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ABSTRACT The continuous scaling-down size of interconnects should be accompanied with ultra-thin
diffusion barrier layers, which is used to suppress Cu diffusion into the dielectrics. Unfortunately, conven-
tional barrier layers with thicknesses less than 4 nm fail to perform well. With the advent of 2D layered
materials, graphene and hexagonal boron nitride have been proposed as alternative Cu diffusion barriers
with thicknesses of ≈ 1 nm. However, defects such as vacancies may evolve into a Cu diffusion path,
which is a challenging problem in design of diffusion barrier layers. The energy barrier of Cu atom diffused
through a di-vacancy defect in graphene and hexagonal boron nitride is calculated by density functional
theory. It is found that graphene offers higher energy barrier to Cu than hexagonal boron nitride. The higher
energy barrier is attributed to the stronger interaction between Cu and C atoms in graphene as shown by
charge density difference and Bader’s charge. Furthermore, we use the energy barriers of different vacancy
structures and generate a dataset that will be used for machine learning. Our trained convolutional neural
network is used to predict the energy barrier of Cumigration through randomly configured defected graphene
and hexagonal boron nitride with R2 of> 99% for 4×4 supercell. These results provide guides on choosing
between 2D materials as barrier layers, and applying deep learning to predict the 2D barrier performance.

INDEX TERMS Machine learning, 2D materials, Cu interconnects.

I. INTRODUCTION
According to the international technology roadmap for semi-
conductors (ITRS) [1], the device size is shrinking continu-
ously from 22 nm in 2012, to 14 nm in 2014, 10 nm in 2016,
7 nm in 2018 and 5 nm in 2020. Since the 130 nm technology
node, Cu has become the dominant interconnect material
owing to its superior properties such as low resistivity and
electromigration resistance [2] compared to Al. However,
the high diffusivity of Cu makes it susceptible to diffusion
into the surrounding dielectrics [3]–[6]. Cu diffusion may
cause a short-circuit between the neighboring Cu intercon-
nects, or a deep-level trap [5] with the transistors underneath.
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In addition to Cu diffusion, the size effect also presents
a major issue in Cu interconnects. When the thickness of
an interconnect is comparable to the mean free path of an
electron (39 nm for Cu at room temperature), the resistivity
increases significantly compared to bulk Cu. The size effects
include different types of scattering phenomena such as elec-
tron surface scattering, grain boundary scattering, surface
roughness scattering and impurities [7]–[9].

To prevent Cu diffusion, a barrier must be integrated into
the interface betweenCu and dielectrics. Conventional barrier
materials such as Ta, TaN and TiN [10]–[12] were used
to block the diffusion between Cu and dielectric. However,
the relatively higher resistivity, and the deficiency in the
blocking properties in thicknesses of several nanometers
make it vital to search for an alternate. In addition to the
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scaling-down issues for these materials, the adhesion to Cu is
not ideal and presents a challenge. Therefore, other materials
such as Ta has been integrated between the diffusion barrier
and Cu.

With the advent of nanotechnology, 2D materials can play
an important role in IC technology. For instant, embedding
2D material in the interconnect as a barrier layer would
be crucial due to continuous scaling-down of the back-end-
of-the-line (BEOL). Fortunately, many 2D materials were
found to exhibit good blocking properties. Among these are
graphene and hexagonal boron nitride (hBN). Many stud-
ies showed that graphene has an excellent barrier proper-
ties [13]–[15], due to its high impermeability and diffu-
sion blockage properties [16], [17]. Moreover, graphene can
reduce the surface scattering of Cu which demonstrate it
as a liner layer [18], [19]. On the other hand, hBN, which
has almost the same hexagonal structure of graphene with a
lattice mismatch of 1.5% [20], was found to be capable of
suppressing Cu diffusion into dielectrics [21] with a thickness
of ≈ 1 nm.

For a perfect 2D layer, Cu atoms experience a large energy
barrier (≈ 31 eV) [22] when penetrating through the basal
plane, whichmakes it a perfect barrier layer. However, defects
in 2D materials such as vacancies, grain boundaries and
edges, can have significant influence on the mechanical,
optical, thermal, and electrical properties of the material [23],
[24]. The presence of defects in 2D materials is inevitable
during the synthesis and the transfer processes and can affect
the over-all performance of the barrier between metal and the
dielectric in BEOL, especially Cu, which can diffuse fast into
dielectrics. Different types of defects may lead to different Cu
diffusion behavior. It is instinctive that the larger the defect
size, the lower the energy barrier for a Cu atom to cross the
layer, as shown in Ref [25], which can be attributed to the
weak interaction between the crossing Cu atom and the defect
neighboring atoms.

Recently, machine learning (ML) showed great potential
in prediction of material properties. For instance, a convo-
lution neural networks (CNN) was able to identify phases
and phase transition of matters [26], which makes it pos-
sible to exploit CNNs in predicting properties of materi-
als with arbitrary structures, such as predicting bandgap of
configurationally hybridized graphene and hexagonal boron
nitride [27], or assisting in designing new materials [28].
Furthermore, a combination of machine learning and mate-
rial databases successfully predicted several properties of
stoichiometric inorganic crystalline material, such as mate-
rial classification, bandgap energy and heat capacities [29].
Another combination of analytical solution and molecular
dynamics were developed to train a shallow and deep neural
networks to predict fracture stress of graphene samples [30].

Although many 2D materials were demonstrated as bar-
rier layers for Cu diffusion, a qualitative and quantitative
comparison is still not explored. Here we aim to investigate
the electronic interaction between a diffused Cu atom and
graphene/hBN layer. Which ultimately assists in choosing

TABLE 1. Adsorption energies and heights of Cu atom on hollow (H),
bridge (B) and top (T) sites of pristine graphene.

between graphene and hBN as barrier layer. Furthermore,
with the help of density functional theory (DFT), we gener-
ated three sets of data, i.e., training, validation and test set.
each set consists of the structure configuration of 2D layer
represented in a 2D matrix, and its corresponding energy bar-
rier. We restricted the defect type to single mono-vacancy and
double mono-vacancy, due to the relatively small supercell.

This paper is organized as follows: Section II involves
investigation of graphene and hBN as barrier layers in Cu
interconnects. Section III involves the application of ML in
predicting the barrier performance for Cu diffusion through
the defected 2D layer. Finally, the conclusions are summa-
rized in Section IV.

II. GRAPHENE AND HEXAGONAL BORON NITRIDE AS
BARRIER LAYERS IN Cu INTERCONNECTS
In this section, we investigate graphene and h-BN as barrier
layers for Cu atom diffusion through sheet defect. The defect
is assumed to be a di-vacancy of Cu atoms in the 2D layer.
The di-vacancy defect is large enough for a Cu atom to
pass through, which helps to capture the atomic interaction
between 2D layer and the diffused atom. All our calculations
were performed within density functional (DFT) theory as
implemented in the QUANTUMESPRESSO [31] simulation
package. All details of our simulations are listed in Section V.

A. ADSORPTION OF Cu ON GRAPHENE AND hBN
We first validate our model by calculating the adsorption
energy of Cu on perfect graphene. Three possible adsorption
sites were investigated i.e., top, bridge and hollow. During
the relaxation, adatoms were only allowed to move in the
direction perpendicular to the graphene basal plane. At the
same time, the relaxation of all C atoms was unrestricted.
The relaxation procedure was stopped when the Hellmann-
Feynman forces on all atoms were smaller than 10−2 eV/Å.
The adsorption geometry is obtained from the positions of
the atoms after relaxation. The adatom height is defined as
the differences in z coordinate of the adatom and the average
of the z coordinates of all C atoms in the graphene layer. Of
the three adsorption sites considered, the site with the largest
adsorption energy (minimum total energy) is referred to as
the favored site. The adsorption energies of Cu on perfect
graphene are shown in Table 1. The preferred adsorption
site was found to be the bridge site with −0.264 eV which
is in good agreement with previous reports [32]. Followed
by the top and hollow sites with −0.263 and -0.12 eV,
respectively.

Existence of intrinsic defects such as vacancies is unavoid-
able in 2D layers grown by the chemical vapor deposi-
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TABLE 2. Adsorption energies and heights of Cu atom on graphene and
hBN with mono-vacancy.

tion (CVD) method. These defects are susceptible to further
enlargement during the transfer process and the subsequent
treatment. Among different paths for the Cu atom, the per-
pendicular path to the basal plane of 2D layer is considered
as the fastest diffusion paths [33].

The adsorption of Cu on mono-vacancy layer is investi-
gated by removing a single atom from a perfect layer, then
the Cu atom is positioned above the defect and the whole
structure is relaxed. For hBN, there is a possibility that the
vacancy atom is B or N. Sine the B and N radii are different,
the Cu atom is expected to be adsorbed in different heights
with different adsorption energies. Table 2 shows the heights
and the adsorption energies for the Cu atom. It is observed
that the Cu atom is adsorbed above the defect center of
graphene with 1.41 Å, and 1.37 Å for hBN with B vacancy,
and 1.8 Å for hBN with N vacancy.

We further calculate the interaction between a Cu atom
and the 2D layer with a di-vacancy. For graphene layer,
the Cu atom is adsorbed exactly at the center of the di-
vacancy with C-Cu distance of 1.9 Å, as shown in Fig. 1a.
The adsorption energy is calculated to be−5.1 eV. The lower
adsorption energy means the Cu atom is more favored to
be adsorbed on graphene layer with di-vacancy. The same
behavior is for hBN layer except that the symmetry is bro-
ken at the di-vacancy and the Cu atom is adsorbed with B-
Cu and N-Cu of 2.04 and 1.88 Å, respectively (Fig. 1b).
The adsorption energy is −5.94 eV, which in good agree-
ment with literature [34]. It can be noticed that the distance
Cu-N is shorter than Cu-B as shown in Fig. 1b. There-
fore, it is expected that Cu has stronger interaction with
neighboring N atoms when crossing the hBN basal plane,
which will determine the energy barrier behavior as discussed
later.

B. ENERGY BARRIER CALCULATION
A perfect 2D layer is highly impermeable to atomic
species [16]. The diffusion barrier for Cu atom translocation
through the hollow of graphene basal plane is as large as
≈ 31 eV [22], which makes it a perfect barrier layer for Cu
diffusion. However, the presence of a vacancy defectmay pro-
vide a columnar diffusion path for Cu due to the low electron
density at the vacancy. The energy barrier that opposes the Cu
atoms to pass through the defect is calculated using nudged
elastic band method (NEB) [35], which is embedded in QE
package. To compare graphene and hBN as barrier layers,
a Cu atom is positioned at 3.5 Å above the defect center. Then
the atom is forced to move towards the di-vacancy center in
a perpendicular direction to the 2D layer basal plane, and the
energy barrier along the diffusion path is recorded as shown

FIGURE 1. Cu atom adsorbed on di-vacancy (a) Graphene and (b) hBN
layer. Color code: C, black; B, gray; N, blue; Cu, copper. Atomic distances
are in Å.

FIGURE 2. Energy barrier profile for Cu moving towards graphene and
hBN with di-vacancy. ‘‘0’’ corresponds to the initial coordinate of the Cu
atom at 3.5 Å above the plane, ‘‘1’’ corresponds to the final coordinate at
the defect center.

in Fig. 2. The energy barrier for the Cu atom increases as
it gets closer to the basal plane and reaches its maximum
value at the defect center with 6.3 and 7.3 eV for hBN and
graphene, respectively. In other words, a Cu atom requires
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FIGURE 3. Charge density difference (CDD) (a,b) and Bader charge (c,d) for Cu adsorbed on graphene and hBN with
di-vacancy. Blue and yellow colors isosurfaces indicate depletion and accumulation of charges, respectively. The
isosurface value is taken as 0.005 e/bohr3. Bader charges are shown on relevant atoms.

higher energy to diffuse through defected graphene than hBN.
Which suggests that graphene outperforms hBN as barrier
layer for Cu.

The higher energy barrier of graphene can be explained
by calculating the charge density difference (CDD) of the
adsorbed Cu atom on 2D layer with di-vacancy relative to
the pristine layer and the isolated Cu atom according to the
formula

1ρ = ρ(2DL|Cu)− ρ(2DL)− ρ(Cu) (1)

where ρ2DL|Cu and ρ2DL are the charge densities of the 2D
layer with/out a Cu atom, respectively, and ρCu is the charge
density of the isolated Cu atom in the same geometry struc-
ture. As shown in Fig. 3, there are considerable electron
density transfers between the Cu atom and the near atoms for
both graphene and h-BN. However, there is a strong electron
density depletion around the Cu atom at the graphene di-
vacancy as shown in Fig. 3a, which suggests a strong interac-
tion between the C and Cu atoms. The Cu atom also examine
a similar electron density depletion at the hBN di-vacancy,
with less depletion at the Cu-B side as shown in Fig. 3b.
To elucidate the charge rearrangement between the Cu and
the surrounding atoms, we follow the electronegativity of

the chemical constituents principle; being Cu is the least
electronegative (1.90), followed by B (2.04), C (2.55) and
N (3.04). Thus, the Cu adatom tends to donate charge to
the surrounding atoms with higher electronegative. There-
fore, CDD isosurfaces show more charge depletion from Cu
towards N, C and B atoms, respectively. Although the CDD
explain the interaction between the Cu atom and other atoms
in term of CDD, there is a still need to quantify the transferred
charge between the atoms. With this aim, Bader’s charge
analysis [36] were used to calculate the donated (gained)
charge at each atom as shown in Fig. 3c and Fig. 3d. At the
defect region in both structures, Cu always donates charge
with+0.81e and+0.58e for graphene and hBN, respectively.
Atoms which gained more charge are those N atoms with
−2.36e, while B atoms donate more with +2.14e. On the
other hand, all C atoms neighboring the Cu atom gain charge
as their charges are−0.12e and−0.19e. Therefore, the higher
energy barrier for graphene can be attributed to the stronger
interaction of the Cu atom at the graphene as explained by
the CDD isosurfaces and Bader’s charge. The relatively low
electronegative of B atoms results in less interaction with the
Cu atom and thereby hBN offers less energy barrier compared
with graphene.
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FIGURE 4. A proposed convolutional neural network structure for energy barrier prediction.

FIGURE 5. Descriptors for 2D defected systems. (a) Graphene with mono-vacancy. (b) hBN with mono-vacancy. (c) Graphene with double
mono-vacancy.

III. ENERGY BARRIER PREDICTION BY MACHINE
LEARNING FOR GRAPHENE AND hBN
A. CONSTRUCTION OF THE VCN
In this paper, we employ VGG16 convolutional network
(VCN) [37] for predicting the energy barrier of graphene and
hBN for Cu. Fig. 4 shows a schematic of the VCN which
combines convolution layers and fully-connected layers (FC)
into one model. In our VCN model, the input matrix corre-
sponding to the 2D structure is fed to the input layer. The
input matrix is transformed into feature maps and transferred
to the next layer and so on, until the last convolution layer.
Then the data is down-sampled by a max pooling layer,
which will serve as an input to the fully-connected layers.
The last FC layer acts as the output layer which contains
the predicted energy barrier (more details about VCN are in
supplementary note A, and the detailed hyperparameters are
shown in Table. S1).

B. PREPARATION OF THE DATASET AND NETWORK
TRAINING
After the neural network is built, it is trained by the gen-
erated dataset, which are the input structural matrices and

their corresponding energy barrier values. In order to prepare
enough dataset for the neural network, we conducted DFT
calculations to calculate the energy barrier of a Cu atom for
all defected structures with mono-vacancy and double mono-
vacancy. Structural information must be well described to
serve as an input data to train the neural network (NN). The
material descriptor which contains the structural details of
the material is very crucial [38] for training and affects the
model accuracy. Since the materials under consideration have
a 2D structure, it is suitable to use 2D matrix to represent
the structure of graphene and hBN. One intuitive way to
construct the input matrix is to represent the C atom in
graphene by ‘‘1’’, and the vacancy defect by ‘‘0’’ as shown
in Fig. 5a & 5c. Similarly, The B and N atoms is repre-
sented by ‘‘1’’ and ‘‘2’’, respectively, as in Fig. 5b. The
matrix representation of the 2D structure expedites the NN
to capture the features of the topologically defected struc-
ture. During the training process, the NN learns what is the
energy barrier of a mono-vacancy layer to Cu atom, and how
the position vacancy affects the value of the energy barrier.
Moreover, how two mono-vacancy atoms interact with each
other.
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In our model, we consider 4× 4 supercell of graphene and
hBN. First, we assume a single mono-vacancy in the super-
cell, i.e., 32 structures. Every structure has a single mono-
vacancy as shown in Fig. S1(a-c) (Supplementary Material).
Then, we assume a double mono-vacancy in the supercell,
which means additional 496 structures as shown in Fig. S1(d-
f) (Supplementary Material). After the construction of the
dataset, it is split into training, validation and test set. The
training set is used to adjust the weights and biases during
the training phase. While the validation set is used to avoid
the network over-fitting. The test set is to provide a mea-
surement of the model performance. Thus, the test set is not
seen by the model during the model learning. The splitting
process is done randomly by the computer. The mean square
error (MSE) is used as a criterion to terminate the training of
the model.

C. ENERGY BARRIER PREDICTION FOR GRAPHENE AND
hBN BY DEEP LEARNING
After the training phase, the test set is fed to the neural net-
work to predict the energy barrier of the defected 2Dmaterial.
The energy barrier of a Cu atom depends on the defected
area size and the surrounding atoms. That is, the number
of vacancy atoms and their position affect the total energy
barrier. For example, if vacancy atoms are located next to
each other, then Cu atoms interact with each other and they
experience higher energy barrier in graphene (≈ 12.45 eV)
as shown in Fig. S2(a). While the energy barrier is fixed
when there is a single C mono-vacancy. Connected double
mono-vacancy can be formed at the boundary between two
supercells with doublemono-vacancy as shown in Fig. S3 due
to the periodic boundary conditions. However, its energy
barrier is the same as that of double mono-vacancy within
the same supercell. The presence of two atoms (B and N)
in hBN results in two energy barrier values for a single
mono-vacancy, depending on the vacancy atom. Obviously,
there is a link between any atom and its neighboring atoms,
and consequently, the energy barrier. As convolutional layers
can extract features of matrix elements and their neighbors,
VCN detects these linkages and extract the features of each
structure and relate it to the output energy barrier during
the NN training and validation. Although the training and
validation datasets are relatively small (512 datasets for each
material), it can be noticed that the output is almost identical
to the targeted energy barrier for both graphene and hBN as
shown in the lift chart in Fig. 6, except for the first two hBN
samples with low diffusion barrier (Fig. 6b). The lift chart
shows the output of test set (expected) and the energy barri-
ers predicted by VCN. We further calculated mean absolute
error (MAE), coefficient of determination (R2) and root mean
square error (RMSE). These metrics were calculated using
the test set which provide an independent measure of the
performance of the VCN, since it is not used during training
nor validation phases. As provided in Table 3, the network
shows a good performance for graphene with 0.07, 0.008 and
0.09 of MAE, MSE and RMSE, respectively. However, for

TABLE 3. Statistics of the predicted energy barriers by DL algorithm.

FIGURE 6. Expected and predicted energy barrier values for (a) graphene
and (b) hBN.

hBN, these metrics are relatively high. We attribute the lower
prediction performance of the network for hBN to the input
representation matrix. Since hBN has two atoms (B and N),
and graphene has only one atom (C), a VCN needs more
datasets to further improve the performance. The prediction
performance can be improved by considering larger supercell
and dataset size. Increasing the dataset size decreases the
chances of overfitting and provides more atomic features in
the input matrices.

Due to the extremely high computational cost, it is imprac-
tical to compute the energy barrier of all the possible con-
figurations for the defect in 2D material. As shown previ-
ously, the defect may occur anywhere in the lattice, which
results in huge number of defect configurations. The diffusion
properties and energy barrier of Cu are determined by the
defect type and location. Therefore, it is crucial to calculate
the energy barrier of Cu for all configurations. The previous
results show that it is possible to exploit ML to enhance the
performance of 2D materials as barrier layers in the BEOL
by predicting their energy barrier to Cu, using reasonable
computational cost. Similarly, other classes of 2D materials
such as transition metal dichalcogenides (TMDs) can be pre-
dicted. The structure of TMDs such as MoS2 and WSe2 can
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be represented by 3D matrix since it consists of transition
metal layer (Mo, W) sandwiched between two chalcogen
layers (S, Se). Which paves a way for thorough comparison
study among 2D materials as barrier layers.

IV. CONCLUSION
In this paper, we investigate defected graphene and hBN as
barrier layers for Cu diffusion in BEOL. The diffused Cu
atom experiences higher energy barrier when crossing the di-
vacancy defect of graphene. Charge density difference and
Bader’s charge show that the interaction of Cu-C in graphene
is higher than Cu-B/N in hBN, which suggests graphene
as a barrier layer in Cu interconnects over hBN. Moreover,
hundreds of DFT simulations to generate energy barriers of
configurationally defected graphene and hBN are carried out.
These datasets are used to train, validate and test our NN
model. Our trained model shows a good prediction perfor-
mance that may stimulate the application of machine learning
to predict different classes of 2D barrier layers performance.

V. SIMULATION DETAILS
All our calculations were performed within density func-
tional theory (DFT) as implemented in the QUANTUM
ESPRESSO [31] simulation package. We used the general-
ized gradient approximation (GGA) in the parametrization
by Perdew, Burk and Ernzerhof [39] and the projector aug-
mented wave (PAW) method [40], [41]. A cut-off energy
of 600 eV and Gaussian smearing with a width of σ =
0.025 eV for the occupation of the electronic levels were
used. AMonkhorst-Pack0-centered 10×10×1 k-point mesh
is used. Convergence tests are conducted for all the chosen
Cut-off energy, Gaussian smearing and k-points mesh. All
structures are modeled as 4 × 4 supercell, of which the
periodic boundary conditions are applied along the x − y
plane. The repeated 2D layers are separated from each other
by 20 Å of vacuum. The adsorption energies are calculated as

Eads = E0[ad@2DL]− E0[2DL]− E0[ad] (2)

where E0 are the ground state energies of the adatom on 2D
layer [ad@2DL], 2D layer [2DL] and adatom [ad] alone.

The VCN model is based on Keras [42] and TensorFlow
neural network libraries. Keras is an open-source neural net-
work library, and is written in Python. Keras is capable of
running on top of other NN libraries such as TensorFlow and
Theano. Adam optimizer [43] is used to update the VCN
weights during backpropagation.
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