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ABSTRACT This article proposes a millimeter wave-NOMA (mmWave-NOMA) system that takes into
account the end-user signal processing capabilities, an important practical consideration. The implemen-
tation of NOMA in the downlink (DL) direction requires successive interference cancellation (SIC) to be
performed at the user terminals, which comes at the cost of additional complexity. In NOMA, the weakest
user only has to decode its own signal, while the strongest user has to decode the signals of all other users
in the SIC procedure. Hence, the additional implementation complexity required of the user to perform
SIC for DL NOMA depends on its position in the SIC decoding order. Beyond fifth-generation (B5G)
communication systems are expected to support a wide variety of end-user devices, each with their own
processing capabilities. We envision a system where users report their SIC decoding capability to the base
station (BS), i.e., the number of other users signals a user is capable of decoding in the SIC procedure.
We investigate the rate maximization problem in such a system, by breaking it down into a user clustering and
ordering problem (UCOP), followed by a power allocation problem. We propose a NOMA-minimum exact
cover (NOMA-MEC) heuristic algorithm that converts the UCOP into a cluster minimization problem from
a derived set of valid cluster combinations after factoring in the SIC decoding capability. The complexity
of NOMA-MEC is analyzed for various algorithm and system parameters. For a homogeneous system of
users that all have the same decoding capabilities, we show that this equates to a simple maximum number
of users per cluster constraint and propose a lower complexity NOMA-best beam (NOMA-BB) algorithm.
Simulation results demonstrate the performance superiority in terms of sum rate compared to orthogonal
multiple access (OMA) and traditional NOMA clustering schemes that do not incorporate individual users’
SIC decoding capability constraints.

INDEX TERMS Non-orthogonal multiple access (NOMA), millimeter-wave (mmWave), user clustering
(UC), successive interference cancellation (SIC), minimum exact cover (MEC) problem.

I. INTRODUCTION
Beyond fifth-generation (B5G) communication systems are
expected to support a large number of connected users at a
time, each with different processing capabilities and require-
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ments. Themassivemachine-type connectivity (mMTC), also
called the Internet of Things (IoT), as well as the ultra-
reliable low latency communication (URLLC) use-cases, are
expected to bringmany different types of connected users into
the system compared to traditional mobile broadband users
[1]. Thus, B5G systems need to support a very large number
of low-cost devices for the IoT connections in addition to the
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traditional high data rate mobile broadband connections that
are also growing exponentially. The latest Ericsson mobility
report [2] estimates upwards of 30 billion connected users
by 2023, with more than 50% coming from IoT connections.
This puts enormous spectral efficiency requirements on the
B5G wireless communication systems.

The mmWave spectrum offers a large amount of band-
width to scale up the capacity from the cellular networks
that operate today in the sub-6 GHz range. Further, non-
orthogonal multiple access (NOMA) techniques offer a way
to serve multiple users in the same orthogonal resource, e.g.,
time, frequency, orthogonal frequency division multiplexing
(OFDM) resource block (RB), etc., by separating the users in
the power domain instead (PD-NOMA). Hence, when com-
bined, mmWave-NOMA has the potential to serve the high
rates and massive connectivity demands of B5G networks.
Additionally, the high level of correlation amongst users
channels in mmWave, makes them ideal for the formation of
user clusters to be served by a single beam and separated in
the power domain through NOMA [3]–[5].

The survey in [6] shows that the key aspects of achieving
a good performance in NOMA systems are user clustering,
user ordering, beamforming, and power allocation. User clus-
tering refers to the selection of users to serve in a NOMA
cluster, typically in a beam via beamforming techniques. User
ordering refers to the order in which successive interference
cancellation (SIC) is applied at the users in the downlink.
Power allocation techniques are then used to allocate the
right amount of power to each user in the cluster, so that
SIC decoding can be successful and each users target rates
are met. The focus of this article is user clustering and user
ordering.

As we group users in NOMA clusters, the weakest user
only has to decode its own signal, while the strongest user has
to decode the signals of all other users in the SIC procedure.
The decoding of other users’ signals requires significant addi-
tional processing capability, in terms of hardware capability,
energy consumption, etc. [7], [8]. The authors in [9] identified
this SIC decoding complexity as the first major practical
implementation issue for NOMA. NOMA is expected to
support a wide variety of end-user devices in B5G systems,
each with different signal processing capabilities [9], [10].
Hence, each user has its own limitations on the number
of other users signals that it can decode. We term this the
SIC decoding capability of the user. For NOMA, this SIC
decoding capability translates to the number of other users
signals a DL user can decode before decoding its own signal.
This SIC decoding capability can be easily communicated to
the BS during connection setup. For IoT devices, this could
be as low as zero or one, while for high-end smartphones
this can be a much higher value due to the differences in
hardware processing capability. Hence, when implementing
NOMA in the DL, the BS needs to respect this SIC decoding
capability limit of the user when it orders users to be served
in a NOMA cluster as we discuss further in the motivation in
Section I-B.

A. RELATED WORK
In [11], the authors highlight the tight coupling between user
clustering, cluster sizes, and user ordering on the performance
of NOMA systems. In typical NOMA works from the liter-
ature, the user pairing or user clustering schemes have been
designed to group two users per cluster [12], [13], or some
fixed number of users per cluster [14], respectively. In [14],
the optimum cluster sizes from a performance perspective is
analyzed. However, in this article, we focus on the cluster
size as a constraint. More importantly, it is not just a generic
constraint that limits the number of users in the cluster, but
there is a constraint from each user in the cluster on how
many other users signals it can decode in the SIC decoding
order. When it comes to the SIC decoding order within a
cluster, as highlighted in [15], users are typically ordered
either based on their effective channel gains, i.e., channel
gains after considering the beamforming weights, or based on
their quality of service (QoS) using a cognitive radio concept.
In this article, we focus on the effective channel gain strategy
as we assume all users have the same QoS.

Unlike multi-user MIMO (MU-MIMO), where correlated
users are difficult to separate by individual beams, such cor-
related users can easily be grouped together in a NOMA clus-
ter [6]. In mmWave systems, the users’ channels are highly
correlated due to the highly directional nature of mmWave
transmission [16], [17]. The user clustering schemes in
mmWave-NOMA systems typically exploit the high corre-
lation amongst users channels to cluster correlated users
together, e.g., [3], [18]. In [19], the authors use an angle-
domain NOMA scheme that schedules one cell-center and
one cell-edge user in a NOMA pair, for each beam in each
cell. Recent works in mmWave-NOMA systems have also
used machine learning clustering techniques to identify cor-
related users and group them in NOMA clusters [5], [20],
[21]. Further, in mmWave systems, since it is often infeasi-
ble to scale up the number of transceivers with the number
of antennas, studies in mmWave-NOMA systems often use
either analog beamforming (BF) with a single RF chain [16],
[22], [23] or a hybrid BF design with a reduced number of RF
chains [24], [25].

B. MOTIVATION AND CONTRIBUTIONS
In practical deployments, the typical clustering approaches
described above in the related work inmmWave-NOMAhave
two important limitations. First, they can lead to arbitrarily
large and uneven cluster sizes. If we have a system model
where one cluster is served on one channel, this could lead
to over-use on one channel and under-use on other channels.
More than the imbalance in resource usage, large cluster sizes
mean the users at the end of the SIC decoding orders need to
decode a very large number of users. This is particularly an
issue in dense deployments, where large clusters of correlated
users can exist. The second important limitation with these
algorithms is there is no flexibility incorporated to account
for the SIC decoding capability limitations of each individual
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user. Concretely, just finding groups of correlated users, can
lead to cluster formations where the individual user decoding
capability limits of some users are not respected, i.e., users
are placed in SIC decoding positions in a cluster that require
them to decode the signals of a greater number of users than
their indicated SIC decoding capability.

The clustering schemes from the mmWave-NOMA liter-
ature that focus on finding correlated users, e.g., [5], can
be modified to arbitrarily divide the groups of correlated
users the algorithm identified into different clusters, served
on different channels. Users then need to be decoded in the
order of their decoding capabilities, rather than the effective
channel gains. Even when users are decoded in the order of
SIC decoding capability, further orthogonal channels might
be needed if some users’ constraints are not met. All such
workarounds to meet the practical SIC decoding capability
constraints of users in real deployments would erode the
gains from the clustering algorithms that strived to find good
sets of correlated users, with sufficient separation between
the clusters. Instead, if the clustering algorithm was able to
consider the user decoding capability requirements as part
of its input, it would be better able to construct clusters that
maximize the overall spectral efficiency, while taking into
account these individual user decoding capability constraints.
This is the motivation for the work presented in this article.

Against this background, in this article, we investigate
a rate maximization problem for a mmWave-NOMA sys-
tem that takes into consideration the SIC decoding capabil-
ity of each individual user in the system. We break down
the problem into a user clustering and ordering problem
(UCOP), which is the focus of this article, followed by a
power allocation (PA) problem. We consider a single-cell
mmWave-NOMA equipped base station (BS) that applies
analog beamforming (ABF) in a fixed set of directions uni-
formly distributed around the cell coverage area. A NOMA
cluster of users will be served on an orthogonal channel, e.g.,
a time channel or OFDM resource block, using one of these
pre-defined beams. In this way, the UCOP can be framed
as a cluster minimization problem in order to minimize the
number of orthogonal channels used to serve the required
number of users, while respecting each individual user’s SIC
decoding capability constraints. We propose two algorithms
to solve this UCOP. The first one we term NOMA-minimum
exact cover (NOMA-MEC), as we decompose the problem
into a MEC problem, a known NP-complete problem [26].
For a homogeneous system where all users have the same
SIC decoding capability, we propose a less complex NOMA-
best beam (NOMA-BB) algorithm. The key aspects of the
two algorithms are outlined next.

In both algorithms, the BS uses the cosine similarity metric
that aligns a user’s channel with the set of possible beam
directions to rank the best beams for each user. The BS then
chooses the best beams to form a candidate beam list for each
user, with the number of beams in this list a configurable
parameter that can be tuned for a complexity-performance
trade-off as we discuss in-depth in this article. This step

identifies users that can potentially cluster with each other.
User ordering in any cluster is done in the order of the
effective channel gains. NOMA-MEC then takes the SIC
decoding capability of the users into account, and builds a
list of valid cluster combinations such that the SIC decoding
is done in the order of the users’ channel gains and each user
SIC decoding capability is respected. Using this candidate
list, NOMA-MEC is able to frame the problem as a MEC
problem where the goal is to serve all the users in the least
number of channels from the designed set of valid cluster
combinations.

In a homogeneous system, the user decoding capability
constraints of the users translate to limiting the number of
users per cluster, as any user ordering within that cluster
will satisfy each user’s decoding constraints since they are
all equal. Such a homogeneous system with a restriction on
the maximum number of users per cluster is what is typically
considered in user clustering algorithms in the literature,
e.g., [14]. In our case, the homogeneous system is just a
special case of the heterogeneous system where all users
have the same SIC decoding capabilities, and so the NOMA-
MEC algorithm can still be run. However, for this simpler
homogeneous system, we also propose a simpler NOMA-best
beam (NOMA-BB) algorithm that demonstrates comparable
performance to NOMA-MEC when we have the special set-
ting of all users having the same decoding capability. Finally,
we demonstrate the performance superiority of NOMA-MEC
compared to orthogonal multiple access (OMA) as well as
the additional flexibility the NOMA-MEC scheme offers in
heterogeneous systems compared to other NOMA clustering
schemes like NOMA-BB that target a fixed number of users
per cluster.

Our contributions can thus be summarized as follows:
• We design a joint user-clustering, user ordering, and
beamforming scheme in a mmWave-NOMA ABF sys-
tem with a fixed set of candidate beams that minimizes
the number of clusters required to serve all the users,
subject to each individual users decoding capability and
beamforming constraints. Each NOMA cluster is served
on one orthogonal channel, so minimizing the number
of clusters also minimizes the number of channel uses.
Together with a power allocation scheme per cluster,
we maximize the sum rate of the system.

• To the best of the authors’ knowledge, this is the first
NOMAwork that considers the individual SIC decoding
capability of each user when doing NOMA clustering
and ordering. The proposed scheme is ideally suited
for a mmWave-NOMAdeployment involving a low-cost
small-cell BS with only one RF chain, supporting a large
number and variety of connected users, from low-cost
IoT devices with limited processing capabilities to high-
end smartphones with much larger processing capabil-
ities. From the perspective of NOMA in the downlink,
the processing capability of the user primarily impacts
the SIC decoding capability, i.e., the number of other
users signals a user can decode every channel use.
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TABLE 1. List of Parameters.

C. PAPER ORGANIZATION
The rest of this article is organized as follows. In Section II,
the system model and problem formulation that aims to
minimize the number of clusters required to serve the given

users are presented. In Section III, we detail the proposed
NOMA-MEC and NOMA-BB algorithms. Detailed simula-
tion results for the proposed algorithms, including a complex-
ity analysis for different algorithm parameters, are presented
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FIGURE 1. The ABF scheme used by the BS is illustrated on the left with a
fixed set of B + 1 precoding weights, creating B + 1 candidate beam
directions to choose from when serving a NOMA cluster of users in one
orthogonal channel. On the right, the N users, each with their own SIC
decoding capability, is illustrated.

in Section IV. Finally, concluding remarks are provided in
Section V. Table 1 lists the notations used in this article.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a mmWave-NOMA single-cell BS equipped with
M antennas serving N single-antenna users, each with a
minimum QoS constraint. We use the single path mmWave
channel model used in several mmWave-NOMA papers [3],
[5], [17] to model the mmWave channel between the BS and
user-u as follows:

hu = a(θu)
αu

√
L
(
1+ rηu

) , (1)

where L denotes the number of paths, ru denotes the distance
between the BS and user-u, η denotes the path loss exponent
and αu denotes the complex channel gain for user-u. The
parameter θu represents the physical angle of departure and
for a uniform linear array (ULA), the normalized angle is
defined as φu = 2D

λ
sin(θu), where D is the separation

between elements of the antenna and λ is the wavelength of
the carrier signal [17]. The term a(θu) represents the steering
vector and for a ULA can be represented as

a(θu) = [1, e−j2π
D
λ
sin(θu), .., e−j2π (M−1)

D
λ
sin(θu)]T

= [1, e−jπφu , .., e−jπ (M−1)φu ]T . (2)

Analog beamforming is used since only one radio fre-
quency (RF) chain is available at the BS, typical of small-
cell deployments where low hardware cost and power con-
sumption is essential, e.g., [17], [22]. Hence, only one beam
can be transmitted at a time, which we equate to forming

one beam to serve one cluster of NOMA users per channel
use. Since we use ABF that can only generate one beam at a
time, we use a time-division strategy to alternate between the
different clusters.

As the left part of Fig. 1 illustrates, the entire coverage
region, θ̄ , from −π/2 to π/2 is covered by a set of B + 1
candidate beams, with significant overlap between the can-
didate beams. A NOMA cluster of users will be served on
an orthogonal channel using one of these candidate beams.
Each beam-b in this candidate list has the following precoding
vector,

wb = a(θ̄b), ∀b ∈ [0,B] (3)

where the parameter θ̄b is

θ̄b = −π/2+ (b× π/B). (4)

In this way, we uniformly divide this entire coverage
region, θ̄ , into B equal angles, effectively forming a set of
B + 1 candidate beams, as illustrated in the left part of
Fig. 1. The B + 1 beams can be thought of as a choice of
B + 1 different precoding vectors based on (3), such that
collectively, the steering vectors of the B candidate precoding
vectors uniformly cover the entire region of θ̄ = −π/2 to
π/2 or φ̄ = −1 to 1. We let Bc represent this list of candidate
beams, such that Bc = {Beam-0, ..,Beam-B}, with their
respective list of candidate precoding vectors being Wc =

{w0, ..,wB}, as illustrated in Fig.1.
A NOMA cluster of users will be served on an orthogonal

channel using one of the B + 1 precoding vectors in the
candidate list. In our system model, the orthogonal channel
is a time slice, hence each cluster will be served in one time
slice. A total of K such clusters are formed to serve the N
users. This equates to requiring K channel uses, i.e., K time-
slices, to serve the N users, K ≤ N . Let C = {C1, ..,CK }
represent the K clusters required to serve the N users, where
Ck refers to the NCk users, NCk ≤ N , selected to serve in the
cluster with index-k . For each cluster Ck , a beam-bk with a
precoding vectorwbk is selected from the set of B+1 possible
beam options in Bc.
We exploit the high correlation in the mmWave channels

as follows. We assume the BS has access to the full channel
state information (CSI) vector of each user, hu, from (1) [4],
[5]. Additionally, the BS knows the precoding vectors of each
beam, wb, in the candidate set. The BS can use the cosine
similarity metric between the user’s channel vector and the
precoding vector of each beam to determine the level of cor-
relation between the user and the beam. This metric has been
used in several mmWave-NOMA works for user clustering
to determine the correlation between users in [5], [20], and
between users and random beams in [17]. Using similar steps
as these works, we can derive the cosine similarity between
a user-u with channel hu and a beam-b with precoding vector
wb here as follows:

cos(hu,wb) =
| a(φu)Ha(φb) |

M
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=
|
∑M−1

i=0 e−jπ i(φu−φb) |
M

= |
sin
(πM (φu−φb)

2

)
M sin

(π (φu−φb)
2

) |
= FM

(
π [φu − φb]

)
, (5)

where φu and φb are the normalized directions of the user and
beam respectively, H represents the Hermitian transpose and
FM represents the Fejer Kernel, whose properties dictate that
as | φu − φb | increases, cos(hu,wb) → 0. In other words,
if the beam and users directions are well aligned, the cosine
similarity metric is high and it reflects that it is suitable to
schedule the user on a cluster served by the beam-b. In this
way, the BS builds a user-beam set, Bu, for each user-u. This
user-beam set, Bu consists of b beams each, by selecting
the best b beams for each user using the cosine similarity
metric from (5). The parameter b is a tunable parameter, as we
discuss later in Section III. We note that based on the choice
of M and B, the beams are highly overlapping in nature and
so a single user can be served by more than one beam, while
still benefiting from a good beamforming gain. Alternatively,
the user can select its best beams using the typical ABF
approach for the mmWave in new radio (NR) standard [27],
but that is beyond the scope of this article and is a topic for
future work. It is also worth mentioning that our BF scheme
is different from the random BF scheme in [17], where a
random beam is generated with precoding vector w = a(θ ),
θ ∈ [−π/2, π/2] and all users with a high cosine similarity
with that beam are then scheduled. In our scheme, while also
ABF with a similar precoding vector, we are not randomly
generating the beams, but instead selectively choosing an
appropriate beam for a NOMA cluster from a given set of
candidate options, Bc.
For cluster Ck , the BS applies superposition coding (SC)

for the selected NCk users as follows:

sk =

NCk∑
u=1

√
pusk,u, (6)

where pu represents the power allocated to user-u with∑NCk
u=1 pu ≤ P, where P denotes the power available to the

BS per-channel use. The received signal at user-u in cluster
Ck is

yu = hHu wbk sk + ξu,

= hHu wbk
√
pusk,u︸ ︷︷ ︸

Desired signal

+hHu wbk

nk∑
u6=v,v=1

√
pvsk,v︸ ︷︷ ︸

Inter-user interference

+ ξu︸︷︷︸
Noise

. (7)

In the SIC procedure, let πk (j) denote the user index for
the j-th decoded user in the cluster Ck serving NCk users,
j ≤ NCk . This j-th user then needs to decode and subtract
all the messages for all users {πk (1), .., πk (j)}. The signal-
to-interference-plus-noise ratio (SINR) when decoding user

πk (j) at user πk (j′), j′ > j can be represented as

0
πk (j)
πk (j′)
=

pj|hH(j′)wbk |
2

|hH(j′)wbk |
2
∑NCk

v>j pv + σ
2
, (8)

where σ 2 represents the noise power. Let Rk denote the rate
achieved in NOMA cluster Ck . The effective sum rate of the
system,Rsum can then be expressed as the sum of the rates,Rk ,
achieved in each of the K clusters over which all N users are
served divided by the number of clusters, since each cluster
is served by one channel. The effective sum rate can thus be
represented as

Rsum =

∑K
k=1 Rk
K

=

∑K
k=1

∑
u∈Ck log2

(
1+ 0πk (u)πk (u)

)
K

, (9)

expressed in bits per second (bps) per channel-use and the
term 0

πk (u)
πk (u)

refers to the SINR when decoding the u-th user’s
own signal in the SIC decoding procedure. For OMA, where
each user has to be served in an individual channel, K chan-
nels are required to serve the N users, i.e., K = N . Each
user will be served in its best beam from Bu with a precoding
vector wu. This gives us an effective sum rate of

ROMA =

∑N
u=1 log2(1+

P|hHu wu|
2

σ 2
)

N
, (10)

where P is the power available per channel. For NOMA, since
one cluster is formed per channel, P represents the power
available per cluster as we describe later in this section.

To model the user decoding capability constraints, we con-
sider that each user-u is associated with a decoding capability
constraint d , represented as du. To illustrate the decoding
capability constraint, the right side of Fig.1 shows the dis-
tribution of N users to be served by the BS. Using the cosine
similarity metric, each user will find the b beams it is best
aligned with, forming the user-beam set, Bu, for the user.
As Fig.1 then highlights, each user has its SIC decoding
capability associated with it. For example, user-1 with SIC
capability of 0 (d1 = 0) indicates it needs to be either served
as an OMA user in an orthogonal channel of its own or in a
NOMA cluster as the weakest user where it is not required
to decode any other users’ signals. User-4 with SIC decoding
capability of 4 (d4 = 4) indicates it is capable of decoding
four other users’ signals. This means that if user-4 is sched-
uled in cluster-k at position j, then the maximum value of j
is 5 for this user since that would involve decoding 4 other
users’ signals, i.e., max(j) = 5.
Let dmax = max(du),∀u = [1, ..,N ], represent the maxi-

mum decoding capability among the N users in the system.
If all users have the same decoding capability, i.e., du =
dmax,∀u = [1, ..,N ], we refer to this as homogeneous
user decoding capabilities, or just a homogeneous system
for short. In a homogeneous system, since any user-u has
the same decoding capability du = dmax, this is equivalent
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to designing a user clustering scheme such that there are
a maximum of dmax users per cluster. On the other hand,
in a heterogeneous system, user clustering must be done in
tandem with user ordering, such that each user in the cluster
needs to decode at most d other user’s signals, where each
user has its own value of d , 1 ≤ d ≤ dmax. This means that
for every user-u with decoding capability du at SIC decoding
position j in cluster Ck , i.e., πk (j), it must satisfy that d ≥
j − 1. Using our nomenclature, dπk (j) denotes the decoding
capability of the j-th user in the k-th cluster.
In this article, the objective is to utilize NOMA to max-

imize the effective sum-rate of the system, such that each
user’s QoS is met and all user decoding capability constraints
are satisfied. Let 0min denote the minimum SINR with which
each user needs to be served, i.e., 0πk (u)πk (u)

≥ 0min, ∀u =
[1, ..,N ]. The overall objective function to maximize Rsum
can be stated as

max
{Ck },{wbk },{πk },{pu}

Rsum, (11a)

s.t. Ru ≥ log2(1+ 0min), ∀u = 1, ..,N (11b)

dπk (j) ≥ j− 1, j = {1, ..,NCk }, ∀k = 1, ..,K ,

(11c)
NCk∑
i=1

pi ≤ P, ∀k = 1, ..,K , (11d)

where (11b) represents the QoS constraint, (11c) represents
the decoding capability constraint, and (11d) represents the
power per channel constraint.

In order to solve the optimization problem in (11a),
we break down the problem into two steps. First, we jointly
tackle the user clustering, user ordering, and beamforming
aspects, where we aim to minimize the number of clusters
required to serve all the users while satisfying the beam-
forming and user decoding constraints. Second, once we have
clusters of users, we do a power allocation step for the users
in each cluster. We describe each of these steps next.

In the first step, the goal is two-fold: a) to build clusters of
SIC ordered users that satisfy the SIC decoding constraints
and b) to identify which beam each of these clusters will be
served by, such that the selected beam is in the user-beam set
of each of the users selected to be in the cluster. The objective
in this step is to serve all the users in the minimum number
of clusters, while respecting the aforementioned constraints.
Since each cluster is served on one orthogonal channel, the N
users being served on K clusters, is equivalent to requiring K
orthogonal channel uses to serve theN users. Hence, reducing
K improves the channel re-use, and in doing so, in general,
contributes to an increased spectral efficiency. This is illus-
trated in equation (9), where Rsum is inversely proportional to
the number of clusters,K . However, Rsum also depends on the
SINR for each user in (9). This SINR for each user is affected
by the other users they are clustered with, the order in which
the users are decoded and finally the beamforming gain from
the choice of beam from Bc to serve each cluster with. Along

with this, each users SIC decoding capability constraints need
to be respected. Hence, we tackle these aspects jointly as a
cluster minimization problem subject to several constraints
as discussed in what follows next.

For a single-cell NOMA deployment with no inter-cluster
interference to consider since each cluster is served in an
orthogonal channel, it is known that NOMA performance
is significantly improved by decoding users in the order of
their channel gains [11], [28]. Hence, given that we have the
full CSI of each user along with the precoding vectors, for
every cluster Ck , we only allow the users to be decoded in
the order of their effective channel gains. This means that the
SIC decoding position-j of user-u with decoding capability
du in cluster-k , πk (j), is determined by the effective channel
gain of the user-u in relation to other users also selected to
be in cluster Ck . Since we have the constraint that dπk (j) ≥
j − 1, we need to design clusters such that the users when
ordered according to their effective channel gains, satisfy
their SIC decoding constraints. Formally, the user clustering,
user ordering, and BF optimization problem can be written
as follows. Let C = {C1, ..,CK } represent the K clusters
required to serve the N users. At most, each user is served
in its own cluster or channel (equivalent to OMA), hence
K ≤ N . Each cluster Ck in C represents a set of users ordered
according to their effective channel gains when served by
beam-bk from Bc with precoding vector wbk . Let ui,k be
a binary variable that represents whether user-i belongs to
cluster-Ck , served by beam-bk . Let dπk (j) represents the user
decoding capability of the jth decoded user in cluster-Ck . The
objective of our user clustering, ordering, and BF scheme is
to minimize K , as follows:

min
{ui,k },{bk },{πk }

K , (12a)

s.t.
K∑
k=1

ui,k = 1, ∀i = 1, ..,N , (12b)

bk ∈ Bu, ui,k = 1, ∀k = 1, ..,K , (12c)

dπk (j) ≥ j− 1, j = {1, ..,NCk }, ∀k = 1, ..,K ,

(12d)

ui,k ∈ {0, 1}, (12e)

bk ∈ Bc, ∀k = 1, ..,K , (12f)

where constraint (12b) ensures each user is placed in exactly
one cluster. Constraint (12c) is to ensure that the beam-bk
chosen for cluster-Ck in C belongs to the user-beam list of
each of the users selected to be served in that NOMA cluster.
Constraint (12d) ensures the decoding capability constraints
of each user in the system is adhered to. For the homogeneous
system, since all users have the same decoding capability,
we only need to limit the number of users per cluster. In other
words, for a homogeneous system, within a cluster-k of size
NCk , if NCk ≤ dmax, then any decoding order within that
cluster is feasible since all users have the same decoding
capability of du = dmax. Hence, for a homogeneous system,

VOLUME 8, 2020 209955



A. S. Rajasekaran et al.: User Clustering in mmWave-NOMA Systems With User Decoding Capability Constraints for B5G Networks

constraint (12d) can be simplified down to:

N∑
i=1

ui,k ≤ dmax, ∀k = 1, ..,K . (13)

The second step is power allocation (PA), which is not
the focus of this article but briefly described here for com-
pleteness. Since only one cluster is served on one channel in
our model, the channel power budget, P, is equivalent to the
cluster power budget. Hence, the goal is to divide the power
P, among the NCk users in each clusterCk ∈ C . The objective
in this step is tomaximize the rateRk in each cluster. Since the
users in the cluster are already ordered based on their effective
channel gains, we iterate through the first j = {1, ..,NCk − 1}
users in the cluster at position πk (j) and assign it as much
power as it needs to satisfy 0min and ensure successful SIC
decoding, based on (8). The strongest user is assigned the
remaining power. We assume P is always sufficient to meet
each user’s QoS, including the remaining power left over
for the strongest user. This is similar to the QoS-based PA
schemes described in [29].

III. PROPOSED ALGORITHM(S)
In this section, we outline our two proposed algorithms,
namely, the NOMA-MEC algorithm for heterogeneous sys-
tems in Algorithm 1 and the NOMA-BB algorithm for homo-
geneous systems in Algorithm 2.
We begin with the NOMA-MEC algorithm to solve the

cluster minimization problem in (12a) for heterogeneous sys-
tems in Algorithm 1. The goal is to minimize the number
of clusters used while respecting the beamforming and user
decoding capability constraints of each user in each cluster,
as captured in (12c) and (12d), respectively. To do this,
we break down the NOMA-MEC into two steps. In step-
1, we find all possible valid cluster combinations, Cv, that
respect both the constraints, (12c) and (12d). We refer to Cv,
which is a set of valid user combinations, as the candidate list
of clusters. Then, in step-2, from Cv, we find the minimum
number of clusters that cover all the users exactly once. This
is aMEC problem [26], hence we term the algorithmNOMA-
MEC.

Step-1 of NOMA-MEC begins by building a list of users
that can potentially be served on a NOMA cluster by each of
the B+1 candidate beams in Bc. This is obtained by iterating
through the user-beam set, Bu, of all users, u = {1, ..,N }.
Through this step, we get a list of users that can potentially
cluster with each other. Let nb represent the number of users
that have beam-b in their user-beam set. Clusters can be of
size l = {2, .., dmax}. We treat clusters of one separately as
described later in this section. Hence, we form all

(nb
l

)
groups

of users, for all B+ 1 beams. These are all potential clusters
to be served in an orthogonal channel with a beam using
precoding vector, wb. Along with wb, each user’s channel
vectors are known. Thus, we can order the users according to
their effective channel gains from smallest to largest in each
of these potential clusters. Since we only allow users to be

Algorithm 1: NOMA-MEC
Input: Beam-list Bu of b beams for user u with channel

hu and decoding capability du, ∀u = [1, ..,N ].
Also, precoding vectors of candidate beams, wb,
∀b = [1, ..,B].

Output: K clusters of ordered users such that each
user-u, is served in cluster-k (with beam bk ) at
position-j, such that dπk (j) ≥ j− 1 and bk ∈ Bu,
k = [1, ..,K ], ∀u = [1, ..,N ]

1 Step-1: Build candidate list Cv;
2 for (beam-b : Bc) do
3 Find all nb users that have beam-b in Bu;
4 Form set Ct by computing all possible

(nb
l

)
combinations, ∀l = [2, .., dmax];

5 for (c: Ct ) do
6 Order the users in c according to the effective

channel gains, creating set of ordered users in c
as {u1, .., un}, such that
|wHb h1|

2
≤ . . . ≤ |wHb hn|

2

7 for u1 to un do
8 if dπc(j) < j− 1 then
9 combination c is invalid, skip it.
10 break; (outer for loop)
11 end
12 end
13 Add c to candidate list Cv. (If we did not break,

combination c satisfies d ≥ j− 1 for all users
in c).

14 end
15 end
16 Add each users- u, as a cluster of one with their best

beam from Bu to candidate list C , ∀u = [1, ..,N ];
17 Step-2: Run greedy MEC on Cv to obtain C ;
18 Csorted = sort Cv in descending order;
19 xc = 0 ∀c ∈ Cv;
20 C = {}, K = 0;
21 for cs: Csorted do
22 if zu,cxc 6= 0,∀c ∈ C then
23 C = {C, cs};
24 K = K + 1;
25 end
26 end
27 return K ,C ;

decoded in this order, if any cluster has a user at position
π (j), such that dπ (j) < j − 1, that cluster is invalid. Only
those clusters that satisfy the decoding capability constraint
(12d) for all the users in the cluster are added to the candidate
list, Cv. Finally, all users can be in a cluster of their own and
be served like they would be with OMA. Hence, we add N
elements to C , each being a cluster of one where user-u is
served on its best beam from Bu, u = {1, ..,N }.
In step-2 of NOMA-MEC, from the list of viable candidate

cluster options in Cv, we want to select the minimum number
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Algorithm 2: NOMA-BB
Input: Best beam B∗u for user u with channel hu

∀u = [1, ..,N ], common decoding capability
dmax for all users, precoding vectors wb,
∀b = [1, ..,B].

Output: K clusters of ordered users such that each
user-u, is placed in a cluster served by its best
beam, B∗u and NCk ≤ dmax, ∀k = [1, ..K ].

1 C = {}, K = 0;
2 m = dmax;
3 for (beam-b : Bc) do
4 Find all nb users that have B∗u = b and group them in

set c : {u1, .., unb};
5 if nb > m then
6 for i = 1 : d nbm e do
7 j = min(m× (i+ 1), nb);
8 C = {C, {um×i, .., uj}};
9 K = K + 1;
10 end
11 end
12 else
13 C = {C, c};
14 K = K + 1;
15 end
16 end
17 return K , C ;

of elements that would cover every user exactly once. Since
we added clusters of one for each user in the last part of step-
1, we are guaranteed the existence of a solution. Let xc be
a binary variable that represents if element-c from set Cv is
selected and zu,c be a binary variable that represents if user-u
belongs to element-c in Cv. The optimization problem can be
stated as follows:

min
xc

∑
c:Cv

xc, (14a)

s.t.
N∑
u=1

zu,cxc = 1, ∀c : Cv (14b)

xc, zu,c ∈ [0, 1], (14c)

where (14a) represents the objective of the problem that min-
imizes the number of clusters and constraint (14b) ensures
that all users occur exactly once in the final cluster set. This
is a minimum exact cover problem, a known NP-complete
problem [26].We solve this problem using a greedy algorithm
as follows. The first step is to sort the clusters in Cv in
descending order of the number of users they contain, since
using clusters in Cv that cover the most number of users
allows us to minimize the number of clusters we need to
cover all the users. We then go through the list of cluster
combinations, adding cluster-c to C only if all users in the
cluster have not been covered by clusters already in C . The

algorithm stops when all users have been covered exactly
once, as highlighted in Algorithm 1.
The complexity of the algorithm is influenced by the fol-

lowing parameters - 1) the number of beams each user picks
in its beam set, b, which is an algorithm specific parameter,
2) the number of candidate beams, B, which is a system level
design parameter that we can control and 3) the number of
users, N , that need to be served along with their respective
decoding capabilities, du, u ∈ [1,N ]. In step-1 of NOMA-
MEC, building Cv involves the construction of I1 clusters as
follows:

I1 =
(
nb
l

)
× (B+ 1), (15)

where l = {2, .., dmax}. In each of these I1 clusters, the users
have to be ordered and then analyzed to check whether each
users decoding capability criteria are staisfied. The parameter
nb, the number of users that have beam-b in their user-beam
set, scales with N and b. The second step is the minimum
exact cover problem. Let I2 represent the number of valid
combinations in Cv that the greedy algorithm in MEC needs
to explore to find C . In a homogeneous system, all the Z
clusters are valid clusters, which means I2 = I1. Thus,
a homogeneous system represents the worst-case complexity
for the MEC part of the NOMA-MEC algorithm. However,
in general, a large number of the original cluster combinations
will be rejected due to them being unable to meet the user
decoding capabilities, resulting in I2 � I1. This in turn con-
trols the complexity of the MEC part of the algorithm. This
is discussed further in Section IV, supported by simulation
figures.

The choice of b is the most important design parameter for
the NOMA-MEC algorithm. From a performance perspec-
tive, a larger b gives the algorithm the ability to find a larger
number of cluster combinations that satisfy the decoding
capability constraint. So, strictly from the perspective of min-
imizingK in (12a), a large b is good. However, as b increases,
we add beams that are less and less aligned with the user
direction to the user-beam set Bu, reducing the beamforming
gain with each increment of b. Due to the overlapping nature
of the beams as seen in Fig.1, there is a value of b such that the
user is within the coverage area of all of its best b beams inBu.
Let this value of b be bth. However, as b is further increased
beyond bth, the user gets out of the coverage area of the beam-
(bth + 1) and if NOMA-MEC schedules the user on beam-
(bth + 1), it will have poor spectral efficiency, Ru, bringing
down the overall spectral efficiency, Rsum, in the process.
The exact value of bth depends on system-level parametersM
and B. The number of antennas, M , determines the width of
the beam and together with the number of candidate beams,
B + 1, determines the level of overlap between the beams
and hence also determines the value of bth. Additionally, b
is also an important parameter to control the complexity of
NOMA-MEC. If the number of users is large or d is large for
most users, b can be reduced to lower I1. For a homogeneous
system with a large dmax, the number of combinations can be
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TABLE 2. Simulation Parameters.

very large and so we need to scale back b. If b = 1, it is
equivalent to having each user pick its best beam. Hence,
for the homogeneous system with large dmax, we propose
a low-complexity clustering algorithm called NOMA-best
beam (NOMA-BB) that has each user served by its best beam
in Bu, as we outline next.

In the NOMA-BB algorithm, like NOMA-MEC, we iter-
ate through each beam and build the list of nb users that
picked each beam-b. However, compared to NOMA-MEC,
the difference is that in this case, users have to belong to that
beam since we follow the best beam strategy where each user
picked only one beam in their user-beam set. Hence, these
groups of users are effectively our clusters except that we
might have beams that havemore than dmax users in it, leading
to some users needing to decodemore than dmax users signals,
which violates the SIC decoding capability constraint. Hence,
for all beams where nb > dmax, we break up the one cluster
of nb users into d

nb
m e clusters, where m is an integer between

1 and dmax, i.e., m ∈ [1, dmax], that controls the maximum
number of users per cluster and d.e is the ceiling function.
Since the goal is to minimize the number of clusters, we set
m = dmax. Setting m = dmax is feasible because all users
have the same decoding capability, d = dmax, and so any user
ordering among the NCk users in some cluster-Ck formed by
NOMA-BB would be valid, as long as NCk ≤ dmax. In this
article, when we need to split nb users in a beam into multiple
clusters, i.e., when nb > dmax, we arbitrarily split the users
into different clusters. As a future work, a more advanced
NOMA-BB clustering schemes could aim to maximize the
channel disparity between the users in the cluster when doing
this split, a condition known to improve the rate in NOMA
systems [30].

IV. SIMULATION RESULTS AND DISCUSSION
The performance of the proposed NOMA-MEC and NOMA-
BB algorithms are evaluated using MATLAB simulations,
with the system parameters described in Table 2. The
mmWave channel model in (1) is considered, where L = 1,

FIGURE 2. Performance of NOMA-BB for a homogeneous system where
each users SIC decoding capability constraint d = dmax, effectively
making dmax the maximum number of users that can be placed in a
cluster. (a) Overall spectral efficiency compared to OMA (b) Number of
clusters, K , required to serve the N users.

η = 2 andD/λ = 1/2 for the ULA steering vector. The BS is
equipped with M = 8 antennas, unless specified otherwise.
The noise power is σ 2

= −174 + 10log10(W ) + Nf dBm,
where W = 2 GHz is the system bandwidth and the noise
floor Nf = 10 dB. The users are randomly distributed around
the BS within a 5 meter radius, i.e., ru ≤ 5. We consider
the minimum user QoS to be an average of N × 0min bps
per channel-use. Since the users are scheduled in K ≤ N
channels (K NOMA clusters), we can simplify this require-
ment by just considering aminimumuser rate of0min for each
user in every cluster. In the simulations, 0min = 0.02. Finally,
the number of candidate beams is B = 20. In the simulations
for heterogeneous systems, we set dmax = 5 and generate
each user’s decoding capability, d , as a random integer in the
range [0, dmax]. For the homogeneous systems, we vary dmax
from 1 to 10.

We start by evaluating the NOMA-BB algorithm for a
homogeneous system, where each users decoding capability
is d = dmax that we vary from 1 to 10 in this simulation.
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In Fig. 2a, we compare the spectral efficiency, measured in
bps per channel use, for the NOMA-BB algorithm against
OMA for a system with 50, 100, 150, and 200 users. OMA is
not influenced by the value of dmax as it has to serve one user
per cluster, irrespective. As seen in Fig. 2a, a NOMA setting
with dmax = 1 is equivalent to OMA. As dmax increases
beyond one, we start to see the gain of NOMA. A higher
value of dmax means all users are capable of decoding more
number of other users signals, i.e., we can serve more users
per-cluster. Looking at the NOMA-BB algorithm, for each
beam-b, we split the nb users who picked beam-b into d nbm e
clusters, where m = dmax. Clearly, as dmax increases, m
increases, and so NOMA-BB needs to form fewer clusters
in this splitting step. This is illustrated in Fig. 2b, where
the number of clusters, K required to serve the N users
decreases as dmax increases. Further, as the number of users
in the system, N , increases, the likelihood of having beams
with more than dmax users increases in the first step of the
NOMA-BB algorithm. As a result, for higher N , we see the
number of clusters decrease in Fig. 2b by increasing dmax for
longer before it starts to flatten out. Correspondingly, the rate
in Fig. 2a increases with dmax for longer when N is larger.
We now move to heterogeneous systems and evaluate the

performance of our proposed NOMA-MEC algorithm, com-
pared against OMA and NOMA-BB with slight modifica-
tions to account for the heterogeneous decoding capability
constraints. We note that there are no direct user cluster-
ing schemes in the literature that considers individual user
decoding capabilities for us to compare against. NOMA-BB
is fairly typical of most NOMA clustering schemes in the
literature that do not have individual restrictions on each
user’s SIC decoding position, and so offers good insights for
us to compare our proposed NOMA-MEC against. However,
to run NOMA-BB in a heterogeneous system, we cannot set
m = dmax like we could for a homogeneous system, since
each user has its own decoding capability constraint and so
not all clusters will result in feasible decoding order combi-
nations, even if the cluster size is capped at dmax. To make
NOMA-BB work for a heterogeneous system, we need to
separate out all users with d < m, for any m ∈ [1, dmax),
and then divide the remaining users into d nme clusters. This
would ensure that the arbitrary user ordering done by the
NOMA-BB scheme does not violate any user’s SIC decoding
capability constraint. A larger m means we can form larger
clusters but will have to exclude more users with the extreme
case of m = dmax equivalent to OMA and so we exclude it,
while a smaller m means we will form smaller clusters, but
exclude less users. We term this modified version of NOMA-
BB for heterogeneous systems as NOMA-BB-Het and run it
with all possible values of m ∈ [1, dmax), dmax = 5, for the
simulations in Fig. 3 which we discuss next.

Analyzing the performance of NOMA-MEC from Fig. 3,
we see that despite the restrictions put in place by the hetero-
geneous user decoding capabilities, we still see a significant
performance gain over OMA. It also outperformed NOMA-
BB-Het for all values of m, because NOMA-BB-Het and

FIGURE 3. Performance of NOMA-MEC for a heterogeneous system where
each user has its own decoding capability constraints. NOMA-MEC is
compared against OMA and NOMA-BB-Het, a modified version of
NOMA-BB to account for the heterogeneous user decoding capabilities.

FIGURE 4. NOMA-MEC run in a heterogeneous system with users having
their SIC decoding capability, d , randomly distributed in [0, dmax],
is compared against NOMA-BB and NOMA-MEC run for a homogeneous
system where all users have d = dmax (dmax = 5).

other such clustering algorithms from the literature do not
consider restrictions on each individual user’s capabilities
while clustering. In Fig. 4, the NOMA-MEC heterogeneous
scheme running in a heterogeneous system with all users
having a random value of d in the range [0, dmax], is com-
pared against a hypothetical homogeneous system where all
users have d = dmax. For the hypothetical homogeneous sys-
tem, the original NOMA-BB and NOMA-MEC that assumes
homogeneous user decoding capability with m = dmax is
run. We note that the NOMA-MEC algorithm can easily be
run for a homogeneous system, with all users having d =
dmax. We see that the NOMA-MEC algorithm for the het-
erogeneous deployment closely shadows, but always trails,
the NOMA-MEC run for the homogeneous deployment. The
flexibility of the proposed NOMA-MEC algorithm is high-
lighted by this observation since it says that even though each
user is posing its own decoding restrictions of d ≤ dmax,
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FIGURE 5. Analyzing NOMA-MEC in terms of the number of clusters, K ,
outputted by the algorithm, as the number of heterogeneous users in the
system increases for different values of b.

we are still able to achieve close to the performance we could
if there was a simple maximum users per cluster constraint
of d = dmax. The hypothetical homogeneous deployment is
still better because in the NOMA-MEC for the homogeneous
deployment, all I1 cluster combinations examined is step-
1 of NOMA-MEC are valid and entered into Cv for the
MEC algorithm to choose from. However, the NOMA-MEC
for heterogeneous systems strips a large chunk of these I1
combinations away due to not satisfying the user decoding
capability constraints and so gives fewer pairing options in
Cv for the greedy MEC algorithm to work with when trying
to minimize K . Looking at just the homogeneous curves
in Fig. 4, NOMA-MEC (Hom.) with b ∈ [2, 4] outperforms
NOMA-BB. This is expected as the NOMA-MEC algorithm
is more advanced, allowing users to pick multiple candidate
beams for clustering, giving more clustering opportunities..

Additionally, analyzing the trends of NOMA-MEC in both
Fig. 3 and Fig. 4, we see the rate increase at first as b
increases, but then starts to drop-off as we increase b further.
This is a consequence of the trade-off between a larger search
space to reduce K and the beamforming gain from allowing
users to be served on their stronger beams, as discussed in
Section III. A larger choice of b implies a larger candidate
cluster list Cv, in the NOMA-MEC algorithm, allowing the
MEC part of the algorithm to find solutions with a lower
number of clusters, K . This is illustrated in Fig. 5, where for
any number of users in the system, the number of clusters
required to serve theN users, i.e.,K , decreases as b increases.
However, as b increases beyond the bth, users are adding
beams to their user-beam-set, Bu, that they are less aligned
with in terms of the cosine similarity metric. In other words, ∀
beam-b inBu, b > bth, NOMA-MEC can potentially schedule
the user in a cluster served by beam-b, even though the user
is out of the coverage area of beam-b. As seen in Fig. 3
and Fig. 4, at first as b goes from one to two, the extra
clustering opportunities allow us to reduce K as well as not
incur toomuch of a penalty in terms of the beamforming gain.

FIGURE 6. Analyzing the impact of b on the performance of NOMA-MEC
as system parameters B and M vary.

However, as b increases further, the penalty from sacrificing
the beamforming gain outweighs the further cluster reduction
we are able to achieve and hencewe see the spectral efficiency
start to drop off after that. The exact value of b at which
this reversal occurs depends on the number of candidate
beams, B and the width of these candidate beams, which is
a consequence of the number of transmit antennas, M . Next,
we discuss the impact of B and M on the choice of b from a
performance perspective.

The simulations in Fig. 6 were conducted to understand
the impact of parameters B and M respectively on the per-
formance of NOMA-MEC. In particular, we are focused on
the trend where we first see a performance improvement
as b increases, but then a decline as b is further increased.
In Fig. 6a, we varyM while keeping B fixed, B = 20. As the
number of transmit antennas at the BS, M , increases, the BS
is able to form more narrow beams. For a fixed value of B,
asM increases, the amount of overlap between the candidate
beams decreases. This means that a user is located in the
coverage area of a smaller number of beams, i.e., b needs
to be smaller to realize the beamforming gain. Conversely,
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as M decreases for a fixed B, the overlap between the beams
increases, as we have the same number of wider beams.
This allows for a user to be located in the coverage area
of more number of beams, i.e., a larger b can be chosen.
The same analysis can be done for a fixed M and varying
B in Fig. 6b. In this case, the beam width is fixed since M
is fixed. However, as B increases, the overlap increases as we
have more candidate beams covering the same coverage area,
φ̄. As a result, we see the performance gain from increasing
b for longer in Fig. 6b for larger values of B. We see that
with every increase of B = 10, the drop-off starts to occur
b = 1 later. Hence, irrespective of the values of B and M ,
the trend is the same - we first see a gain from increasing
b, but then the performance starts to drop off once we start
to lose the beamforming gain as b is further increased. For a
small value ofM and a large value of B, the value of b before
the drop-off starts to occur is larger than if we had a small
B or largeM . Hence, from a performance perspective, b needs
to be selectively tuned as a function of B and M . We discuss
the impact of parameter b on the complexity of the algorithm
next.

As described in Section III, the NOMA-MEC algorithm
presented in Algorithm 1 consists of two steps. The first is the
formation of candidate list Cv by iterating through each beam
in the list of candidate beams, looking for all valid combi-
nations of users who could be scheduled together in a cluster
served by the beam. Each possible combination requires users
to be ordered by their effective channel gain and then the
decoding capability of each user has to be checked to see if the
combination is valid or not. The second part of the algorithm
involves taking the candidate list, Cv, and running the greedy
algorithm to solve the minimum exact cover problem. Simu-
lation runs to present the number of iterations required at both
steps of the NOMA-MEC algorithm, I1 and I2 respectively,
are presented in Fig. 7a and Fig. 7b respectively.

The number of iterations in step-1 of NOMA-MEC, I1,
is determined by nb, l and B as equation (15) shows. The term
nb, which corresponds to the number of users that contain
each beam-b in their user-beam-set, is influenced by the
number of users in the system N and the number of beams
per user set, b. Since NOMA-MEC iterates through

(nb
l

)
,

l = {2, .., dmax}, combinations to check for valid cluster com-
binations based on the user decoding capability, the impact
of l on I1 is entirely determined by dmax. The complexity
of step-2 depends entirely on the size of set Cv, i.e., the
number of valid combinations found after step-1, i.e., I2. If I1
is large, I2 is likely to be large too and so the same factors
that influence I1 in step-1 also affect the complexity of step-
2. However, since a large number of combinations examined
in step-1 are deemed invalid and not added to Cv in step-
1 due to the SIC decoding capability restrictions, the size of
Cv will still be small. This is illustrated in Fig. 7b, where
we see a significant reduction in the candidate cluster list
size, Cv compared to the number of cluster combinations
examined in Fig. 7a. As discussed in Section III, if NOMA-
MEC were run on a homogeneous system, I2 = I1, leading

FIGURE 7. Impact of the number of beams per user set, b, on the
complexity of NOMA-MEC in terms of (a) I1 which represents the number
of cluster combinations examined in step-1 of NOMA-MEC and (b) I2,
which represents the number of valid combinations in Cv to be
considered by the greedy algorithm to solve the MEC problem.

quickly to a prohibitively high complexity for the greedy
algorithm to solve the MEC problem. On the other end of
the spectrum, if a large number of combinations examined in
step-1 are deemed invalid due to the SIC decoding capability
constraints, the size of Cv will still be small. This is likely in
deployments where the majority of users are IoT users with
d ∈ [0, 1] and there are only a handful of users with a larger
value of d , e.g., cellular users. In such a case, the complexity
of step-1 will be high since dmax = max(d) is still large.
However, if most users have d ∈ [0, 1], then most examined
combinations in step-1 will be deemed invalid, still leaving a
manageable size of Cv for the greedy algorithm in step-2 to
work with. However, in the simulations in Fig. 7, we only
considered the case where the users’ decoding capabilities,
d , are randomly generated from [0, dmax]. In future works,
we will consider more skewed distributions of d and explore
how the complexity of step-1 of the NOMA-MEC algorithm
can be reduced by exploiting advanced knowledge of the
distribution of the users’ decoding capabilities.
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Finally, it is worth mentioning that the parameter b in
the NOMA-MEC algorithm can be set by considering the
performance-complexity tradeoff as follows. We have seen
that increasing b improves performance up to b = bth, but
then the performance declines as b is increased any further.
Depending on system parameters B and M , we can find the
value of bth at which the performance gains from increasing
b peaks. After that, the complexity aspect can be considered.
If the complexity is acceptable at bth, that would be a logical
choice for b. However, for systems with a large N or dmax,
setting b = bth could result in a prohibitively high algorithm
complexity as seen in Fig. 7. In such settings, b can be reduced
to bring down the complexity as seen from Fig. 7, at the
expense of performance.

V. CONCLUSION
In this article, we proposed a joint user clustering and
user ordering scheme, namely, NOMA-MEC, for an ABF
mmWave-NOMA system that can serve a set of users that
each have their own SIC decoding capability constraints.
By using the reported SIC decoding capability constraint
from each user to set the maximum position in the SIC decod-
ing order for clusters that are always decoded in the order
of their effective channel gains, we framed the problem as
a minimum exact cover optimization problem. Despite each
user posing individual conditions on how many other users’
signals it can decode in the SIC decoding order, simulation
results demonstrated that the proposed algorithm still offers
significant spectral efficiency gains over OMA as well as
over other NOMA clustering algorithms that do not have the
flexibility to accommodate for such user decoding require-
ments. We provided a detailed analysis of the performance-
complexity trade-off from the setting of parameters related to
the NOMA-MEC algorithm as well as system-level param-
eters. Finally, for a homogeneous system where all users
have the same decoding capability requirements, we showed
that this boils down to a simpler condition of restricting the
number of users per cluster. We proposed a simpler NOMA-
BB algorithm for the homogeneous system and also evaluated
its performance through simulations.
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