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ABSTRACT Many control problems require solving the algebraic Riccati equation (ARE). Previous studies
have focused more on solving the time-invariant ARE than on solving the time-varying ARE (TVARE).
This paper proposes a typical recurrent neural network called zeroing neural network (ZNN) to determine
the solution of TVARE. Specifically, the ZNN model, which is formulated as an implicit dynamic equation,
is developed by defining an indefinite error function and using an exponential decay formula. Then, such
a model is theoretically analyzed and proven to be effective in solving the TVARE. Computer simulation
results with two examples also validate the efficacy of the proposed ZNN model.

INDEX TERMS Algebraic Riccati equation, time-varying, zeroing neural network (ZNN), theoretical
analysis, simulation validation.

I. INTRODUCTION
In control areas, a typical nonlinear matrix equation termed
algebraic Riccati equation (ARE) is frequently encountered
and needs to be solved accurately [1]–[7]. At present, AREs
with the continuous- and discrete-time forms are playing a
remarkable role in many engineering applications of control
problems [7]–[11], such as the linear-quadratic-Gaussian and
H∞ control problems. The solution of ARE is generally uti-
lized as an essential part of the solution to the aforementioned
control problems. For example, the positive definite solution
of ARE has been used in each iteration of the homotopy algo-
rithms for the fixed-architecture control [12]. The negative
definite solution of ARE has been utilized in the Lyapunov
equation approach to solve the matrix differential Riccati
equation involved in the linear quadratic optimal control [13].
Thus, an effective algorithm/model for solving the ARE is
worth designing and investigating due to its important role.

Several direct algorithms have been reported to solve
the continuous- and discrete-time AREs [1]–[4], [14]–[19],
such as the Schur and the generalized eigenvalue algorithms.
However, computational disadvantages exist for the direct
algorithms in several situations [20]. Different iterative algo-
rithms for solving AREs that differ from the direct algorithms
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have been designed and investigated [4], [8]–[11], [20]–[25].
For example, the Kleinman algorithm, which is an effec-
tive Newton algorithm, has been developed to solve the
continuous-time ARE arising in H2 control [21]. The Lanzon
algorithm has been provided for solving the continuous-time
ARE arising in H∞ control [20]. An accelerated iterative
algorithm has been proposed and studied in [8] to obtain
the positive definite solution of the discrete-time ARE. Such
algorithm can also be used to compute the negative definite
solution of the discrete-time ARE (once it exists). In addition
to such iterative algorithms, the neurocomputingmodels have
been developed to find the (positive/negative definite) solu-
tion of ARE [26], [27]. Notably, these algorithms and models
have been established intrinsically to solve the time-invariant
AREs, where ‘‘time-invariant’’ indicates that the coefficient
matrices of ARE are constant.

In [28], the time-varying ARE (TVARE) was mentioned
and presented for the first time, of which the positive defi-
nite time-varying solution was used to design the feedback
controller for slowly varying linear system. However, to the
best of the authors’ knowledge, nearly no research result on
seeking the solution of TVARE exists to date. That is, the
study of solving TVARE is rare despite its importance in
the control of time-varying systems. In general, the TVARE
can be treated as a time-invariant ARE within a small time
under the assumption of short-time invariance. Then, the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 211315

https://orcid.org/0000-0001-5143-2039
https://orcid.org/0000-0002-2715-4179
https://orcid.org/0000-0002-8304-2788
https://orcid.org/0000-0001-6417-3750


H. Liu et al.: Design and Validation of ZNN to Solve TVARE

aforementioned algorithms and models can be used to com-
pute the solution of TVARE at each single time instant.
However, this method of solving TVARE may fail to per-
form efficiently. In other words, the effectiveness of these
algorithms and models in solving the TVARE cannot be
guaranteed. Thus, developing and investigating an effective
algorithm/model to solve the TVARE directly are imperative.

In this paper, motivated by the inspiring work [28] and con-
sidering the advances in neural network [29]–[31], we pro-
vide a new and efficient model to determine the solution
of TVARE. Specifically, with the definition of an indefi-
nite error function and the usage of an exponential decay
formula [29]–[31], a typical recurrent neural network called
zeroing neural network (ZNN) formulated into an implicit
dynamic equation is developed and studied. Then, the conver-
gence property of the proposed ZNN model is theoretically
analyzed and proven. Specifically, the model can effectively
solve the TVARE. Computer simulation results with two
examples also validate the efficacy of the proposed ZNN
model.

The remainder of the paper is organized as follows.
Section II presents the preliminary of solving the TVARE.
Section III describes the proposed ZNN model for solving
the TVARE. Theoretical analyses on the model convergence
are also discussed. Section IV shows the simulation results
by using the proposed model. Section V provides the final
remarks. Themain contributions of this study are summarized
and presented as follows.

1) The ZNN model is proposed and studied for solving the
TVARE. The proposed model has not been reported and
investigated in the existing literature.

2) This paper theoretically analyzes and proves that the
proposed ZNN model can generate an exact solution of
TVARE. Computer simulations are also conducted to
demonstrate the efficacy of the proposed model.

3) This paper is the first attempt to provide an effective
model for computing the solution of the TVARE. This
improvement is crucial because it shows a potential for
designing different models to solve additional (time-
invariant and/or time-varying) nonlinear matrix equa-
tions/inequalities.

II. PROBLEM STATEMENT
Consider the following time-varying linear system [28]:

ẋ(t) = A(t)x(t)+ B(t)u(t), (1)

where u(t) ∈ Rm is the input or control vector and x(t) ∈ Rn is
the state vector with ẋ(t) as its time derivative. The coefficient
matrices A(t) ∈ Rn×n and B(t) ∈ Rn×m are assumed to be
bounded at any time instant t > 0. In addition, their time
derivatives, i.e., Ȧ(t) and Ḃ(t), are bounded at time t > 0.
In [28], the state feedback control of the system (1) is inves-

tigated by considering the control u(t) = −BT(t)P(t)x(t),
where P(t) ∈ Rn×n is the positive definite solution of the

TVARE as follows:

CT(t)P(t)+ P(t)C(t)− P(t)D(t)P(t)+ Q(t) = 0. (2)

where C(t) = A(t) + γ I ∈ Rn×n, D(t) = B(t)BT(t) ∈ Rn×n,
and Q(t) ∈ Rn×n is a symmetric matrix. In addition, γ > 0 ∈
R is the given parameter, and I ∈ Rn×n is the identity matrix.
Notably, coefficient matrices C(t), D(t), and Q(t) in (2) vary
very slowly unlike the dynamics of the time-varying linear
system (1).
With regard to the TVARE (2), the set of time-varying

solutions can be either finite or infinite [4]. For presenta-
tion convenience, we denote P∗(t) ∈ Rn×n as a theoretical
time-varying solution of (2), and Ṗ∗(t) as its time derivative.
To guarantee the existence of P∗(t) and Ṗ∗(t), the following
solvability assumption of (2) is presented [4].
Solvability Assumption: The time-varying coefficient

matrices D(t) and Q(t) in the TVARE (2) satisfy

D(t) = DT(t),D(t) > 0, and Q(t) = QT(t),Q(t) > 0 (3)

at any time instant t > 0.
In this paper, our objective is to develop a new neurody-

namic model for determining an exact time-varying solution
of the TVARE (2) under the assumption of (3).

III. MAIN RESULTS
To solve the TVARE (2), the indefinite error function E(t) ∈
Rn×n that must converge to zero is defined as follows:

E(t) = CT(t)P(t)+ P(t)C(t)− P(t)D(t)P(t)+ Q(t). (4)

To make E(t) be convergent to zero, the following decay
formula [29]–[31] is utilized:

Ė(t) = −λ8(E(t)), (5)

where Ė(t) is the time derivative of E(t), λ > 0 ∈ R
is a design parameter and 8(·) : Rn×n → Rn×n is an
activation function array. Notably, each element of 8(·), i.e.,
φ(·), is a monotonically increasing odd function, such as the
linear, power-sigmoid, or hyperbolic-sine function [29]–[31].
Substituting (4) into (5) yields the result as follows:

CT(t)Ṗ(t)+ Ṗ(t)C(t)− Ṗ(t)D(t)P(t)− P(t)D(t)Ṗ(t)

= P(t)Ḋ(t)P(t)− ĊT(t)P(t)− P(t)Ċ(t)− Q̇(t)

−λ8
(
CT(t)P(t)+ P(t)C(t)− P(t)D(t)P(t)+ Q(t)

)
,

which is further changed to the following formulation:(
CT(t)− P(t)D(t)

)
Ṗ(t)+ Ṗ(t)

(
C(t)− D(t)P(t)

)
=
(
P(t)Ḋ(t)− ĊT(t)

)
P(t)− P(t)Ċ(t)− Q̇(t)

−λ8
(
(CT(t)− P(t)D(t))P(t)+ P(t)C(t)+ Q(t)

)
, (6)

with Ċ(t), Ḋ(t), Ṗ(t), and Q̇(t) as time derivatives of C(t),
D(t), P(t), and Q(t), respectively.
Let us define the following matrices:

M (t) = I ⊗ (CT(t)− P(t)D(t)) ∈ Rn
2
×n2 ,

N (t) = (C(t)− D(t)P(t))T ⊗ I ∈ Rn
2
×n2 ,
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FIGURE 1. Structure of the neurons in the proposed ZNN model (7) for
solving the TVARE (2).

U (t) = I ⊗ (P(t)Ḋ(t)− ĊT(t)) ∈ Rn
2
×n2 ,

V (t) = ĊT(t)⊗ I ∈ Rn
2
×n2 ,

W (t) = CT(t)⊗ I ∈ Rn
2
×n2 ,

with symbol⊗ being the Kronecker product [32]. In addition,
let vectors y(t) and z(t) be y(t) = vec(P(t)) ∈ Rn

2
and

z(t) = vec(Q(t)) ∈ Rn
2
with ẏ(t) and ż(t) corresponding to

their time derivatives, where vec(·) denotes the vectorization
operator for a matrix. On the basis of the Kronecker-product
and vectorization technique [32], the dynamic equation (6) is
thus reformulated as follows:(
M (t)+ N (t)

)
ẏ(t) =

(
U (t)− V (t)

)
y(t)− ż(t)

−λF
(
(M (t)+W (t))y(t)+ z(t)

)
, (7)

whereF(·) : Rn
2
→ Rn

2
denotes the vectorization of8(·) and

is also a monotonically increasing odd function array. Here-
after, (7) is termed the ZNN model that is proposed in this
paper for solving the TVARE (2). For better understanding
on the structure, the proposed ZNN model (7) is presented in
the following ith neuron form:

yi =
∫ ψ∑

k=1

$ik

( ψ∑
j=1

ξkjyj − żk − λf
( ψ∑
j=1

ωkjyj + zk
))

dt,

where ψ = n2, yi is the ith (with i = 1, 2, · · · , ψ) element
of (7) and f (·) is a processing element of F(·). The weights
$ik , ξkj, and ωkj represent the ikth element of the inverse of
(M (t)+N (t)), the kjth element of (U (t)−V (t)), and the kjth
element of ((M (t)+W (t)). The thresholds żk and zk represent
the kth elements of ż(t) and z(t). Therefore, the structure of (7)
is shown in Fig. 1.

With regard to the proposed ZNN model (7), it is depicted
in an implicit dynamics [i.e., (M (t) + N (t))ẏ(t) = · · · ] and
employs the derivative information of coefficients [i.e., Ċ(t),

Ḋ(t), and Q̇(t)]. The effectiveness of (7) in solving (2) is
theoretically analyzed via the following theorem.
Theorem: Given a solvable TVARE (2), the neural state

of the proposed ZNN model (7) using a suitable activation
function array is convergent to an exact solution of (2).

Proof: For the TVARE (2), let us define P∗(t) ∈ Rn×n as
a theoretical solution, which satisfies the following equation:

CT(t)P∗(t)+ P∗(t)C(t)− P∗(t)D(t)P∗(t)+ Q(t) = 0. (8)

To lay a basis for further discussion, let matrices G(t) and
G∗(t) be G(t) = P(t)D(t)P(t) ∈ Rn×n and G∗(t) =
P∗(t)D(t)P∗(t) ∈ Rn×n. Differentiating (8) yields

ĊT(t)P∗(t)+ CT(t)Ṗ∗(t)+ Ṗ∗(t)C(t)+ P∗(t)Ċ(t)

−Ġ∗(t)+ Q̇(t) = 0, (9)

with Ṗ∗(t) and Ġ∗(t) as time derivatives of P∗(t) and G∗(t).
By recalling the previous derivation, the proposed ZNN

model (7) is transformed into the following formulation:

ĊT(t)P(t)+ CT(t)Ṗ(t)+ Ṗ(t)C(t)+ P(t)Ċ(t)

−Ġ(t)+ Q̇(t) = −λ8
(
CT(t)P(t)+ P(t)C(t)

−G(t)+ Q(t)
)
, (10)

with Ġ(t) as the time derivative of G(t). By substituting (8)
and (9) into (10), the following result is obtained:

ĊT(t)
(
P(t)− P∗(t)

)
+ CT(t)

(
Ṗ(t)− Ṗ∗(t)

)
+
(
Ṗ(t)− Ṗ∗(t)

)
C(t)+

(
P(t)− P∗(t)

)
Ċ(t)

−
(
Ġ(t)− Ġ∗(t)

)
= −λ8

(
CT(t)(P(t)− P∗(t))

+(P(t)− P∗(t))C(t)− (G(t)− G∗(t))
)
.

By defining the matrix Ẽ(t) = CT(t)(P(t)−P∗(t))+ (P(t)−
P∗(t))C(t) − (G(t) − G∗(t)) ∈ Rn×n with ˙̃E(t) as its time
derivative, the above equation is rewritten as follows:

˙̃E(t) = −λ8(Ẽ(t)). (11)

As to (11), the ijth differential equation is formulated as

˙̃eij(t) = −λφ(ẽij(t)), (12)

with i, j ∈ {1, · · · , n}. Then, the Lyapunov function is defined
as ν(t) = ẽ2ij(t)/2 to analyze the dynamic system (12). The
following time derivative of ν(t) is further obtained:

ν̇(t) = ẽij(t) ˙̃eij(t) = −λẽij(t)φ(ẽij(t)).

Because φ(·) is a odd function, we have

ν̇(t) = −λẽij(t)φ(ẽij(t))

{
= 0, if ẽij(t) = 0,
< 0, if ẽij(t) 6= 0,

which indicates that ν̇(t) is negative definite. On the basis
of Lyapunov theory [30], the equilibrium point of (12) is
asymptotically stable. Thus, as time t → +∞, ẽij(t) → 0
for all i, j ∈ {1, · · · , n}. This result also denotes that Ẽ(t) =
[ẽij(t)] ∈ Rn×n in (11) converges to zero as t evolves.
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Recalling the definitions of G(t) and G∗(t), we can refor-
mulated Ẽ(t) as follows:

Ẽ(t) = CT(t)
(
P(t)− P∗(t)

)
+
(
P(t)− P∗(t)

)
C(t)

−
(
P(t)D(t)P(t)− P∗(t)D(t)P∗(t)

)
. (13)

By defining the difference 1(t) as 1(t) = P(t) − P∗(t) ∈
Rn×n, (13) is changed to the following form:

Ẽ(t) = CT(t)1(t)+1(t)C(t)−
(
(1(t)+ P∗(t))D(t)(1(t)

+P∗(t))− P∗(t)D(t)P∗(t)
)

=
(
CT(t)− P∗(t)D(t)

)
1(t)+1(t)

(
C(t)

−D(t)P∗(t)
)
−1(t)D(t)1(t),

which is similar to the formulation of the TVARE (2).
As analyzed above, Ẽ(t) → 0 with t → +∞. The

following result is thus obtained:

lim
t→+∞

((
CT(t)− P∗(t)D(t)

)
1(t)+1(t)

(
C(t)

−D(t)P∗(t)
)
−1(t)D(t)1(t)

)
= 0,

which further yields

lim
t→+∞

(
1(t)

)
= 0 ⇒ lim

t→+∞

(
P(t)− P∗(t)

)
= 0.

This result denotes that the state matrix P(t) of (10) will con-
verge to a theoretical solution P∗(t) of the TVARE (2). That
is, P(t)→ P∗(t) as time t evolves. Notably, the vectorization
form of (10) is exactly the proposed ZNNmodel (7), wherein
the state vector y(t) is the vectorization of P(t); i.e., y(t) =
vec(P(t)). By summarizing the above results, it is concluded
that the neural state of the proposed ZNN model (7) with
appropriate activation function array is convergent to an exact
solution of the TVARE (2). The proof is thus completed. �
The above theorem theoretically guarantees that the pro-

posed ZNN model (7) is effective in solving the TVARE (2).
The following propositions are presented to further show the
convergence characteristic of (7), where S+ ∈ Rn×n denotes a
given positive definite matrix and S− ∈ Rn×n denotes a given
negative definite matrix.
Proposition 1: Given a solvable TVARE (2), the proposed

ZNN model (7) possesses the following properties.
1) The state vector y(t) of (7), which starts from an initial

state y(0) selected as y(0) = vec(S+), is convergent to
the positive definite theoretical solution of (2).

2) The state vector y(t) of (7), which starts from an initial
state y(0) selected as y(0) = vec(S−), is convergent to
the negative definite theoretical solution of (2).

Proposition 2: By selecting different activation function
arrays, the proposed ZNN model (7) possesses the following
properties [29]–[31].
1) In the case of selecting the linear activation func-

tion array, the exponential convergence with rate λ is
achieved for (7), which corresponds to the exponential
convergence of P(t) to P∗(t) of (2).

2) In the case of selecting the hyperbolic-sine, power-sum,
or power-sigmoid activation function array, superior

convergence is achieved for (7) in comparison with the
linearly-activated ZNN model.

Remarks: The selection of the initial state y(0) is impor-
tant to the computation of the proposed ZNN model (7),
leading to different computational results of (7). It follows
from Proposition 1 that y(0) can be selected according to
different situations. For instance, to obtain the positive def-
inite solution of the TVARE (2) involved in the control of
slowly-varying systems [28], we can simply set y(0) to be
y(0) = vec(I ) (i.e., the vectorization of the identity matrix),
or directly set y(0) to be y(0) = vec(P∗(0)), where P∗(0)
is determined by using the MATLAB routine ‘‘CARE’’ to
solve (2) at t = 0 s. Besides, it follows from Proposition 2 that
the activation function has a significant effect on the conver-
gence characteristic of (7). In the ensuing simulation part,
the linear, hyperbolic-sine, power-sum, and power-sigmoid
activation functions presented in previous studies [29]–[31]
are employed for investigating the proposed ZNN model (7)
to solve the TVARE (2). As a matter of fact, by referring
to [33]–[35], designing more different types of activation
functions for further enhancing the convergence performance
of (7) can be a future research direction.

IV. SIMULATION VALIDATION
In this section, simulation results are presented to validate the
efficacy of the proposed ZNN model (7) for TVARE solving.
The simulations are performed by using MATLAB R2008a
on a digital computer with an Intel(R) Core(TM) i3-3110M
@2.40 GHz CPU, 4 GB memory, and Windows 7 OS.
Example 1: In this example, the TVARE (2) is considered

with the following matrices:

C(t) =
[

sin(t) cos(t)
− cos(t) sin(t)

]
+ 5I

=

[
5+ sin(t) cos(t)
− cos(t) 5+ sin(t)

]
,

D(t) =
[
d11(t) 0
0 d22(t)

]
and Q(t) =

[
q11(t) 0
0 q22(t)

]
.

where d11(t) = (4 + exp(−t) − cos(t))2, d22(t) =
(2+ 1/(t + 1)+ sin(t))2, q11(t) = 3+ (1/(t + 1))2 + sin(t),
and q22(t) = 6 + (2 + exp(−t))2 − cos(t). This situation
corresponds to the time-varying linear system (1) with the
coefficients as follows:

A(t) =
[

sin(t) cos(t)
− cos(t) sin(t)

]
,

B(t) =
[
4+ exp(−t)− cos(t) 0

0 2+ 1/(t + 1)+ sin(t)

]
.

To solve the TVARE (2) with above matrices, the proposed
ZNN model (7) is simulated and studied. The related simula-
tion results are shown in Figs. 2 through 5.

Figure 2 presents the results of solving the TVARE (2)
via the proposed ZNN model (7) using λ = 1 and linear
activation function array and starting from six initial states
selected as y(0) = vec(S+). In the figure, the residual error
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FIGURE 2. Simulation results of solving the TVARE (2) via the proposed ZNN model (7) using λ = 1 and linear activation function array and starting
from six initial states selected as y (0) = vec(S+), where the positive definite matrices (denoted as S+) are randomly generated. (a) Trajectories of
y (t) = vec(P(t)). (b) Eigenvalues of P(t). (c) Residual errors.

FIGURE 3. Simulation results of solving the TVARE (2) via the proposed ZNN model (7) using λ = 1 and linear activation function array and starting
from six initial states selected as y (0) = vec(S−), where the negative definite matrices (denoted as S−) are randomly generated. (a) Trajectories of
y (t) = vec(P(t)). (b) Eigenvalues of P(t). (c) Residual errors.

is defined as ‖e(t)‖2 = ‖(M (t) + W (t))y(t) + z(t)‖2 =
‖CT(t)P(t) + P(t)C(t) − P(t)D(t)P(t) + Q(t)‖F with ‖ · ‖2
and ‖ · ‖F corresponding to the two norms and the Frobenius
norm. As shown in Fig. 2(a), all the state trajectories of (7)
converge to a time-varying solution. Fig. 2(b) denotes that
such a solution is positive definite in terms of its eigenvalues
being greater than zero. In addition, as seen from Fig. 2(c),
all the residual errors of (7) are convergent to zero, thereby
indicating that the positive definite solution computed by (7)
satisfies CT(t)P(t) + P(t)C(t) − P(t)D(t)P(t) + Q(t) = 0.
These simulation results verify that the proposed ZNNmodel
(7) with y(0) = vec(S+) can generate an exact positive
definite solution of the TVARE (2).

Figure 3 shows the results of solving the TVARE (2) via the
proposed ZNN model (7) using λ = 1 and linear activation
function array and starting from six initial states selected
as y(0) = vec(S−). As presented in Fig. 3(a) and (b), all
the state trajectories of (7) are convergent to a time-varying
negative definite solution (as its eigenvalues are smaller than
zero). Fig. 3(c) indicates that all the residual errors of (7)
converge to zero, thereby showing that the negative definite
solution computed by (7) also satisfiesCT(t)P(t)+P(t)C(t)−
P(t)D(t)P(t) + Q(t) = 0. These simulation results verify

that the proposed ZNN model (7) with y(0) = vec(S−) can
generate an exact negative definite solution of the TVARE (2).

Figure 4 illustrates the results of solving the TVARE (2)
via the proposed ZNN model (7) by increasing the value of
λ (i.e., from 1 to 10). As seen from the figure, 1) starting
from y(0) = vec(S+), the state trajectory of (7) converges
to the positive definite solution; and 2) starting from y(0) =
vec(S−), the state trajectory of (7) converges to the negative
definite solution. These phenomena coincide with the theo-
retical results given in Proposition 1. Notably, the solutions
at steady-state in Fig. 4 are the same as those in Figs. 2(a)
and 3(a), thus meaning that such solutions computed by (7)
also make CT(t)P(t) + P(t)C(t) − P(t)D(t)P(t) + Q(t) = 0
hold true. Fig. 4 further shows that all the residual errors of (7)
converge more rapidly, and the steady-state errors are in the
orders of 10−5 and 10−6. These simulation results indicate
that the proposed ZNN model (7) is effective in solving the
TVARE (2). Moreover, by comparing Fig. 4 with Figs. 2
and 3, we find that, with the increase of λ, the convergence
performance of (7) will be enhanced (in terms of its conver-
gence time being shortened by increasing the λ value). Thus,
for the proposed ZNN model (7), λ should be selected as a
sufficiently large value to meet the practical requirement.
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FIGURE 4. Simulation results of solving the TVARE (2) via the proposed ZNN model (7) using λ = 10 and linear activation function array and
starting from twelve randomly-generated initial states, with the fist six initial states selected as y (0) = vec(S+) and the rest selected as
y (0) = vec(S−).

For further investigation, the proposed ZNN model (7)
is simulated by using y(0) = [1, 0, 0, 2]T, different val-
ues of λ, and different activation function arrays. The
related simulation results are presented in Fig. 5, and
they denote that (7) effectively solves the TVARE (2) in
terms of the convergence of residual errors. Moreover, from
Figs. 2 through 5, the observations are perceived as fol-
lows, which coincide with the theoretical results given in
Proposition 2.

• The convergence time for (7) is shortened by 10 times as
λ increases by 10 times, thus denoting that (7) possesses
the property of exponential convergence.

• Increasing λ effectively enhances the convergence per-
formance of (7). thus indicating again the importance of
λ in (7) for TVARE solving.

• By selecting the hyperbolic-sine, power-sum, and
power-sigmoid activation function arrays, (7) possesses
better convergence that the linearly-activated model.
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FIGURE 5. Residual errors of solving the TVARE (2) via the proposed ZNN model (7) using y (0) = [1,0,0,2]T, different values of λ, and different
activation function arrays. (a) Using λ = 1. (b) Using λ = 10. (c) Using λ = 100.

On the basis of these observations, increasing the value of
λ and selecting a suitable activation function array result in
superior performance of (7).

In summary, Figs. 2 through 5 verify the efficacy of the
proposed ZNN model (7) for solving the TVARE (2).
Example 2: When the coefficients in (2) are the constant

ones, the TVARE reduces to a time-invariant ARE. In this
example, the proposed ZNNmodel (7) is investigated to solve
the TVARE with the following constant matrices [27]:

C(t) =

 0 1 0
0 0 1
−6 −11 −6

 ,
Q(t) =

1 0 0
0 0.25 0
0 0 0.5

 ,
and D(t) =

10 0 0
0 3.3333 1
0 0 14.2857

 .
For solving such a (time-invariant) ARE, the MATLAB rou-
tine ‘‘CARE’’ is employed, and the solution is obtained as
follows:

vec(Pcare) =



0.332420792902192
0.109354093718442
−0.012253454448820
0.109354093718442
0.378968000158956
−0.005913282457315
−0.012253454448820
−0.005913282457315
0.038757975507853


∈ R9.

By using and simulating the proposed ZNNmodel (7) to solve
the TVARE (2) with above constant matrices (Notably, in this
situation, Ċ(t) = Ḋ(t) = Q̇(t) = 0), the simulation results are
presented in Figs. 6 and 7.

Figure 6 shows the results of solving the time-invariant
ARE (i.e., (2) with constant matrices) via the proposed ZNN
model (7) using λ = 1 and linear activation function array and
starting from the initial state selected as y(0) = vec(0.5I ). As
shown in Fig. 6(a) and (b), the state trajectory of (7) is con-
vergent to the positive definite solution (as its eigenvalue is

greater than zero). Furthermore, the residual error in Fig. 6(c)
converges to zero, showing that the solution in Fig. 6(a)
satisfies CT(t)P(t) + P(t)C(t) − P(t)D(t)P(t) + Q(t) = 0.
Notably, the solution computed by (7) at t = 10 s is given as
follows:

vec(Pneuro) = y(t = 10) =



0.332436225382166
0.109359112049686
−0.012256722725030
0.109359112049686
0.379027247306223
−0.005918968020323
−0.012256722725030
−0.005918968020323
0.038788489811289


.

Thus, the error between vec(Pcare) and vec(Pneuro) is obtained
as follows:

|vec(Pcare)− vec(Pneuro)| =



1.54324799739869
0.50183312446106
0.32682762102828
0.50183312445967
5.92471472662948
0.56855630077134
0.32682762102811
0.56855630077186
3.05143034359245


× 10−5,

where symbol | · | returns to the absolute value for each
element of the vector. This small error indicates that the
solution via the MATLAB routine ‘‘CARE’’ and the solution
via the proposed ZNN model (7) are almost the same as each
other. These results verify the efficacy of (7) for solving the
time-invariant ARE (being a special case of the TVARE (2)).

Figure 7 presents the results of solving the time-invariant
ARE via the proposed ZNN model (7) by changing the value
of λ from 1 to 10, which denotes the model effectiveness for
time-invariant ARE solving. That is, the state trajectory of (7)
converges to the positive definite solution rapidly and the
corresponding residual error converges to zero. In addition,
comparing Fig. 6 with Fig. 7 shows that the convergence per-
formance of (7) is enhanced with the increase of λ. Besides,
the following solution computed by (7) at t = 10 s is
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FIGURE 6. Simulation results of solving the time-invariant ARE (i.e., (2) with constant coefficient matrices) via the proposed ZNN model (7)
using λ = 1 and linear activation function array and starting from the initial state selected as y (0) = vec(0.5I). (a) Trajectory of y (t) = vec(P(t)).
(b) Eigenvalue of P(t). (c) Residual error.

FIGURE 7. Simulation results of solving the time-invariant ARE via the proposed ZNN model (7) using λ = 10 and linear activation function
array and starting from the initial state selected as y (0) = vec(0.5I). (a) Trajectory of y (t) = vec(P(t)). (b) Eigenvalue of P(t). (c) Residual error.

provided:

vec(Pneuro) = y(t = 10) =



0.332420818173419
0.109354101949185
−0.012253459803822
0.109354101949184
0.378968097227928
−0.005913291768627
−0.012253459803821
−0.005913291768627
0.038758025461878


.

This solution is quite similar to the solution via theMATLAB
routine ‘‘CARE’’, with their small difference/error being pre-
sented as follows:

|vec(Pcare)− vec(Pneuro)| =



2.52712262782673
0.82307429483119
0.53550017198312
0.82307428372896
9.70689716939255
0.93113120946259
0.53550016781978
0.93113120512578
4.99540243059649


× 10−8.

Evidently, this error is smaller than the previous one, i.e.,
10−8 versus 10−5. This means that by increasing the value
of λ, the time-invariant ARE can be solved more accurately

via the proposed ZNNmodel (7). These results indicate again
that the proposed ZNN model (7) is effective in solving the
time-invariant ARE and that the design parameter λ, which
should be selected as a sufficiently large value, is an important
factor affecting the performance of (7).

In summary, Figs. 6 and 7 verify that the proposed ZNN
model (7) can generate an exact positive definite solution of
the time-invariant ARE, further showing the efficacy of (7)
for solving the TVARE (2).

V. CONCLUSION
In this paper, the ZNN model (7) was proposed and studied
to solve the TVARE (2). Such a model which is depicted in
an implicit dynamics and employs the derivative informa-
tion of coefficients was theoretically proven to be capable
of generating an exact solution of (2). Simulation results
further verified the efficacy of the proposed ZNN model (7)
for TVARE solving. By following this paper, the proposed
ZNN model (7) will be further investigated for the control of
slowly-varying systems [28]. Besides, designing a new ZNN
model for solving the TVARE (2) in noisy environments [31]
will be another future research direction.
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