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ABSTRACT Bad Output must go to Good Input (BOGI) is the primary design strategy of GIFT,
a lightweight block cipher that was presented at CHES 2017. Because this strategy obviates the need to
adhere to the required conditions of S-boxes when adopting bit-permutation, cryptographic designers have
more S-box choices. In this paper, we classify all 4-bit S-boxes that support BOGI, called ‘‘BOGI-applicable
S-boxes,’’ and evaluate them in terms of the cryptographic strength and efficiency. First, we exhaustively
show that only 2413 Permutation-XOR-Equivalence (PXE) classes over 4-bit S-boxes are BOGI-applicable.
After refining the PXE classes with respect to the differential uniformity (U) and linearity (L), we suggest
20 ‘‘Optimal BOGI-applicable’’ PXE classes that provide the best (U , L). Our security evaluations revealed
that all optimal BOGI-applicable S-boxes fulfill the security properties considered by the designers of GIFT
and that the differences between them exist in the other properties. Moreover, we explore the resistance
of GIFT variants against differential and linear cryptanalysis by replacing the existing S-box with other
optimal BOGI-applicable S-boxes. Based on the results, we identify the best attainable resistancewith the bit-
permutation of GIFT-64. Lastly, we suggest notable S-boxes that support competitive performance, jointly
considering the cryptographic strength and efficiency for GIFT-64 and GIFT-128 structures, respectively.

INDEX TERMS S-box, lightweight implementation, BOGI, equivalence class, cryptography.

I. INTRODUCTION
A large number of lightweight block ciphers adopt bit-
permutation due to its negligible implementation cost in
hardware. Among these block ciphers, GIFT presented
in [1] outperforms the others with its state-of-the-art design
approach. Thus, GIFT is widely used as the main primitive
in multiple candidates of NIST lightweight cryptography
standardization [2]–[6]. The main novelty of GIFT is a logic
named Bad Output must go to Good Input (BOGI). This
logic prevents differential and linear trails consisting of only
one active S-box in each round even though the round func-
tion is composed of a bit-permutation and an S-box whose
differential and linear branch numbers are 2. As a result,
this simple but effective idea enhances the design strategy of
PRESENT [7] and allows GIFT to become faster and lighter.
However, not every S-box can support BOGI because such

The associate editor coordinating the review of this manuscript and
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BOGI-applicable S-boxes would need to satisfy particular
conditions on their Difference Distribution Table (DDT) and
Linear Approximation Table (LAT). Indeed, it has already
been shown that all the ‘‘Optimal S-boxes’’ discussed in [8]
are not BOGI-applicable. This implies that related studies
that concentrate only on the optimal S-boxes [9] may not be
helpful for analyzing the BOGI design strategy thoroughly.

Various aspects of an S-box, which is the main nonlinear
component of modern SPN ciphers, have been analyzed.
These aspects are mainly related to security strength and
efficiency, such as classifying a set of S-boxes in terms of
the security strength requirements [8], [10], [11] or imple-
mentation cost [12], and finding the optimal implementation
of a given S-box [13]–[15]. Because of the infeasible search-
ing space of large S-boxes, these studies tended to concen-
trate on 4-bit S-boxes. Moreover, for classification purposes,
introducing an appropriate equivalence relation is necessarily
considered to ensure analysis efficiency. The well-known
relations to group 16!(≈ 244.25) 4-bit S-boxes into equiv-
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alence classes are Affine-Equivalence (AE), Permutation-
XOR-Equivalence (PXE), and Permutation Equivalence (PE)
relations. In two independent reports [16], [17], the number of
AE, PXE, and PE classes over 4-bit S-boxes were deduced as
302, 142,090,700(≈ 227.08), and 36,325,278,240(≈ 235.08),
respectively.

As BOGI-applicability is preserved in a PXE class, and
it is feasible to analyze the number of PXE classes exhaus-
tively, we present an in-depth analysis of all BOGI-applicable
S-boxes. Our analysis includes the security strength of the
S-boxes themselves and the extent to which they affect the
resistance of GIFT against differential and linear cryptanal-
ysis (DC and LC). We partitioned the BOGI-applicable PXE
classes into PE classes to enable us to additionally analyze
their implementation costs. Based on our results, we sug-
gest generalized properties of BOGI-applicable S-boxes and
notable S-boxes for GIFT.

A. OUR CONTRIBUTIONS
1) CLASSIFICATION OF ALL BOGI-APPLICABLE
4-BIT S-BOXES
We search for and identify all BOGI-applicable PXE
classes and deduce the total number of BOGI-applicable
4-bit S-boxes. Our search showed that only 2,413 PXE
classes (186,392,448 S-boxes) are BOGI-applicable over
4-bit S-boxes. We define BOGI-applicable 4-bit S-boxes that
provide the best differential uniformity and linearity as being
‘‘Optimal BOGI-applicable’’ 4-bit S-boxes with knowledge
similar to that of the optimal 4-bit S-boxes discussed in [8].
Following the definition, we provide 20 optimal BOGI-
applicable PXE classes out of the entire set of PXE classes.

Using the 20 optimal BOGI-applicable PXE classes,
we conduct a detailed cryptographic analysis and generalize
their security properties (Observation 1-5). Our investigations
revealed that all optimal BOGI-applicable S-boxes fulfill the
security properties considered by the designers of GIFT and
that the differences among the PXE classes exist with respect
to the other cryptographic properties.

We also explore the cost of implementing the optimal
BOGI-applicable S-boxes in software and hardware, respec-
tively. This was achieved by adopting two well-known mea-
sures – Bitslice Gate Complexity (BGC) and Gate Equivalent
Complexity (GEC). The BGC of optimal BOGI-applicable
S-boxes ranges from 10 to 13 whereas that of GEC ranges
from 16 to 21 with the UMC180nm cell library. Our result
shows that the (BGC, GEC) value of the GIFT S-box is
(11, 16) implying that there exist S-boxes that provide more
efficient implementations in software. However, as the small-
est BGC = 10 always leads the S-boxes to have fixed points,
we can conclude that (11, 16) is the best implementation cost
without fixed-points.

2) SUGGESTION OF NOTABLE S-BOXES FOR GIFT

We jointly consider the implementation cost and the resis-
tance against DC and LC, and suggest notable S-boxes for the

GIFT1 structures. This is accomplished by deducing the best
differential and linear trails by replacing the existing S-box
of GIFT with optimal BOGI-applicable S-boxes.

We first show that an exhaustive investigation of the resis-
tance is possible by using only 1,728 non-DDT-equivalent
S-boxes. Then, we deduce the 13-round best differential and
linear trails of the 1,728 GIFT-64 variants, where only the
existing S-box is replaced by one of the non-DDT-equivalent
S-boxes. Our results show that the maximum differential
probability and correlation potential at log2 scale can be
improved to (−68.4,−72) or (−70,−68) from the current
(−62,−68). Although both of the most improved DC and
LC resistances cause the implementation cost to increase,
we identify 128 (+ 80 with fixed points) notable S-boxes
that support the competitive DC and LC resistances within
the same implementation cost of the GIFT S-box.

For GIFT-128 structure, we only consider S-boxes
already demonstrated to perform competitively in GIFT-64
structure due to the computational intensiveness. Our results
show that the maximum differential probability and correla-
tion potential of 12-round trails ofGIFT-128 variants can be
improved up to (−76.4,−74) from the current (−60.4,−72).

B. ORGANIZATION
Section II defines the notations used in this paper with
brief explanations of BOGI and equivalence relations over
S-box. In Section III, all BOGI-applicable S-boxes are clas-
sified and we define optimal BOGI-applicable S-boxes.
In Section IV, we scrutinize cryptographic properties of
optimal BOGI-applicable S-boxes and their implementation
costs. In Section V, we investigate how the BOGI-applicable
S-boxes influence the security of GIFT against DC and LC,
followed by several competitive S-boxes compared to the
existing S-box of GIFT. Lastly, the conclusion is given in
Section VI. Some of our analysis results are presented in the
Appendices.2

II. PRELIMINARY
A. NOTATIONS
In this paper, all the S-boxes we consider are 4-bit bijective
functions. The following notations are used throughout the
paper.

· wt(x) : The Hamming weight of a binary vector x.
· x · y : The inner product of x and y over F4

2.
· DDTS : The difference distribution table of an S-box

S. The element DDTS (1i,1o) in row 1i and
column 1o is |{x ∈ F4

2|S(x) ⊕ S(x ⊕ 1i) =
1o}|.

· LATS : The linear approximation table of an S-box
S. The element LATS (λi, λo) in row λi and
column λo is |{x ∈ F4

2 | λi ·x = λo ·S(x)}|−8.

1Two versions of GIFT exist, GIFT-64 and GIFT-128, depending on
the distinct block size.

2Our analysis results can be also found in https://github.com/jeffgyeom/
classification-bogi-sbox
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· SQLATS : The table derived from the correspond-
ing LATS . The element SQLATS (λi, λo) is
the square of the corresponding element
(LATS (λi, λo))2.

· DDT1
S : The partial 4 × 4 table consisting of Ham-

ming weight 1 to Hamming weight 1(i.e., sin-
gle active bit) differential transitions in the
corresponding DDTS .

· LAT1
S : The partial 4 × 4 table consisting of Ham-

ming weight 1 to Hamming weight 1(i.e., sin-
gle active bit) linear transitions in the corre-
sponding LATS .

We also define the following table, which can be deduced by
the corresponding DDT1

S and LAT1
S .

Definition 1: TheBOGI Table of 4-bit S-box S, denoted by
BGTS , is a 4 × 4 table where each coefficient is 0 when the
corresponding coefficients of DDT1

S and LAT1
S are both 0;

otherwise, each coefficient in the table is 1.

If the reference to S-box S is clear from the context, we omit
S from the notations.

B. PREVENTION OF CONSECUTIVE SINGLE
ACTIVE BIT TRANSITIONS
For differential and linear cryptanalysis, the differential uni-
formity [18] and linearity [19] of an S-box are considered to
be the most basic but significant measures. The differential
uniformity and linearity of an S-box S are denoted by U(S)
and L(S) and defined as:

U(S) := max
1i∈F42−{0}, 1o∈F

4
2

DDTS (1i,1o),

L(S) := max
λi∈F42, λo∈F

4
2−{0}

2× |LATS (λi, λo)|.

It is already shown that the smallest U and L of 4-bit S-boxes
are 4 and 8, respectively. Based on the above properties,
‘‘Optimal 4-bit S-boxes’’ are defined as the follows.

Definition 2 [8]: A 4-bit S-box S is called an Optimal S-
box if it fulfills these three conditions:
1) S is bijective.
2) U(S) = 4.
3) L(S) = 8.

However, adopting an optimal S-box cannot always guar-
antee the optimal resistance of the ciphers against DC and LC,
especially when bit-permutation is used for the permutation
layer. Thus, Zhang et al. additionally considered the number
of non-zero entries in DDT1 and LAT1 [9]. In other words,
the non-zero entries represent single active bit transitions.

Definition 3 [9]: CarD1S and CarL1S of an S-box S
denote the number of non-zero entries in DDT1

S and LAT1
S ,

respectively.

This is because the single active bit differential(linear)
transitions of an S-boxmay cause the differential(linear) trails

of bit-permutation based ciphers to have only one single
active S-box in each round, and raise a number of efficient
trails for DC and LC. Indeed, such linear trails allow multidi-
mensional linear cryptanalysis on PRESENT up to 26 rounds
out of 31 rounds.

Direct mitigation for this weakness is to use an S-box
that does not have any active transitions both in DDT1

and LAT1(i.e., (CarD1,CarL1) = (0, 0)). However, it is
shown that nonlinear 4-bit S-boxes cannot have such
(CarD1,CarL1) values [11].

Indirect mitigation presented in [9] prevents short iterative
trails consisting of only single active bit transitions from
allowing (CarD1,CarL1) 6= (0, 0). This design approach
alters PRESENT and SPONGENT88 [20] by replacing their
S-box, and improves the block ciphers in terms of the resis-
tance against DC and LC. Moreover, RECTANGLE [21] is
designed with the prevention strategy, and provides the rela-
tively robust resistances in spite of adopting an S-boxes with
(CarD1, CarL1) = (2, 2). Nonetheless, this design approach
cannot fundamentally solve the problem of presenting con-
secutive single active bit transitions in trails. To be specific,
RECTANGLE allows 2-round trails that consist of only single
active bit transitions.

C. BOGI
BOGI was presented as the first design approach toward the
fundamental prevention of consecutive single active bit tran-
sitions [1]. The approach reveals DDT1 and LAT1 such that
it achieves the fundamental prevention. It was successfully
applied to the bit-permutation based block cipher, GIFT.
Consequently, GIFT supports both DC and LC resistance
with even fewer rounds than PRESENT.

Before describing BOGI, we first introduce PRESENT
round function, on which BOGI is based. The round function
consists of a substitution layer composed of the same 4-bit
S-box and a 64-bit permutation layer. The permutation layer
is again composed of four independent 16-bit permutations
and a nibble-wise permutation followed by key addition. The
round function, except for the key-addition, can be described
in Fig. 1. P j

mix denote the four independent 16-bit permuta-
tions and Pshuf denotes the nibble-wise permutation while
the S-boxes in the ith round are denoted by S i0, S

i
1, . . . , S

i
15.

The Pjmix can easily be deduced to be a 16-bit mapping from
the four S-boxes {S i4j, S

i
4j+1, S

i
4j+2, S

i
4j+3} to the four S-boxes

{S i+1j , S i+1j+4 , S
i+1
j+8 , S

i+1
j+12}.

Although the structure of PRESENT round function pro-
vides full diffusion in 3 rounds, P j

mix of PRESENT have an
Achilles’ heel - allowing consecutive single active bit tran-
sitions in linear trails. This is because PRESENT S-box has
single active bit linear transitions. To overcome the weakness
ofP j

mix in PRESENT, BOGI properly craftsP
j
mix to guarantee

that an output bit of a single active bit transition (Bad Output)
must go to an input bit of a single non-active bit transition
(Good Input).
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FIGURE 1. Round function of PRESENT except for key-addition.

However, to enable BOGI to be used, in addition to well-
crafted P j

mix , an S-box has to obtain an appropriate BGT as
presented in Lemma 1.

Lemma 1 [1]: To apply BOGI to an S-box S, the corre-
sponding BGTS must consist of at least four all-zero rows
and columns.

If an S-box satisfies the above condition, we denote the
S-box to be BOGI-applicable. As seen in Table 1, PRESENT
S-box(PS) is not BOGI-applicable because BGTPS consists
of only one all-zero row and column each. On the con-
trary, BGTGS of GIFT S-box(GS) has four all-zero rows and
columns, and thus GS is BOGI-applicable.

TABLE 1. DDT1, LAT1, and BGT of PS and GS: all zero rows(Good input)
and columns (Good output) are indexed with G, otherwise (Bad
in/output) with B.

D. BOGI PERMUTATION
Once an S-box is BOGI-applicable, appropriate 16-bit per-
mutations P j

mix can be deduced for the S-box. Hereafter,
we assume that the four structures of P j

mix are equal to
each other. This equality is not required to apply BOGI but
may be preferred for implementation and design consistency.
P j
mix consists of a group mapping (ρ) and four individual

mappings (πk ) as presented in Fig. 2. We assume that the
group mapping is ρ of GIFT.3

The group mapping ρ ensures that the input bits in each
S-box originate from four different S-boxes in the previous
round. At the same time, the bit orders of the bad (B) and
good (G) outputs of each S-box in the ith round are preserved
after passing through ρ. Considering the preserved orders,

3GIFT-64 and GIFT-128 have the same P j
mix .

FIGURE 2. Structure of P j
mix and the propagations of B and G in P j

mix of
GIFT.

the individual mappings πk can be chosen to map the bad
outputs to good inputs in the next round. For example,P j

mix of
GIFT adopts identity mappings for πk as presented in Fig. 2.
In this case, it should be noted that B cannot propagate to B.
Likewise, all of the individual mappings that do not produce
B - B matches are BOGI permutations for an S-box. Note
that such mappings do not exist for non-BOGI-applicable
S-boxes.

The number of BOGI permutations of a BOGI-applicable
S-box can be deduced by the BOGI-spectrum defined in
Definition 4.

Definition 4: The BOGI-spectrum BG(S) of an S-box S
denotes a tuple (R0,C0), where R0 and C0 denote the num-
ber of all-zero row vectors and column vectors in BGTS ,
respectively.

According to Table 1, BG(GS) = (2, 2). Therefore, four
BOGI permutations are available for GS.

E. EQUIVALENCE RELATIONS OVER S-BOX
Various equivalence relations are used when analyzing the
S-boxes. The well-studied equivalence relations are XOR
Equivalence (XE), PE, PXE, Linear Equivalence (LE), and
CCZ relations. In this paper, we mainly deal with XE, PE,
PXE, and AE relations over 4-bit invertible S-boxes.

Definition 5: If an S-box S ′ can be defined from S as

S ′(x) = S((x ⊕ cin))⊕ cout

for some two vectors cin and cout over F4
2, S and S

′ are XOR
equivalent (XE).
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Definition 6: If an S-box S ′ can be defined from S as

S ′(x) = PoutS(Pin(x))

for some two bit-permutation matrices Pin and Pout over
F4×4
2 , S and S ′ are Permutation equivalent (PE).

Definition 7 [10]: If an S-box S ′ can be defined from S as

S ′(x) = PoutS(Pin(x ⊕ cin))⊕ cout

for some two bit-permutation matrices Pin and Pout over
F4×4
2 , and two vectors cin and cout over F4

2, S and S ′ are
Permutation-XOR equivalent (PXE).

Definition 8: If an S-box S ′ can be defined from S as

S ′(x) = LoutS(Lin(x ⊕ cin))⊕ cout

for some two non-singular matrices Lin and Lout over F4×4
2 ,

and two vectors cin and cout over F4
2, S and S ′ are Affine

equivalent (AE).

The above equivalence relations enable the 4-bit S-boxes
to be grouped into equivalence classes, such as the XE, PE,
PXE, and AE classes. An algorithm to search all PXE classes
over 4-bit S-boxes was first presented by Saarinen [10]. This
algorithm was subsequently improved, and it was proved
that every PXE class consists of 384 times the number of
4-bit S-boxes [11]. The improved algorithm can provide each
representative of PXE classes and their size within several
minutes.

III. CLASSIFICATION OF BOGI-APPLICABLE S-BOXES
In this section, we identify all BOGI-applicable S-boxes
and classify them according to their differential uni-
formity and linearity. Because the BOGI-applicability is
invariant in a PXE class as presented by Proposition 1,
we only check the BOGI-applicability of the representa-
tives of 142,090,700 PXE classes to investigate the BOGI-
applicability of all 4-bit S-boxes.

Proposition 1 [1]: In a PXE class, BOGI-applicability is
preserved. To be specific, if S is BOGI-applicable, S ′(x) =
PoutS(Pin(x ⊕ cin)) ⊕ cout for all bit-permutation matrices
Pin, Pout overF4×4

2 and vectors cin, cout overF4
2 is also BOGI-

applicable.

A. DISTRIBUTION OF BOGI-APPLICABLE PXE CLASSES
Checking the BOGI-applicability of all 4-bit PXE classes
required approximately 6 hours with our single-threaded pro-
gram. The result yielded only 2,413 BOGI-applicable PXE
classes. We briefly categorized them according to their cryp-
tographic strength by introducing differential uniformity and
linearity. Note that these cryptographic properties are also
invariant in the PXE class. Table 2 provides the distribution
of the BOGI-applicable PXE classes.

Because each PXE class has a distinct size, the distri-
bution of the 4-bit S-boxes differs from that of the PXE
classes. Table 3 provides the distribution of BOGI-applicable

TABLE 2. Distribution of 4-bit BOGI-applicable PXE classes: The total
number of the PXE classes is 2,413.

TABLE 3. Distribution of 4-bit S-boxes that are BOGI-applicable: The total
number of BOGI-applicable S-boxes is 186,392,448.

TABLE 4. Details of the 20 optimal BOGI-applicable PXE classes. B0
includes GIFT S-box and B1 includes GIFT inverse S-box.

S-boxes. The number of BOGI-applicable S-boxes amounts
to only 186, 392, 448(≈ 227.47) out of all 4-bit S-boxes
(≈ 244.25).
As already shown in [1], BOGI-applicable PXE classes

(S-boxes) that support U ≤ 4 do not exist. There-
fore, (U ,L) = (6, 8) can be concluded to be the optimal
choice. Based on the optimal choice, we define optimal
BOGI-applicable S-boxes.

Definition 9: A 4-bit S-box S is called an optimal
BOGI-applicable S-box if it fulfills these four conditions:

1) S is bijective.
2) S is BOGI-applicable.
3) U(S) = 6.
4) L(S) = 8.
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There exist only 20 optimal BOGI-applicable PXE classes.
Table 4 presents details of all the optimal BOGI-applicable
PXE classes. The inverse relations in Table 4 suggest
that none of the optimal BOGI-applicable S-boxes is self-
permutation-XOR equivalent, fromwhich it can be concluded
that they are unable to support involution (self-inverse).

Observation 1: All optimal BOGI-applicable S-boxes are
not involutory.

B. BOGI SPECTRUM OF BOGI-APPLICABLE S-BOXES
As alreadymentioned in subsection II-D, the BOGI-spectrum
BG of a BOGI-applicable S-box can give an insight into the
BOGI permutations of the S-box. Especially, the number of
BOGI permutations can easily be deduced by BG. The dis-
tribution of BG of BOGI-applicable PXE classes is presented
in Table 5. These results lead to the conclusion that BG of
optimal BOGI-applicable 4-bit S-boxes is always (2, 2), and
that the number of BOGI-permutations for optimal BOGI-
applicable S-boxes is always 4.

TABLE 5. BG of BOGI-applicable PXE Classes: Each result shows the
number of BOGI-applicable PXE classes with the corresponding BG. For
example, 20 optimal BOGI-applicable PXE classes have the BG as (2, 2).

Observation 2: All optimal BOGI-applicable 4-bit
S-boxes have BG as (2, 2). This implies that there exist only
four distinct BOGI permutations(π) for each optimal BOGI-
applicable 4-bit S-box.

C. BOGI-APPLICABLE S-BOXES THAT FULFILL THE
CRITERIA OF THE GIFT DESIGNERS
In this subsection, we traverse every BOGI-applicable S-box
satisfying criteria suggested in [1]. Except for the consid-
eration of the implementation, the following conditions are
considered by GIFT designers.
· Condition 1 (GC1) : An S-box S is BOGI-

applicable.
· Condition 2 (GC2) : U(S) values in DDTS appear

smaller than 3 times.
· Condition 3 (GC3) : For DDTS (1i)(1o) = U(S),

wt(1i)+ wt(1o) ≥ 4.
Table 6 presents the distribution of PXE classes that fulfill
all the conditionsGC1∼3. Only 363 PXE classes(43,118,592
S-boxes) satisfy all three conditions. Note that all optimal
BOGI-applicable S-boxes satisfy the conditions.

TABLE 6. Distribution of 4-bit BOGI-applicable PXE classes that satisfy
the conditions specified by the designers of GIFT. The total number of
the PXE classes is 363.

Observation 3: All optimal BOGI-applicable S-boxes
satisfy the conditions GC1∼3.

This observation implies that none of the optimal
BOGI-applicable S-boxes make any difference in terms of
the previous design criteria considered by GIFT designers.
However, as we show in the following section, the differences
between optimal BOGI-applicable and non-optimal BOGI-
applicable S-boxes manifest themselves in the other security
properties and the implementation cost.

IV. EVALUATIONS OF OPTIMAL
BOGI-APPLICABLE S-BOXES
In this section, we evaluate optimal BOGI-applicable S-boxes
in terms of their cryptographic strength and implementation
cost in more detail than the criteria considered by GIFT
designers. Hereafter, we denote each of the 20 optimal BOGI-
applicable PXE classes in Table 4 as Bi with the correspond-
ing index i. Althoughmost of the cryptographic properties we
evaluate are preserved in a PXE class, we sometimes partition
each PXE class into the corresponding PE, XE classes for
the properties that are not preserved in a PXE class. To be
specific, optimal BOGI-applicable PE classes are discussed
for the implementation cost in subsection IV-B whereas the
XE classes are discussed in Section V.

A. SECURITY EVALUATIONS
In this subsection, we consider security properties of the
20 optimal BOGI-applicable PXE classes additional to those
that were considered by GIFT designers. Although all opti-
mal BOGI-applicable PXE classes satisfy GIFT designers’
criteria as shown in Observation 3, our extra security evalua-
tions present some differences between the PXE classes.

TABLE 7. AE classes that include the 20 optimal BOGI-applicable PXE
classes. The 25th AE class includes the GIFT S-box whereas the 26th AE
class includes the GIFT inverse S-box.

1) OPTIMAL BOGI-APPLICABLE AE CLASSES
We first compute the AE classes that include optimal BOGI-
applicable PXE classes and present the results in Table 7.
We refer to [22] for the index of AE class. Only four distinct
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AE classes include optimal BOGI-applicable PXE classes
(five each). It is noted that BOGI-applicability is not pre-
served in an AE class. For example, the S-boxes that are
included in the 25th AE class but not included in B0,2,4,6,8
are not BOGI-applicable.

2) DIFFERENTIAL SPECTRUM AND WALSH SPECTRUM
The differential spectrum of an S-box is related to GC2.
In addition to the frequency of differential uniformity in DDT,
the frequency of the other values in DDT may affect the
resistance against DC. Thus, the differential spectrum could
be of interest. The differential spectrum Dspec is defined as
follows.

Definition 10 [23], [24]: The differential spectrum of an
S-box S : Fn2→ Fm2 is the multiset:

Dspec(S) := {DDTS (1i,1o) | 1i ∈ Fn2 − {0},1o ∈ Fn2}.

In the similar concept, the Walsh spectrum of an S-box
could be of interest. The Walsh spectrum was not included
in the three primary conditions(GC1 ∼ GC3). However,
the frequency of maximal values may also affect the resis-
tance against LC. In consideration thereof, we evaluate the
extended Walsh spectrum |L|spec. The (extended) Walsh
spectrum of a Boolean function can be generalized for an
S-box as follows.

Definition 11 [23]: The Walsh spectrum of an S-box S :
Fn2→ Fm2 is the multiset:

Lspec(S) := {2× LATS (λi, λo) | λi ∈ Fn2, λo ∈ Fn2 − {0}}.

Moreover, the extended Walsh spectrum of an S-box
|L|spec(S) is defined as the multiset of the absolute values in
Lspec(S).

Because Dspec and |L|spec are invariant in an AE class,
we only deduce them with the four AE classes in Table 7.
Surprisingly, these four AE classes have the same differential,
extended Walsh spectrum as Observation 4.

Observation 4: All optimal BOGI-applicable S-boxes
have the differential spectrum Dspec and extended Walsh
spectrum |L|spec:

Dspec = {0 : 142, 2 : 78, 4 : 18, 6 : 2},

|L|spec = {0 : 108, 4 : 96, 8 : 36}.

Although certain optimal 4-bit S-boxes presented pre-
viously [8] have a more appropriately extended Walsh
spectrum:

|L|spec = {0 : 96, 4 : 112, 8 : 32} or
{0 : 90, 4 : 120, 8 : 30},

the extended Walsh spectrum of optimal BOGI-applicable
S-boxes equals to the extended Walsh spectrum of S-boxes
in 4-bit S-box based block ciphers (e.g., PRESENT,

LBlock, PICCOLO, RECTANGLE). This implies that opti-
mal BOGI-applicable S-boxes provide compatible crypto-
graphic strength in terms of nonlinearity.

3) ALGEBRAIC DEGREE OF COMPONENT
BOOLEAN FUNCTIONS
The algebraic degree, deg(f ), of a Boolean function f is the
degree of the maximum term in the corresponding algebraic
normal form. The algebraic degree for an S-box(vectorial
Boolean function) S can be generalized as follows:

deg(S) = max
a∈Fn2−{0}

deg(Sa),

where Sa = a · S.
In addition to the degree of the maximum term, the follow-

ing multiset:

degspec(S) = {deg(Sa)|a ∈ Fn2 − {0}}

could be of interest. Because degspec is invariant under
affine equivalence, we again utilize the results in Table 7 to
investigate degspec of all optimal BOGI-applicable S-boxes.
The evaluations present that every optimal BOGI-applicable
S-box has the same algebraic degree spectrum as presented
in Observation 5.

Observation 5: All optimal BOGI-applicable S-boxes
have the algebraic degree spectrum degspec(S):

degspec(S) = {2 : 3, 3 : 12}.

This also implies that all optimal BOGI-applicable S-boxes
have the algebraic degree of 3.

Clearly, at least two of the coordinate Boolean functions
(Sei for a unit vector ei ∈ F4

2) have the algebraic degree
of 3 with the same knowledge of Theorem 3 as in a previous
study [9]. This means that at least two non-zero entries are
present in LAT1(i.e., CarL1 ≥ 2), which corresponds to our
results in Table 9.

4) HAMMING WEIGHT ON THE SUB-OPTIMAL
DIFFERENTIAL TRANSITION
Related to GC3, wt(1i) + wt(1o) for DDT(1i,1o) = 6
should be considered to reduce the occurrence of sub-optimal
differential transition in a differential trail. As the Hamming
weights are preserved in a PXE class, we compute the follow-
ing multiset:

WD6(S) := {wt(1i)+ wt(1o) | DDTS (1i,1o) = 6}.

Table 8 presents the value ofWD6 of each of optimal BOGI-
applicable PXE classes.

All optimal BOGI-applicable PXE classes have only two
entries with the differential uniformity 6 as presented in
Observation 4. One can notice that there exist better PXE
classes than B0 and B1, which include GIFT S-box and
inverse S-box, respectively. Indeed,WD6 of B4∼7 and B14∼17
are {4, 5}, and WD6 of B8,9,18,19 are {5, 5}. Thus, GIFT
S-box may not be the best choice with respect to the preven-
tion of sub-optimal differential transitions in a trail.
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TABLE 8. Values of WD6 of the 20 optimal BOGI-applicable PXE classes.

TABLE 9. Differential(extended Walsh) spectrum restricted in
DDT1(LAT1). The zeros in each spectrum are omitted.

5) DIFFERENTIAL(EXTENDED WALSH) SPECTRUM
RESTRICTED IN DDT1(LAT1)
Although the differential and extended Walsh spectrum of
optimal BOGI-applicable PXE classes are equal to each other,
the differential(extendedWalsh) spectrum restricted in DDT1

and LAT1, denoted by D1
spec and |L|1spec, can be distinct.

Table 9 presents the restricted spectrum. One can also deduce
CarD1 and CarL1 from D1

spec and |L|1spec.
The PXE classes B0,1,10,11 provide the optimal choice of

(CarD1,CarL1)= (1, 3). However, the optimal choices cause
|L|1spec to include 4. On the contrary, D1

spec and |L|1spec of
B4∼7,14∼15 consists only of 2 although they have (CarD1,
CarL1) as (2, 3).

B. IMPLEMENTATION EVALUATIONS
In this subsection, we evaluate the implementation of opti-
mal BOGI-applicable S-boxes with Peigen [14], which is
based on LIGHTER [15]. We deduce both the software-
and hardware-oriented implementations. This enables us to
jointly consider the software and hardware efficiency of the
optimal BOGI-applicable S-boxes.

1) IMPLEMENTATION SEARCHING TOOL – PEIGEN
The implementation searching tool Peigen(or LIGHTER) can
find the efficient(not always best) implementation of a given
S-box within a set of the invertible instructions, denoted byB.
Such implementations are denoted B-implementation. The
searching method is based on bi-directional Dijkstra algo-
rithm, and expands the two subgraphs until the predetermined
expansion limit is reached (or when a proper stopping rule is
satisfied). The expansion limit(λ in the paper [15] and ‘‘−l’’

in the corresponding tool4) determines whether the obtained
implementation is the best or not. We set an expansion limit
to guarantee all the implementations we obtain are the best
B-implementation. By tweaking the instruction set B and the
corresponding costs, one can obtain the implementations of
S-boxes for different environments. For more details, refer
to [14], [15].

2) OPTIMAL BOGI-APPLICABLE PE CLASSES
Because the implementation costs are not invariant under
PXE relation, we first partition each of optimal BOGI-
applicable PXE classes into the corresponding PE classes.
In total, the PE classes amount to 4,608. Moreover, as an
S-box and the corresponding inverse S-box have the exactly
same implementation complexity due to the searching way
of Peigen, we only consider half of the entire number of PE
classes (i.e., 2,304 PE classes).

3) SOFTWARE-ORIENTED IMPLEMENTATION
The complexity of the software implementation is measured
by mainly using BGC [13]. Because BGC denotes the num-
ber of atomic operations used in the implementation, BGC
directly determines the required cycle number and code size
for bit-slice implementation of an S-box. The set B5 includes
invertible instructions that are constructed by software opera-
tions{AND, XOR, OR, NOT and ANDN}. As the invertible
instructions are constructed by at most three of the soft-
ware operations, B includes instructions whose cost ranges
from 1 to 3. We specify an expansion limit of ‘‘8,’’ which
implies each subgraph can be expanded until its size becomes
11(=8+ 3). All the implementation costs we obtain are
smaller than 15(= 2× (8+1)−3); thus, our obtained imple-
mentations can be proved to be the best B-implementation.

4) HARDWARE-ORIENTED IMPLEMENTATION
As a measure of the complexity of hardware implementation,
GEC is mainly used.GEC denotes the logic size of implemen-
tation and may be affected by the gates to be used. We restrict
the logic gates to those supported by the UMC180nm cell
library to construct the hardware instruction set B. Each of
the available gates and costs can be found in [14], and the
cost of invertible instructions in B6 ranges from 0.67 to 5.
Searching tends to be more intensive than finding the soft-
ware implementation because B becomes bigger. We apply
the expansion limit of ‘‘13,’’ which means each subgraph
can be expanded until its size becomes 18(= 13 + 5).
As the implementation costs we obtain are smaller than
22.34(= 2 × (13 + 0.67) − 5), all the implementations are
proved to be the best in the B-implementation.

4https://github.com/peigen-sboxes/PEIGEN
5The invertible instructions in B are checked whether they are equivalent

to each other. If this is true, then the implementation with the lowest cost
is chosen. The number of non-equivalent invertible instructions for BGC
amounts to 18.

6The number of non-equivalent invertible instructions for GEC amounts
to 35.
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TABLE 10. Best B-implementation costs and the number of corresponding PE classes. (BGC, GEC) of GIFT S-box including the inverse is (11, 16), and
18 PE classes provide the same implementation cost.

5) TRADE-OFF BETWEEN SOFTWARE AND
HARDWARE-ORIENTED IMPLEMENTATIONS
Table 10 shows the best implementation costs of 4,608 opti-
mal BOGI-applicable PE classes. The best options for BGC
and GEC are 10 and 16, respectively. However, both of the
minimum costs cannot be provided at the same time. Thus,
two options would be the best for (BGC, GEC): (11, 16)
and (10, 16.33).

Considering that the smallest value ofGEC is only possible
with the option (11, 16), which is (BGC, GEC) of the GIFT
S-box, this S-box is indeed the best option in hardware-
oriented designs. Moreover, our analysis shows that all the
S-boxes whose BGC is 10 have at least one fixed point while
GIFT S-box does not have any fixed points. A fixed point
may cause the entire block cipher to be vulnerable to Invariant
Attacks [25]–[27]. Although the weakness can be mitigated
by using proper round constants as presented in [28], pro-
viding an appropriate round constant could burden designers
even further. As a result, we conclude (11, 16) is the best cost
for implementing an optimal BOGI-applicable S-box.

Appendix A lists the available implementation options in
each optimal BOGI-applicable PXE class. The best options
are supported only by B0,1,2,3.

V. NOTABLE S-BOXES FOR GIFT
In this section, we investigate competitive S-boxes compared
to the existing S-box for GIFT. To do so, we check the proba-
bility of the best differential/linear trails replacing the existing
S-box while fixing the diffusion layer as the bit-permutation
of GIFT. We apply all optimal BOGI-applicable S-boxes
that are available for the bit-permutation of GIFT-64. For
GIFT-128, we only consider the promising S-boxes in
GIFT-64 instead of all the S-boxes.

Before starting this section, we define the following in
order to measure the resistance.

Definition 12 ((DRi, LRi)γ ): DRi denotes the maximum
probability of differential trails of i-round GIFT-γ at the

log2 scale while LRi denotes the maximum correlation poten-
tial of linear trails at the log2 scale.

Based on the results of (DRi, LRi)γ , the minimum required
number of rounds rmin for the resistance against DC and LC
can also be obtained. rmin is defined as follows:

rmin = min
i
{ i | DRi ≤ −γ and LRi ≤ −γ }.

Note that if fewer rounds than rmin were used, the correspond-
ing cipher would obviously allow DC or LC.

The best differential/linear trails of GIFT-64 are investi-
gated in [29]. The result showed that rmin of GIFT-64 is 14.
To be specific, GIFT-64 has (DR13, LR13)64 = (−62,−68)
and DR14 = −68. This implies that GIFT-64 requires at
least 14 rounds to prevent single-trail differential and linear
cryptanalysis.

A. OPTIMAL BOGI-APPLICABLE XE CLASSES
Because the trail search is computationally intensive,
we decrease the search space by introducing the XE relation.
S-boxes that are included in an XE class have the same
(DRi, LRi)γ because the corresponding DDTS and SQLATS
are invariant in an XE class. Moreover, SQLATS can be
deduced from DDTS with bijective Walsh transform as
follows:

SQLATS =
1
4

∑
x,y

(−1)a·x⊕b·yDDTS (x, y) [30].

As a result, only XE classes whose DDT are distinct can
be considered for trail searching. According to our results,
10,368 XE classes are included in optimal BOGI-applicable
PXE classes, and all optimal BOGI-applicable XE classes
have distinct DDT, and thus SQLAT as well.

However, some of the XE classes cannot interplay with
the original bit-permutation of GIFT(i.e., the B − B match
occurs). This is because the mapping πk of GIFT is the
identity. Among all the XE classes, only 1,728 XE classes
can interplay with GIFT bit-permutation.
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TABLE 11. Best differential probability and correlation potential of 13-round GIFT-64 variants at the log2 scale. The entries denote the number of
corresponding XEI classes.

Observation 6: Optimal BOGI-applicable 4-bit S-boxes
have one of 10,368 distinct (DDT, SQLAT). Among them,
only 1,728 distinct (DDT, SQLAT) can interplay with a given
BOGI-permutation.

Let XEI classes denote the corresponding XE classes
whose DDT can adopt the BOGI-permutation as an identity.
Now, we can consider only 1,728 XEI classes for every
variant of GIFT-64. It should be noted that the considered
number is the same for GIFT-128 variants.

B. RESISTANCE OF GIFT-64 VARIANTS
AGAINST DC AND LC
As mentioned above, rmin of GIFT-64 is 14. Thus, we focus
on 13-round trails to check if the less rmin ≤ 13 can be pos-
sible with other BOGI-applicable S-boxes. We searched the
best trails based on the Branch&Bound technique presented
in [31], which is relatively fast for bit-permutation based SPN
ciphers.

Table 11 shows (DR13, LR13)64 obtained with the
1,728 XEI classes. One can easily see that 192 XEI classes
provide DR13 and LR13 ≤ −64 despite of only using
13 rounds(i.e., rmin = 13). Since there is a trade-off between
DR13 and LR13, one can choose the two best options as
(−68.4, −72) and (−70, −68).

Appendix B shows (DR13, LR13)64 which can be supported
by each PXE class. Only B4,5,6,7,12,13,16,17 have rmin = 13,
and the two best options can be provided by B4,5,12,13 among
them. Because the bit-permutation of GIFT-64 is not invo-
lutory, an S-box S and its inverse S−1 do not always have
the same (DR13, LR13)64. However, despite the asymmetry,
a PXE class and the inverse PXE class have the same results
of (DR13, LR13)64 on the whole.

C. XE-PE INTERSECTION IN A PXE CLASS
In this subsection, we introduce the XE-PE intersection in a
PXE class. When selecting the best S-boxes in an optimal
BOGI-applicable PXE class, this intersection allows indepen-
dent consideration of (DRi, LRi)γ , and (BCG, GEC).
According to Proposition 2, a non-empty intersection of

an XE class and PE class exists as long as they are included
in the same PXE class. Thus, the BOGI-applicable S-boxes
can always be selected with any available combinations of
(DRi, LRi)γ , and (BGC, GEC).

Proposition 2: There always exist S-boxes included both
in a given XE class and PE class as long as the XE class and
PE class are included in the same PXE class. We denote the
non-empty intersection as XE-PE intersection.

Proof: Assume that there exists a non-empty PE class
P and an XE class X in a PXE class PX such that P ∩X =
∅. Let two S-boxes SP ∈ P and SX ∈ X . Because SP ,
SX ∈ PX , it follows that

SX (x) = PoutSP (Pin(x ⊕ cin))⊕ cout

for some two bit-permutation matrices Pin and Pout over
F4×4
2 , and cin and cout over F4

2. Let S
′

X ∈ X be an S-box
satisfying

SX (x) = S ′X (x ⊕ cin)⊕ cout .

Because S ′X (x⊕cin)⊕cout = PoutSP (Pin(x⊕cin))⊕cout , and
thus S ′X (y) = PoutSP (Pin(y)) where y = x ⊕ cin, it follows
that S ′X ∈ X and S ′X ∈ P . This contradicts the assumption
that P ∩ X = ∅. �
Note that, a non-empty intersection obviates the need to

consider non-best options of (DR13, LR13)64 or (BGC, GEC).
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FIGURE 3. Method for selecting the best S-boxes in an optimal
BOGI-applicable PXE class.

TABLE 12. Best options of (DR13, LR13)64 and (BGC, GEC) and the number
of corresponding XEI , PE classes. The best options of (DR13, LR13)64 and
(BGC, GEC) appear in bold. The highlighted (DR13, LR13)64 have rmin = 13.

Figure 3 visualizes the XE-PE intersection capable of sup-
porting the best (DR13, LR13)64 and (BGC, GEC) in a PXE
class.

Based on the results in Table 11 and Table 10, we deduce
the best combinations of implementation cost and the resis-
tance against differential and linear cryptanalysis. They are
summarized in Table 12. Each corresponding XE-PEI inter-
section consists of only 1 or 2 S-boxes depending on the PXE
class.

D. NOTABLE S-BOXES FOR GIFT-64 STRUCTURE
1) TRADE-OFF BETWEEN CRYPTOGRAPHIC STRENGTH
AND EFFICIENCY
Table 12 presents that trade-offs exist between (DR13,
LR13)64 and (BGC, GEC). The best options of (BGC, GEC)
are supported by B0,1,2,3. On the other hand, the opti-
mal BOGI-applicable PXE classes whose rmin = 13 are
B4,5,6,7,12,13,16,17.

2) S-BOX PROVIDING THE BEST (DR13, LR13)64
B4,5 and B12,13 provide the best (DR13, LR13)64 = (−68.4,
72.0) and (−70.0, −68.0), respectively. However, all the
S-boxes with (BGC, GEC) = (11, 18.33) have at least one
fixed point. Thus, as an alternative option, we could suggest
16 S-boxes with (BGC, GEC) = (12, 18) as follows:

(3, 14, 12, 0, 8, 13, 5, 2, 1, 4, 15, 9, 6, 11, 10, 7) in B4
(9, 6, 4, 10, 8, 15, 3, 5, 7, 0, 14, 1, 2, 12, 13, 11) in B4
(6, 8, 9, 5, 11, 13, 0, 2, 4, 3, 15, 10, 1, 14, 12, 7) in B4
(6, 2, 13, 8, 9, 15, 0, 3, 1, 12, 11, 7, 10, 5, 4, 14) in B4
(3, 12, 13, 0, 2, 15, 8, 6, 4, 10, 14, 1, 9, 5, 7, 11) in B4
(12, 2, 4, 9, 11, 7, 1, 14, 3, 5, 15, 10, 0, 8, 6, 13) in B4
(9, 14, 1, 4, 2, 7, 12, 11, 6, 0, 15, 3, 5, 8, 10, 13) in B4
(12, 8, 1, 6, 3, 15, 10, 5, 7, 2, 11, 13, 0, 9, 4, 14) in B4
(12, 6, 1, 8, 2, 9, 14, 5, 13, 3, 11, 4, 0, 15, 7, 10) in B5
(6, 12, 7, 9, 8, 3, 0, 15, 1, 2, 11, 4, 14, 5, 13, 10) in B5
(9, 11, 12, 6, 2, 7, 1, 8, 4, 0, 3, 15, 13, 14, 10, 5) in B5
(3, 11, 4, 0, 8, 13, 7, 14, 6, 12, 9, 15, 1, 2, 10, 5) in B5
(9, 2, 4, 11, 3, 12, 8, 5, 13, 0, 14, 7, 6, 15, 1, 10) in B5
(6, 8, 1, 7, 14, 13, 0, 11, 3, 4, 12, 10, 9, 2, 15, 5) in B5
(3, 8, 7, 0, 9, 6, 12, 15, 4, 11, 14, 13, 2, 5, 1, 10) in B5
(12, 2, 9, 4, 14, 7, 3, 8, 1, 13, 6, 10, 0, 11, 15, 5) in B5.

The above S-boxes support (DR13, LR13)64 = (−68.4,
72.0) and no fixed points. Moreover, in B12,13, 48 S-boxes
support (DR13, LR13)64 = (−70.0, 68.0), (BGC, GEC) =
(12, 18) and have no fixed points. Although the cost of
implementation in software increases slightly, these S-boxes
can provide the best resistance against DC and LC, and thus
the required number of rounds may be reduced relative to
the current number of rounds. Because the number of rounds
mainly affects the latency and throughput of the block cipher,
designers may choose alternatives where speed measures,
rather than the implementation costs, become the main con-
sideration.

3) S-BOX PROVIDING THE SAME PERFORMANCE AS
THAT OF EXISTING GIFT-64 STRUCTURE
The results in Table 12 indicate a total of 128(=2×16×4)
XEI -PE intersections in which all the S-boxes provide the
same performance as that of the current S-box to GIFT-64.
Each of the intersections consists of a single S-box, and
thus the total number of these S-boxes is 128. Among
them, 96 S-boxes without fixed points are presented in
Appendix C.

4) S-BOX PROVIDING BETTER PERFORMANCE THAN
THAT OF EXISTING GIFT-64 STRUCTURE
Despite the trade-off between the cryptographic strength and
efficiency, one can easily see that the B2,3 can provide better
(DR13, LR13)64 = (−62.8, −70.0) than GIFT S-box within
the same (BGC,GEC)= (11, 16). The total number of S-boxes
included in these XEI -PE intersections is 80. Among the
S-boxes, only 32 S-boxes have no fixed points. The S-boxes
are presented in Appendix D.
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TABLE 13. Available Implementation Costs (BGC, GEC) of Optimal BOGI-applicable PXE Classes.

TABLE 14. Available Resistances (DR13, LR13)64 of Optimal BOGI-applicable PXE Classes.

However, we do not insist that GIFT designers should have
used those better S-boxes. As presented in Table 9, CarL1 of
B2,3 is worse than B0,1. Thus, although the (DR13, LR13)64
is improved to (−62.8, −70.0) from the original (−62.0,
−68), thorough analyses have to be conducted in order to
‘‘well-replace’’ the GIFT S-box.

E. NOTABLE S-BOXES FOR GIFT-128 STRUCTURE
The number of XEI classes(1,728) is still infeasible for larger
block ciphers such as GIFT-128 because trail searching

tends to take much more time than 64-bit block ciphers.
However, considering only the S-boxes whose performance
is not worse than the current S-box in GIFT-64 struc-
ture, we can deduce the corresponding (DRi, LRi)128 of
GIFT-128 variants with 48 XEI classes(16 for the same
performance and 32 for better performance).

For GIFT-128 structure, we investigate 12-round trails
because searching longer trails requires significant time,7

7Each searching for the XEI classes takes from 5 min to 13 days on a
personal computer.
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TABLE 15. S-box of which the Performance Equals that of the Existing S-box in GIFT-64 Structure.

and (DR12, LR12)128 of GIFT-128 is (−60.4, −72), which
implies GIFT-128 requires more than 24 rounds to become
resistant against DC.

Appendix C and D present (DR12, LR12)128 of
GIFT-128 variants we consider. The results show that
(DR12, LR12)128 can be improved up to (−76.4, −74.0).
Unlike (DR13, LR13)64, a PXE class and its inverse PXE class
have distinct results of (DR12, LR12)128. Moreover, S-boxes
that provide better performance in GIFT-64 structure can-
not always guarantee better performance in GIFT-128. This
implies that choosing a dedicated S-box for each version of
GIFT may guarantee more promising performance.

F. EXTENSION TO OTHER BOGI-BASED BLOCK CIPHERS
The results of all our analyses except for (DRi, LRi)γ can
be reused for other BOGI-based block ciphers. However,
as we show in Observation 6, only 10,368 BOGI-applicable
XE classes can be considered rather than all the S-boxes.
Moreover, the number can decrease again to 1,728 after
determining the structure of P j

mix . Therefore, our findings
are expected to help designers analyze (DRi, LRi)γ in their
structures.

VI. CONCLUSION
In this paper, we conducted an exhaustive search for 4-bit
BOGI-applicable S-boxes. By classifying the PXE classes
with respect to their differential uniformity and linearity,
we suggested 20 optimal BOGI-applicable PXE classes.
We evaluated these PXE classes, and presented their general-
ized properties, which have not been analyzed before. More-
over, by partitioning the PXE classes into PE and XE classes,
we explored their implementation cost and resistance against

single-trail differential and linear cryptanalysis. Based on
our investigations, we suggested notable S-boxes for both
versions of GIFT. Although we only concentrated on GIFT,
we expect our study to form the basis for extensions to other
BOGI-based ciphers in future.

APPENDIX A
AVAILABLE IMPLEMENTATION COSTS (BGC, GEC) OF
OPTIMAL BOGI-APPLICABLE PXE CLASSES
• The implementation cost of GIFT S-box is deduced as
(BGC, GEC) = (11, 16).

• The results in boldface are the best results for software
or hardware implementations in each PXE class.

See Table 13.

APPENDIX B
AVAILABLE RESISTANCES (DR13, LR13)64 OF OPTIMAL
BOGI-APPLICABLE PXE CLASSES
• GIFT S-box has the underlined result (−62, −68).
• The results in boldface are the best resistances against
DC or LC in each PXE class.

• The results that reduce the minimum required number of
rounds rmin to 13 are highlighted.

See Table 14.

APPENDIX C
S-BOX OF WHICH THE PERFORMANCE EQUALS THAT OF
THE EXISTING S-BOX IN GIFT-64 STRUCTURE
The following S-boxes can provide the same (DR13, LR13)64,
and (BGC,GEC) as GIFT S-box.Moreover, all of the security
properties we consider in this study are equivalent to those
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TABLE 16. S-box of which the Performance is Better than that of the Existing S-box in GIFT-64 Structure.

of GIFT S-box. In other words, the following 96 BOGI-
applicable S-boxes provide:

• (DR13, LR13)64 = (−62.0, −68.0)
• (BGC, GEC) = (11, 16)
• No fixed points.

An additional 32 S-boxes that include fixed points provide
the same (DR13, LR13)64, and (BGC, GEC) as those listed
above. Here, * denotes GIFT S-box, and ** denotes its
inverse.

See Table 15.

APPENDIX D
S-BOX OF WHICH THE PERFORMANCE IS BETTER THAN
THAT OF THE EXISTING S-BOX IN GIFT-64 STRUCTURE
The following 32 optimal BOGI-applicable S-boxes provide:

• (DR13, LR13)64 = (−62.8, −70.0)
• (BGC, GEC) = (11, 16)
• No fixed points.

Note that (DR13, LR13)64, (DR12, LR12)128, and (BGC, GEC)
of GIFT S-box are (−62.0, −68.0), (−60.4, −72), and
(11, 16), respectively. An additional 8 S-boxes that
include fixed points provide the same (DR13, LR13)64, and
(BGC, GEC) as those listed above.

See Table 16.
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