Shock 4), a robot control-panel,
a keyboard for shortcuts and a second keyboard for direct
speech output. Shortcuts were speech feedback, projector
control or pre-saved robot-coordinates for fast and precise
interaction. The wizard’s chamber is shown in fig. 1.
The experimental setup is based on an UR5e industrial

robot with a RG6 gripper. The robot was developed by Uni-
versal Robots with the explicit goal of enabling safe HRI.
It was placed on a table in front of a TV-screen, displaying
the depth view from a time-of-flight camera together with a
gesture recognition which were— apart from the intention to
strengthen the illusion — not used.

A projector facing down from the ceiling was used to
highlight blocks or positions. Five cameras recorded the
experiment and streamed the view in real time to the wiz-
ard. The instructions were presented on a separate monitor.
The entire system was introduced to the subject as ‘‘RoSA’’
(Robot System Assistant).

12 cubes with letters from A-Z and numbers from 0-9 were
placed in front of the robot. Half of the cubes were black with
white letters and the other half white with black letters. The
setup as described is shown in fig. 2.

FIGURE 1. Wizard’s chamber: monitors with a handheld controller, UR5e
control-panel, one keyboard for shortcuts and another for direct speech
output.

FIGURE 2. RoSA system setup: UR5e industrial robot, ‘‘mock-up’’-gesture
recognition (right), instructions (left).

A. CAPABILITIES AND RESTRICTIONS OF RoSA
The skills and restrictions described below were used to
create a consistent set of rules for the wizard when acting
as RoSA. The skills include high-level speech recognition,
covering generic terms: direction (left, right, front, etc.), posi-
tion (home, ‘‘here’’), distances (cm, mm), angles (degrees)
and adapting to custom user vocabulary after several repe-
titions (‘‘cube’’ can be referred to as ‘‘block’’ or ‘‘brick’’).
Furthermore RoSA is able to interpret any shown gesture at
human level, filtering obvious non-HRI gestures (e.g. scratch
head, check wristwatch). When speech and gestures are used
simultaneously, the gestures are interpreted secondarily as an
amplifier for the spoken words and their intention, as under-
stood by the wizard. RoSA is not able to recognise the letters
or numbers on the given cubes, but is able to recognise and
identify the object, knowing what colors and shapes are.
RoSA is able to route to specific coordinates, hand-over, pick
or place objects, collision-free.

In addition to the recognition capabilities, the system is
able to learn from the subject. The learning process can
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be separated into passive teaching by repetition and active
teaching by direct commands.
If a task requires more than one step, these could be

sequenced and the program could be reused later. This is
referred to as advanced programming.
Since RoSA is controlled by an operator using differ-

ent presets and a custom controller, the system is not able
to move in exact numerical steps when prompted (‘‘move
left 5 cm’’). In such cases the speech input is still accepted,
but the resulting distance differs due to manual control.
RoSA does not know the position between two blocks and

is not able to route to this position without prior teaching.
Slight ‘‘system imperfections’’ were applied in order to force
diversity in the use of interaction modalities.

B. EXPERIMENT
The study was held at the Otto-von-Guericke-University
Magdeburg, Germany. The experiments were conducted in
German language. The subjects were asked to fill in their
sociodemographic information, as well as their experience
with artificial intelligence (AI), industrial robots and pro-
gramming skills. In the following the experimenter provided
material with the instructions. These vaguely described the
capabilities of the system (‘‘RoSA is capable of: speech- and
gesture-recognition’’). The subjects were then given three
tasks:
• 1. Have RoSA give you a block.
• 2. Spell a specific word with alternating color of blocks.
• 3. Build a 3-2-1-Pyramid with black-white-black layers
(as seen in figure 3).

FIGURE 3. Composition of view from the streaming cameras; subject
using pointing gesture.

After fulfilling all tasks the subjects were asked to com-
plete several questionnaires to evaluate their user experience
(see chapter IV-B) [19]–[22].

Later the subjects were told to show a set of gestures
that would further improve the systems capabilities. The set
contained gestures to sign in, start, stop, move XYZ and
open/close/rotate gripper. During the procedure there were
two enforced system failures at certain events. The first one

occurred during the second task: when asked to put a block
on a projected field the system would purposely stack the
cube onto another one until the subject actively intervenes.
The second failure occurred during the third task: right before
finishing the task the system would crash the last cube into
the pyramid. Doing so would set back the progress, so steps
would have to be redone. These deliberate errors were intro-
duced in order to trigger reactions to errors or unpredictable
behaviour. At the end of the experiment the wizard was
revealed to the subjects.

III. ANALYSIS AND DATA SEGMENTATION
After the experiment the video data was reviewed and
the different modalities of interaction summed up. The
possible interactions were categorized into the following
groups: speech direction [continuous, steps, units], speech
instruction [acknowledgment, numeric, descriptive], gesture
direction [continuous, macro, micro], gesture instruction
[acknowledgment,pointing]. Examples for the modalities can
be seen at table 1. The intention of the interaction determines
the categories, which are mutually exclusive.

TABLE 1. Interaction modalities with examples.

A Pointing gesture to show a direction is a different inten-
tion as the same gesture to show a location. It was sufficient
for the subject to use a modality once for it to be regis-
tered. Furthermore the use of: teaching features, advanced
programming, active gaze, touching and leading the robot,
as well as time needed for a task, robot problems and num-
ber of unclear instructions were noted. The term ‘‘instruc-
tions unclear’’ was a response from RoSA, when knowledge
restrictions were surpassed.

To ensure inter-rater reliability, the same footage
was examined by the raters with a resulting 93% of
agreement leading to a Cohen’s kappa coefficient κ

of 0.86 which corresponds to ‘‘almost perfect’’, according to
Landis and Koch [23].
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The recorded data was then expanded with the data from
the questionnaires and the full data set examinedwith the help
of descriptive statistics and Pearson product-moment corre-
lation coefficients [24]. This method was chosen because
Pearson correlation coefficient estimated for two binary vari-
ables computationally will return the phi-coefficient, used for
describing binary data [25].

Due to problems with memory cards and the unexpected
failure of cameras or gimbals, we suffered data loss. Fortu-
nately these gaps could partly be covered by other camera
angles.

IV. RESULTS
We have a sample size of 36 subjects and assume the
data to approximately follow a normal distribution. There
were no outliers. The demographic questionnaire reveals
14 females, 22 males and 0 diverse subjects with age ranges
from [20]–[24] to [55]–[59] with the median being the
group of [25]–[29] years. All subjects completed the tasks
with a time between 13 and 37 minutes, averaging around
19.58 minutes.

A. HUMAN-ROBOT INTERACTIONS
Some biases (‘‘this is just like Alexa/Google/Jarvis’’) could
be observed, when subjects were completing the demo-
graphic questionnaire regarding their experience with arti-
ficial intelligence systems. This resulted in 97.2% of the
subjects using any form of speech for interaction at least
once. The subjects used different interaction modalities to
complete the tasks.Most of themodalities were used indepen-
dently, while some depended on auxiliary input to function
efficiently. Speech description, for example, was used exclu-
sively in combination with pointing gestures, whereas both of
the modalities alone, while not being as effective, would have
been sufficient. Most of the subjects used a single working
strategy and maintained it throughout the experiment, until
encountering restrictions. Only a few subjects experimented
and explored the possibilities.

For instance: If the subjects (S) that primarily used descrip-
tive speech for HRI faced the restriction of RoSA (R) not
being able to read the letters on the blocks. The subjects
either retried the same input or changed strategy. This could
be switching to numeric instructions:

S: ‘‘RoSA, take the cube with the letter A.’’
R: ‘‘I did not understand, the input was unclear.’’
S: ‘‘Letter A, [. . . ].’’
R: ‘‘I did not understand, the input was unclear.’’
S: ‘‘RoSA, take the first cube and place it on the
first projected position.’’

Other users who ran into the same problem tried adding
new interaction modalities. These ‘‘hybrids’’ (72.2 % of the
subjects) used pointing gestures in combination with speech
to fulfill the given tasks:

S: ‘‘Take this *points* and put it here.’’ *points*

In rare cases the subjects switched modalities to gestures
only, using either pointing gestures or directional gestures to
operate the system.

An in-build system flaw of not understanding the instruc-
tions ‘‘put on two cubes’’ led to another obstacle that would
come up when trying to stack the pyramid. Before that, all
instructions, which were compliant with the rule-set, given to
RoSA by the user, were executed flawlessly. When asked to
stack on two cubes, RoSAwould choose one of the cubes and
put the third one directly on top.

S: ‘‘Put the cube in the gripper on the cube A and
the cube B. On both of the cubes.’’

The instruction was accepted if the letters A and B were
already taught to RoSA. Alternatively ‘‘this’’ accompanied
with a pointing gesture instead of letters would also have
been accepted. Still, instead of placing the cube at the desired
position (on top of space between the cubes) RoSA would
execute the command literally: placing the third cube on
the first and then quickly picking it up and placing it on
the second.

At this point most subjects switched to a more manual
approach using only directional voice commands (91.7%) or
directional gestures (36.1%). Subjects not relying on auto-
matic path planning, i.e the pre-programmed positions known
toRoSA, but using directional commands from the beginning,
did not notice the position deviationwhen stacking, since they
were in direct control of the robot path.

The popularity for each interaction modality can be seen in
the table 2.

TABLE 2. Frequencies of use for interaction modalities and other factors.

It was possible to actively teach RoSA new commands
by explaining the action beforehand or by summarising the
actions already taken:

S: "RoSA, take the cube and place it here." *points*
S: "This cube is next to the last one."
R: "I understand, I learned: next to the last one."
S: "RoSA, take another black cube and place it next
to the last one."
RoSA places the cube as expected.
R: "Is this correct ?"
S: "Yes, RoSA, very good."
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The passive teaching took place when RoSA was given
additional information not necessarily required for the exe-
cution of the command:

S: "RoSA, give me the third cube, the one with the
letter A."
RoSA moves to the cube.
R: "Processing data. I learned: letter A. Is this
correct ?"
S: "Yes, give me the cube [...]."
RoSA hands-over the correct cube.

Although 72.2% of the subjects used teaching in a passive
or active manner (58.3% / 27.8%), only 55.6% of the subjects
actually (re-)used the commands learned by RoSA.
22.2% asked RoSA basic ‘‘yes/no’’ questions about the

system capabilities or the actual situation:
S: ‘‘RoSA, ‘‘Can you see the projected fields?’’
R: ‘‘Processing data. Yes.’’

-or-
S: ‘‘RoSA, ‘‘Can you give me a black cube ?’’
R: ‘‘Processing data. Yes.’’
RoSA is not moving.
S: ‘‘RoSA, ‘‘give me a black cube.’’
RoSA hands-over a black cube.

All the users admitted to not noticing that RoSA was
operated manually when greeted by the wizard after the study
and thereby confirming the WoZ setup.

B. USER EXPERIENCE
To evaluate the user experience, subjects were asked to com-
plete the four questionnaires, SUS, PSSUQ,UMUXandASQ
after the third task, still thinking that RoSA is an AI system.
To plot and compare the PSSUQ and ASQ Scores range
of [1 to 7] on the same graph as SUS and UMUX range
of [0 to 100], a conversion of

Score[0:100] = (Score[1:7] − 1) ·
100
6

was used. The results can be seen below in table 3.
The different questionnaires show a moderate to strong

positive correlation (UMUX 0.71, PSSUQ 0.81, ASQ 0.43)

TABLE 3. Results of user-experience questionnaires SUS [19], UMUX [20],
PSSUQ [21], ASQ [19].

when compared to SUS. The moderate correlation of
ASQ can be explained by the low count of questions this
questionnaire uses, which leads to higher quantisation of
possible score values. A total system score can be calculated
by averaging the four questionnaire scores, resulting in a
total system score of 74.02 out of 100, which will be further
referred to as the score.

C. DATA CORRELATION
The correlation coefficients in table 4 and 5 describe the
statistical probability of two or more modalities being used
together.

TABLE 4. Pearson’s correlation coefficients between interaction
modalities.

A strong positive correlation can be seen between pointing
gesture and descriptive voice commands. There is also a
strong correlation between macro and continuous gestures.
The pervasive use of descriptive voice commands in combi-
nation with iterative voice commands, but not with numerical
voice commands is worth noting.

A subject using the speech domain is more likely to stay
in it and less likely to use directional gestures. This is espe-
cially seen in the overall negative correlation between speech
instruction and gesture direction.

Time was not a significant factor in the experiment which
is supported by the evaluation (table 5) since there is no
correlation with the system score. The biggest time saver,
suggested by the data, was using automatic path-planning.
On the contrary, using voice commands or two handed ges-
tures had a strong correlation with time. Subjects that mainly
used instructional numeric voice commands or instructional
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TABLE 5. Pearson’s correlation coefficients for score, time and age.

TABLE 6. Results gesture catalogue: 1st and 2nd most popular choices*.

pointing gestures were usually the fastest to finish all three
tasks. Subjects who were keen to experiment with different
modalities needed more time to complete the assignments.

System failures had no contribution to the score, in con-
trast to ‘‘instruction unclear’’ feedback which had a negative
correlation of 0.4.

The factors that impacted the score negatively the most are:
age, experience with AI, passive teaching, number of unclear

instructions and modalities speech description and gesture
pointing. The factors that had positive influence on the score
are: Robot ‘‘Freedrive-mode’’, when the robot arm can be
manually moved by the subject, and the use of modalities
Gesture Micro and Macro. There is a weak positive correla-
tion (0.22) between experience with AI and active teaching,
as well as a moderate correlation (0.35) between experience
with industrial robots and not using the knowledge taught
to RoSA. Passive learning shows a negative correlation with
the score.

D. GESTURE CATALOGUE
The gestures given by the subjects to ‘‘improve the system’’
were relatively consistent for the actions: stop, move and
operate the gripper; while the actions for start and sign in
were more individual. The summary of the two most popular
gestures per action can be seen in the table 6.

V. CONCLUSION
This study provides deep insight into user experience and
interaction with industrial robotic assistants. In giving the
subjects the illusion of a restriction-less system, we had the
possibility to observe truly intuitive HRI.

As described in chapter II-A, RoSA, although being oper-
ated by a wizard, had several knowledge-based restrictions in
order to comply to the experiment setup.

The feedback ‘‘instruction unclear’’ could have led to a
high degree of frustration. This especially applies to subjects
with more experience in AI, robotics and programming, lead-
ing to lower scores. Subjects from this group are more likely
to use such a system on a daily basis and are naturally more
critical.

The negative correlation between passive teaching and
score indicates that RoSA actively saying: ‘‘Processing data.
I learned: [. . . ]’’, or teaching basics (‘‘This is letter A.’’),
could have been perceived as annoying due to disturbance in
the workflow. Some subjects seemed to expect the system to
be already programmed to complete the given assignments
and only wanted to give orders and not program sub-tasks
that would seem basic.

The average score over all questionnaires being 74%,
shows that the average user was pleased with the system,
unaware that some of the errors were enforced on purpose
and the system was remotely operated.

Since the industrial environment of robots tends to be
noisy, we did not expect the high impact of speech. As the
experiment shows, under laboratory conditions, this seems to
be an intuitive way to communicate with such a system.

We assume the high use of dialogue-like speech to be an
effect of the subjects being biased by already existing AI
systems (Alexa, Google Assistant, Jarvis, etc.) and expecting
RoSA to behave in a similar manner (‘‘OK, RoSA.’’ vs ‘‘OK,
Google’’).

In many cases the system was expected to be able to cal-
culate forward kinematics and path-planning, fewer subjects
operated the robot with directional speech/gestures. The high
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correlation between macro and continuous gestures might be
due to the fact that they are very similar in execution and can
be used in an auxiliary manner.

We learned that the questionnaires were likely inadequate
for the given scenario as the scores for several questions
suggest. For example one of the questions being: ‘‘The system
helped to quickly fulfill the given task’’ – considering the task
being ‘‘stack a pyramid’’, which could have been done faster
by the subject – received a low score. If looking at the task
being ‘‘[program this robot to] stack a pyramid’’ the score
could have been different. Alternatively a modification of an
existing questionnaire or a set of new questions, especially
concerning HRI, could lead to a better and more detailed user
evaluation.

With the data from the ‘‘system improvement’’ catalogue
we present a set of gestures that can be applied to many
contact-less user interfaces. A system using the first two most
popular choices would allow for an intuitive way of interac-
tion for the actions Move XYZ, Open/Close/Rotate Gripper
and stop. The multitude of sign-in and start gestures suggest
a need for a customizable interface in order to fulfill user
expectations.

The interactive laser-projection system for programming
industrial robots by Zaeh & Vogl could be used to provide
the user with feedback to improve the precision of pointing
gestures [12]. A low-cost passive stylus ‘‘the DodecaPen’’
which allows 6 degrees of freedom input using a single
camera as proposed by Wu et al. could work as an alternative
to pointing gestures when higher precision is required [26].

For the next steps, we suggest development and testing of
a system based on pointing gestures complemented by object
orientated speech and micro/macro gestures for fine-tuning
as these modalities show high potential and time-efficiency,
as these modalities presented as intuitive in our experiments.

It is worth noting that the use of multi modal (speech, ges-
tures, gaze, body pose) interaction for contact-less communi-
cation adds an additional layer of redundancy and thus safety,
if the different modes are processed as logical conjunctions.
Although our system was ‘‘safe’’ as the robot operated in a
collaborative mode (with permanently reduced speed, force,
and power) a combination of the interaction modalities could
allow a safe integration of contact-less communication with
industrial robots. Our future work will focus on applying the
findings to state of the art technologies.
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