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ABSTRACT With the rapid development of artificial intelligence, the intellectual property protection of
deep learning models appeals widespread concerns of scientists and engineers. The black-box watermarking
protection scheme has been favored by many scholars due to its many advantages. The trigger set containing
data content and data annotation is the key of black-box watermarking technology. However, most of the
trigger sets in literates were constructed by comprehensible features, such as Gaussian noise and badges on
original data content. Then, the attacks based on machine learning can obtain the watermarking features and
generate fake trigger set. Therefore, fraudulent ownership claim attacks may occur. In this paper, we turn
our attention to data annotation and propose a black-box watermarking scheme based on chaotic automatic
data annotation. Chaos has superior features, such as the sensitivity of initial value, aperiodic behavior and
unpredictability of the chaotic sequence. We applies these chaotic features on data annotation so as to against
the fraudulent ownership claim attacks. Firstly, this scheme applies chaotic automatic data annotation, which
is time-saving and non-manual labeling. Secondly, chaotic sequences are unpredictable for long-terms, which
can break the principle of empirical or statistical machine learning based attacks when chaotic labeling the
trigger samples. Thirdly, the initial value and parameters in chaos offer a large range of key space, which can
facilitate the commercialization of the intelligent models. The key formulation also guarantees the separation
of the secret key and the trigger set. In addition, experiments and simulations show that the scheme is
effective, secure and robust. It can resist fine-tuning attacks, compression attacks, fraudulent ownership
claim attacks and overwriting attacks.

INDEX TERMS Black-box watermarking, trigger-set, chaos, automatic annotation, non-generalization,
intellectual property protection.

I. INTRODUCTION
Due to the heavy work of labeling and training high-
performance deep learning models and the increasing
importance of these models in AI industries, intellectual
property (IP) of deep learning models appeals great interests

The associate editor coordinating the review of this manuscript and

approving it for publication was Charith Abhayaratne .

of scientists and engineers. The high-performance deep
learning models, assisting society in saving time and manual
labors, are in threats of being stolen and abuse. Nowadays,
these deep learningmodels are lack of IP protections.Without
related protections, they would be trapped in commercial
disputes. Therefore, it is of great significance to authenticate
the IP ownership of the deep learning models which are the
neural networks obtained by deep learning training process.
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In recent years, researchers have proposed some protec-
tion schemes of deep learning models inspired by digital
watermarking [1], [7], [12]. The former watermarking
protection schemes for deep learning models can be divided
into two categories: white-box watermarking and black-box
watermarking. The white-box watermarking assumes the
model parameters and other internal details can be accessed
for public. The black-box watermarking mechanism assumes
that the model can only be accessed through the API interface
deployed by the model creator.

A. RELATED WORKS
On the white-box watermarking, some schemes have been
proposed. Uchida et al. [19] and Nagai et al. [20] made the
first attempt to embed a watermark into a neural network
model inspired by digital watermarking. The watermark
was embedded in the model parameters by a parameter
regularizer without significantly changing the distribution
of model parameters. It would not impair the performance
of neural network models. Wang and Kerschbaum [13]
found out that the above schemes modified the statistical
distribution of the model, and the watermark length could
be detected by measuring the standard deviation. As a
result, they leveraged an overwriting algorithm similar to the
scheme [19] to remove the watermark. Li et al. [21] exploited
two loss functions to modify the weights of the model and to
produce a specific activation under a particular input. Thus,
it works in both white-box and black-box environments.
Adi et al. [16] have proposed towatermark intelligentmodels
by adding a new regularization term to the loss function. But,
Adi et al. [16] found out that their schemes do not explicitly
address fraudulent ownership claim attacks. These methods
are white-box watermarking schemes. Although they all have
good performance to the protection of intelligent models, the
white-box watermarking schemes are vulnerable to statistical
attacks [9]. Besides, the extraction of the watermark has the
limitation that it can only be successfully extracted when a
complete model is obtained locally. Therefore, many scholars
began to turn to black-box watermarking protection schemes.

Merrer et al. [2] proposed a new zero-bit watermarking
algorithm leveraging adversarial samples. It can solve the
difficulty of watermark extraction by utilizing a small
set of queries through the remote API. Zhang et al. [6]
proposed three different watermark generation mechanisms
(WMcontent , WMunrelated , WMnoise), shown in Fig.1, and
a model protection framework. This framework applies

recreated images as a watermark to verify whether the outputs
are consistent with the labels. The main idea comes from
the Trojan Trigger [18], which uses a special set of inputs
designed by the owner to trigger the abnormal behavior
of Trojan Neural Network. Thus, the users can prove the
ownership of the model. Adi et al. [16] proposed embedding
watermarks by the error classified images, which can be
theoretically called ‘‘backdoor’’. Guo and Potkonjak [5]
proposed to add the message mark associated with the
signature to part of the original images as a watermark.
For the watermarking schemes that changed the original
images as the key trigger samples, Namba and Sakuma [9]
proposed a query modification attack. It can make the
verification of the trigger set invalid.

Although the white-box watermarking can carry more
information, its application scenarios are limited. It cannot
resist statistical attacks [9]. The black-box watermarking is
more practical because it works remotely by trigger sets.

B. MOTIVATIONS
The principle of the black-box watermarking scheme is
to embed a set of specific trigger set into a model as a
watermark. The trigger set is a non-public dataset containing
watermark features. It contains two parts: data content and
data annotation. The data content and annotations of the
trigger set are often different from their corresponding
original content and labels, which makes a fingerprint on a
model. Then, proving the fingerprint can verify ownership
of the model. The embedding of the watermark is to put the
trigger set and normal training data together into the neural
network for training so that we can verify the identity of the
model during the watermark extraction stage.

The former trigger sets are usually created by constructing
additional meaningful features such as noises and badges
on the original data, as is shown in Fig.1. The focus of
creating a trigger set is data content. These schemes cannot
guarantee the separation of the secret key and the trigger
set. Therefore, there may be a risk of key leakage when
verifying the identity of the model by trigger set. The key
leakage exposures the watermarking features of the model,
which leads the insecurity of the schemes. In addition,
the trigger sets of the former schemes are generalized,
which leads the trigger set out of enclosure. A good
watermark protection scheme should avoid the generalization
of watermarks. Generalization of watermarks means that
others can easily create fake trigger sets based on the original

FIGURE 1. Watermark generation mechanisms [6].
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watermark features. The adversary may choose similar key
samples to trigger the model under the fraudulent ownership
claim attacks [21]. Using the fake samples to trigger the
watermarked model, the attacker can achieve the purpose of
fraudulently claiming the ownership of the model.

Therefore, in this paper, we turn our attention to data
annotation. The annotation of the trigger set can effectively
compensate for the generalization of watermarks. Most of
the previous trigger set labeling work was done manually.
However, the automatic annotation of the trigger set in
black-box watermarking is necessary to save manpower.
In order to meet the above needs, we propose a chaos based
automatic labeling scheme of trigger sets.

Due to the sensitivity of initial value, aperiodic behavior
and unpredictability of the chaotic sequence, chaos in long-
term cannot be exactly predicted by statistics-based machine
learning. Once the trigger data set is chaotic labeled, attackers
cannot reproduce an alternative trigger set including the
labels that match the trigger set. Therefore, the water-
marking features meet the non-generalization capacity.
Non-generalization of watermarks guarantees adversaries
cannot create fake trigger sets even though they have got
our original trigger set. In addition, the initial value X0 and
parameter µ of the Logistic map are designed as the keys
in our scheme. We use these keys to generate the chaotic
labeling trigger set, then extract the watermark and verify the
ownership of the model by trigger set. Therefore, the secret
keys cannot be leaked during the watermarking verification.
The contributions of our work include: (1) It proposes
a new watermarking scheme based on chaotic automatic
annotation of trigger set; (2) It ensures the non-generalization
of watermarking features and good function of the original
model at the same time; (3) It can avoid the leakage of
keys when verifying watermarks; (4) It can resist fine-tuning
attacks, compression attacks, fraudulent ownership claim
attacks and overwriting attacks.

II. CHAOTIC FEATURES AND ANNOTATION
A. CHAOTIC FEATURES
Chaos has superior features, such as the sensitivity of initial
value, aperiodic behavior, and unpredictability of the chaotic
sequence [10]. These features can be applied in cryptography:
(1) Non-periodic: it is chaotic and irregular, hence it is
suitable for encryption. (2) Sensitivity: the orbit of the system
is extremely sensitive to the initial value. Subtle changes in
the initial value will lead an entire difference on the chaotic
behavior. (3) Unpredictable: it is unpredictable for the chaotic
sequence in the long term. Thus, machine learning cannot
predict its behavior statistically. In view of these features,
chaos is very suitable for the automatic annotation of trigger
set.

B. PRINCIPLE OF CHAOTIC ANNOTATION
The principle of chaotic annotation is to consider the
chaotic sequence that generated by the chaotic system as
the key sequence [4]. The chaotic system generates complex

dynamic behavior [3], [14], [15]. Because chaos is extremely
sensitive to the initial value, numerous uncorrelated and
pseudo-random chaotic sequences can be generated. So,
chaotic automatic annotation guarantees the possibility
of commercialization of the model. In fact, even if the
attacker has obtained the equations of generating the chaotic
sequence, it is difficult to guess the corresponding coefficient
parameters and the initial value of the chaotic sequence.
Therefore, the initial value and parameters are designed as
keys. The chaotic sequence is unique once the initial value
and parameters are assigned. Without knowing the related
initial value and parameters, the obtained chaotic sequence
cannot reconstruct the unknown parameters and predict
the forthcoming sequence in the long run. Thus, chaotic
automatic annotation guarantees the non-generalization of
watermarks. Without loss of generality, we mainly address
the characteristics of one-dimensional Logistic map in this
paper. In the following experiments, we will use Logistic
chaotic map labeling our trigger set as well.

One dimensional Logisticmap is a very simple chaoticmap
in mathematical form. However, the system has extremely
complex dynamic behavior and is widely used in the field
of secure communication. The mathematical expression is as
follows:

Xn+1 = µ∗Xn∗(1− Xn), µ ∈ [0, 4], X ∈ [0, 1], (1)

It is proposed by mathematical ecologist May in 1976 in
an influential review published in the journal Nature [8]. The
parameter µ is Logistic parameter. Researches have shown
that when X ∈ [0, 1], the Logistic map is in a chaotic
state. Fig.2 shows the bifurcation diagram of Logistic map.
It indicates that the parameter µ which is close to 4 can lead
a better chaotic behavior of X . Therefore, when labeling the
trigger set, the parameter µ should be close to 4. In addition,
the experimental results show that the chaotic sequence is
extremely sensitive to the initial value X0. Fig.3 shows the
distribution of the 32 results after 2000 iterations of Logistic
map is different after changing the initial value X0 from
0.2001 to 0.2002. As can be observed, a subtle change in the
initial value leads a significant difference between the two
distributions.

FIGURE 2. Bifurcation diagram of Logistic map.

The trigger set is different from the original training dataset
in both the data content and data annotation. The annotation
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FIGURE 3. Data distribution under different initial values (a) The
distribution of 32 results after 2000 iterations of Logistic map with
X0 = 0.2001, µ = 3.8 (b) The distribution of 32 results after
2000 iterations of Logistic map with X0 = 0.2002, µ = 3.8.

of trigger set needs unique intentional labeling to be the
fingerprint of a deep learning model. After such training
with this intentional trigger set, the model can remember the
unique fingerprint.

Since a subtle change in the initial values leads an entire
difference in chaotic sequence, the chaotic sequence maps
the trigger data sequence and obtains the data-related labels.
Then, the labels and trigger data samples may cause the
deep learning model over-fitting on this trigger set. An ideal
watermarking scheme for deep learning models not only
needs to maintain the function of the original model, but
also needs good over-fitting on the trigger set. Over-fitting
is usually considered as a negative result. However, in the
watermarking, the over-fitting on trigger set can enclose
the trigger set sample, thus avoiding generalization. The
generalization of the watermarks is the key of fraudulent
ownership claim attacks. Therefore, the trigger set based on
chaotic labeling can confine the trigger set and offer large key
space to watermarking models.

III. THE PROPOSED ANNOTATION SCHEME AND
PERFORMANCE
A. THE PROPOSED ANNOTATION SCHEME
The proposed scheme labels the trigger set by Logistic
chaotic map. Due to the uniqueness of chaotic sequence,
the unique watermark of the model can be proved in the
watermark extraction stage.

Assume that there is anm classification problem, the labels
of the data are represented by li, 1 ≤ i ≤ m and the collection

of the m labels is
m⋃
i=1

li. Firstly, we need to select n trigger

samples Nk , 1 ≤ k ≤ n. The corresponding original labels of

them are Lk , 1 ≤ k ≤ n, where
n⋃

k=1
Lk ⊆

m⋃
i=1

li. It means that

the union of all trigger set labels is a subset of the collection
of them labels. Our purpose is to divide these trigger samples
into an entire different chaotic labels L ′k , 1 ≤ k ≤ n, where

L ′k 6= Lk , 1 ≤ k ≤ n and
n⋃

k=1
L ′k ⊆

m⋃
i=1

li.

Next, we divide the chaotic value range [0,1] of one
dimensional Logistic map into m intervals [yi−1, yi), where

1 ≤ i ≤ m. Each interval [yi−1, yi) corresponds to a
specific category li. After that, we abandon the results of
Logistic map for the beginning N ′ iteration times. Then,
we obtain a sequence within n results after n iterations and
the n chaotic values are assigned to the n trigger samples
Nk , 1 ≤ k ≤ n. At this moment, each trigger sample
corresponds to a Logistic mapping value. Therefore, we can
classify the trigger samples into specific categories li, 1 ≤
i ≤ m according to the match between the chaotic values and
corresponding intervals. Suppose XNk represents the chaotic
value corresponding to the trigger sample Nk , 1 ≤ k ≤ n, the
annotation algorithms are as follows.

Algorithm 1 Trigger Annotation
Input:

Original Trigger data: Dwm = {Nk ,Lk}nk=1
Chaos Value of Nk : XNk , 1 ≤ k ≤ n
Label: li, 1 ≤ i ≤ m

Output:
Trigger Set: D′wm = {Nk ,L

′
k}
n
k=1

1: function Trigger_Annotation1()
2: for k from 1 to n
3: if XNk ∈ [0, y1) then L ′k = l1
4: else if XNk ∈ [y1, y2) then L ′k = l2
5: ...
6: else if XNk ∈ [yi−1, yi) then L ′k = li
7: ...
8: else if XNk ∈ [ym−2, ym−1) then L ′k = lm−1
9: else XNk ∈ [ym−1, 1] then L ′k = lm

10: end for
11: end function
12: function Trigger_Annotation2()
13: for k from 1 to n
14: if L ′k = Lk = li then L ′k = li+1
15: end for
16: if k = n and L ′k = Lk = li then L ′k = l1
17: end function

According to the function Trigger_Annotation1(), assume
that XNk ∈ [yi−1, yi), the label of sample Nk will be L ′k = li,
where 1 ≤ k ≤ n and 1 ≤ i ≤ m. To ensure that each trigger is
classified into an unpredictable category, the condition L ′k 6=
Lk , 1 ≤ k ≤ n is needed. Therefore, we relabel the trigger set
by the function Trigger_Annotation2().

Assuming that 1 ≤ k ≤ n− 1 and L ′k = Lk = li, we label
the data Nk by L ′k = li+1,where 1 ≤ i ≤ m. While k = n and
L ′k = Lk = li, we label the sample Nk by L ′k = l1. At this
point, all the labeling work of trigger set is completed. Then,
by merging the training set and trigger set together to train
a model, the watermark can be embedded in the intelligent
model.

B. PERFORMANCE AND EXPERIMENTAL RESULTS
We carried out the experiments on two different models to
verify our scheme: the vehicle steering control model of
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intelligent self-driving and the handwritten digit recognition
model. The corresponding two datasets are the vehicle
steering control dataset of intelligent self-driving and the
MNIST dataset. The vehicle steering control dataset of
intelligent self-driving is a non-public dataset collected by
ourselves. It contains a total of 10147 training images,
and each image contains 160 × 120 pixels. There are four
categories in total: stop, forward, rightward and leftward.
MNIST [17] is a large handwritten digit recognition dataset
containing 60,000 training images and 10,000 testing images.
Each image has 28 × 28 pixels, and each pixel value is in
the grayscale range between 0 and 255. There are totally
10 categories, from 0 to 9.

We verified the influence of the proportion of trigger set
and training dataset on our scheme as well. Without loss
of generality, we randomly use 16, 32, 64 trigger samples
as our watermarks in the self-driving models and 20, 50,
100 trigger samples as our watermarks in the handwritten
digit recognition models. These trigger samples are different
from each other and there is no repetition between the trigger
sets.

FIGURE 4. Flow chart of watermark embedding and extraction.

Thewatermark embedding and extraction process is shown
in Fig.4. Through steps ¶ to ¸, we can embed the watermark
into the model. Through steps ¹ to », we can extract the
watermark embedded in the model. Firstly, put the prepared
Trigger Samples with salt-and-pepper noise into the Chaotic
Labeler to relabel the samples, the annotation method can be
gain from Algorithm1. The image samples relabeled are our
Trigger Set. Then, by putting the Trigger Set and the Training
Set together into the Data Set for training, a model with a
watermark will be generated. In the watermark extraction
process, we only need to put the trigger set into the model
to obtain the outputs of the model. Then, by comparing
the Output labels of the model with the Chaotic labels of
the trigger set, we can verify ownership of the model. The
experimental results in Tab.5 and Tab.6 indicate watermarks
of various lengths can achieve good model accuracy and a
100% watermark extraction rate. We will analyze the results
of the experiments in detail in the next section.

IV. PERFORMANCE ANALYSIS
A. A FIDELITY ANALYSIS
The fidelity requires that the accuracy of the model will not
be affected after embedding the watermark, so we evaluate

the accuracy of the models before and after embedding the
watermark.

TABLE 1. Fidelity analysis on self-driving model.

TABLE 2. Fidelity analysis on MNIST model.

In Tab.1 and Tab.2, before embedding the watermark,
the accuracy of the steering control model of intelligent
self-driving is 99.51% and the accuracy of the handwritten
digit recognition model is 99.36%. After embedding the
watermark, in the worst case, the accuracy of the self-driving
model with 64 trigger samples can reach 99.43% and the
accuracy of the MNIST model with 100 trigger samples can
reach 99.30%. Therefore, the accuracy of the models only
drops by 0.08% and 0.06% in the worst case. Compared
with the original model, the accuracy of the self-driving
model with 16 trigger samples and the MNIST model with
20 trigger samples has improved to a certain extent. The
results clearly indicate that the embedding of the watermark
has no significant impact on the performance of the models.
Therefore, there is no doubt that our automatic annotation
scheme for trigger set meets the requirements of fidelity.

As we obtained in Tab.1and Tab.2, the length of watermark
has little effect on the fidelity of our model. The accuracy
of self-driving model with 16 trigger samples and the
handwritten digit recognition model with 20 trigger samples
is even slightly higher than the original models.

B. EFFECTIVENESS AND INTEGRITY ANALYSIS
Effectiveness refers to whether the ownership of the model
can be successfully verified under the protection of our
chaotic automatic annotation scheme. It requires the water-
marked model to be able to identify the corresponding trigger
set embedded in the model with high accuracy. Integrity
requires our solution does not falsely claim ownership of
unwatermarked models.

We extract the watermarks of the four models(one original
model and three watermarked models with watermarks of
different lengths) by trigger sets of three different length in
the experiments. As we mentioned in the previous section,
there are no duplicate samples between trigger sets of
different lengths. The experimental results are shown in Tab.3
and Tab.4. All trigger sets can achieve a watermark extraction
rate of 100% on the model embedded with the corresponding
trigger set, which meets the effectiveness requirements. All
trigger sets have achieved a low watermark extraction rate
of 0%-15% on models that do not embed the trigger set as a
watermark, which meets the integrity requirements.
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TABLE 3. Effectiveness and integrity on self-driving model.

TABLE 4. Effectiveness and integrity on MNIST model.

As can be seen in Tab.3 and Tab.4, the length of the
watermark does not affect the effectiveness and integrity of
our scheme.

TABLE 5. Robustness against fine-tuning attacks of self-driving model.

C. ROBUSTNESS ANALYSIS
1) ROBUSTNESS AGAINST FINE-TUNING
Fine-tuning and transfer learning [11] seem to be the normal
method to improve the model avoiding the heavy work while
training a model from scratch. An ideal scheme can still
remain the watermark after fine-tuning. We developed the
fine-tuning attacks on our original models by substituting
the cross-entropy loss for mean-squared-error loss to retrain
the models again. After the fine-tuning attacks, Tab.5 and
Tab.6 indicate the accuracy of the six watermarked models
has increased with the growth rate of 0.01% - 0.14%. The
watermark extraction rate of all the models is still 100%
after fine-tuning. Therefore, our scheme would not affect the
performance and the watermark extraction rate of the model
after fine-tuning. Besides, the length of the watermark will
not affect the robustness of our scheme against fine-tuning
attacks as well.

2) ROBUSTNESS AGAINST COMPRESSION ATTACKS
Compression attack is also a common attack. We use the
TensorFlow Model Optimization Toolkit to prune our model

TABLE 6. Robustness against fine-tuning attacks of MNIST model.

so that we can compress it. Pruning means eliminating
unnecessary values in the weight tensor. The pruning
step in the TensorFlow Model Optimization Toolkit is
amplitude-based weight pruning. It gradually zeros the model
weights from the weight which is closest to zero to achieve
model sparsity.

TABLE 7. Robustness against compression attacks of self-driving model.

In Tab.7 and Tab.8, the accuracy and the watermark
extraction rate of the six watermarked models are both very
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TABLE 8. Robustness against compression attacks of MNIST model.

high when the pruning rate is smaller than 0.60, which
means that our model can resist the pruning attack on
these occasions. The MNIST model can even resist 70%
pruning attacks. Even though the pruning attacks makes the
watermark extraction failure when the pruning rate is bigger
than 0.80, the attacked model suffers from a significant loss
of accuracy. This means when the extraction of the watermark
fails, the watermarked model has already lost its original
function and becomes unavailable. Thus, our scheme can
resist the compression attack.

Considering the impact of watermark length on com-
pression attacks, the results in Tab.7 and Tab.8 show that
the number of samples in the trigger set has little effect
on the robustness of our scheme against the compression
attacks.

3) ROBUSTNESS AGAINST OVERWRITING ATTACKS
Overwriting attack assumes that the attackers know our
watermarking mechanism. Then, the adversary attacks our

model according to our watermark generation algorithm to
achieve the purpose of covering or eliminating our original
watermark. Overwriting attacks are similar to fraudulent
ownership claim attacks. Nevertheless, different from fraud-
ulent ownership claim attacks, the intent of overwriting
attacks is not simply to claim ownership of a model, but
to erase the original watermark and add a new watermark.
During the overwriting attack, the attacker cannot know our
trigger set. However, we assume the worst case: the attacker
obtains our trigger set and Chaotic Labeler. According to
Kerchhoff principle, the adversaries do not know the secret
keys, which are the parameter µ and the initial value X0 of
the Chaotic Labeler that generates the original trigger set
labels.

TABLE 9. Robustness against overwriting attacks of 16-trigger self-driving
model.

TABLE 10. Robustness against overwriting attacks of 32-trigger
self-driving model.

By changing the parameter µ and the initial value X0 of
the Logistic mapping function, we obtain the new overwriting
trigger sets corresponding to the six sets of trigger samples.
The new overwriting trigger set is used to fine-tune the
corresponding watermarked model to carry out the over-
writing attack. For each watermarked model, we conducted
four sets of overwriting attack simulations. We can obtain
the experimental results in Tabs.9-14. The third and fourth
columns in the table represent the watermark extraction rate
of the original trigger set and the new overwriting trigger
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TABLE 11. Robustness against overwriting attacks of 64-trigger
self-driving model.

TABLE 12. Robustness against overwriting attacks of 20-trigger MNIST
model.

TABLE 13. Robustness against overwriting attacks of 50-trigger MNIST
model.

set, respectively. On the self-driving models, the extraction
rate of the new watermarks can reach 86.00% in Tab.11 in
the best case. On the MNIST models, the extraction rate
of new trigger set can reach 100%. However, when the
extraction rate of the new watermark is high, most of the
watermarked models have a high loss in accuracy, which
have lost the model functionality. For instance, in the first
overwriting attack simulation in Tab.9, the accuracy of the
model is reduced to 48.93% when the extraction rate of the

TABLE 14. Robustness against overwriting attacks of 100-trigger MNIST
model.

new watermark reaches 75.00%. On the contrary, under the
premise of ensuring the accuracy of the model, the extraction
rate of the new overwriting watermark is very low. In the
fourth overwriting attack simulation in Tab.11, the extraction
rate of the new watermark can only reach 39.00% when
the accuracy of the model reaches 99.89%. Therefore, our
chaotic scheme is robust to overwriting attacks and fraudulent
ownership claim attacks.

Finally, let us consider the impact of the length of
the watermark on the overwriting attacks. According to
Tabs.9-11 and Tabs.12-14, we can get that the length of
the watermark will not have a significant impact on the
robustness against overwriting attacks of our scheme.

D. SECURITY AND PRACTICALITY ANALYSIS
The security requires that the key of our scheme is unknown
to the public and is separated from the trigger set. The
practicality means our solution has a large amount of key
space, thus promoting the commercialization process of
intelligent models.

1) SECURITY
In the various solutions previously proposed, the creation
of the trigger set is to add a certain understandable badges
or noise to the trigger samples, so the key of the model
protection scheme is inseparable from the trigger set. When
verifying model ownership, the key will inevitably be leaked.
The leak of the key will cause some attackers to forge
trigger samples based on the leaked trigger set characteristics,
so fraudulent ownership claim attacks may occur. This will
lead to the model being claimed by others, which is very
detrimental to the original author. Our scheme uses Logistic
map to chaotically label the trigger set, so the initial value
X0 and the parameter µ of Logistic map are considered as
keys. The key of our scheme is separated from the trigger
set. When verifying the identity of the model, the leakage
of the trigger set will not lead to the leakage of secret keys.
Therefore, chaotic labeling of trigger set has great security
advantages compared with other black-box watermarking
protection schemes.
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2) PRACTICALITY
First of all, the chaotic automatic labeling scheme can save
a lot of time and manpower. Secondly, the initial value X0
and the parameter µ of chaos will provide a large amount of
key space for our scheme. Finally, providing each user with
a unique key can help quickly finding the source of leaky
model when the model is leaked. The above points show that
the chaotic automatic annotation scheme can promote the
commercialization of intelligent models and has very good
practicality.

V. CONCLUSION AND FUTURE WORKS
In this paper, we propose a new black-box watermarking
scheme based on chaotic automatic labeling of trigger set.
It effectively makes up for the shortcomings of existing
watermarking technology and solves the automatic labeling
problem of the black-box watermarking trigger set. Firstly,
the application of chaos in labeling the trigger set ensures
the non-generalization of the watermark. Due to the superior
characteristics of chaos, machine learning cannot predict the
behavior of chaos in the long run. Attackers cannot find other
trigger sets that match the characteristics of our trigger set,
thus resisting overwriting attacks and fraudulent ownership
claim attacks. Besides, this method not only effectively
saves time and manual works, but also helps promoting the
commercialization of the model. Assigning each user with
a unique watermark by our scheme is also effective to find
the source of the leaky model quickly in case of model
leakage. Another significance of our scheme is that the secret
keys are separate from the trigger set. When extracting the
watermark, the leakage of the trigger set will not lead to
the leakage of secret keys. We conducted experiments on
two datasets and watermarks of six different lengths by our
chaotic automatic annotation scheme. We also evaluate our
model through fidelity, effectiveness, integrity, robustness,
security and practicality. The results show that the method
has great advantages in model protection.

In the experimental part, we verify our scheme through
experiments with six different length watermarks. At present,
our watermark capacity can reach 200 trigger samples when
the training data reaches 60,000 samples. In future works, the
exact watermark capacity of our scheme still needs further
research.
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