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ABSTRACT Constructing social networks for real epidemic cases is very challenging. Many mathematical
models have been proposed to model such networks using simulation models, such as susceptible-infected
(SI), susceptible-infected-recovered (SIR), and susceptible-exposed-infectious-removed (SEIR). Nonethe-
less, social network analyses can fail to capture real conditions, as such models are constructed based
on many assumptions. Furthermore, unlike standard online social networks (OSNs), a social epidemic
network requires different treatment from both model construction and social network analysis perspectives,
especially for the detection of superspreaders. To address these issues, we propose a trajectory linkage
method to automatically discover social networks from historical patient-trajectory data, wherein relations
among patients are determined by spatial proximity and time-windows. Moreover, we introduce a novel
spreader centrality measure that is devised to identify superspreaders in a social epidemic network. Extensive
experiments were performed using real epidemic data. The results revealed that trajectory linkage can obtain
a denser social network model than is possible by only incorporating patient data (the ‘‘who is infected by
whom’’ relationship). By performing a social network analysis, the trajectory linkage model can express
the real conditions of the patient relationship. Furthermore, our spreader centrality can capture the real
superspreaders more effectively than can the existing centrality measure in social epidemic networks.

INDEX TERMS Social networks, epidemic networks, network centrality, spreader centrality, social network
analysis.

I. INTRODUCTION
The modeling of social networks that are representa-
tive of the propagation of any of the many novel infec-
tious diseases that may arise is an important research
task [1]. The modeling of the epidemics on social con-
tact networks has been studied in recent years. Many
scholars use typical infectious models as social epi-
demic networks, such as susceptible-infectious (SI) [2],
susceptible-infected-susceptible (SIS) [3], susceptible-
infected-recovered (SIR) [4], and susceptible-exposed-
infectious-removed (SEIR) [5]. The SI model is the simplest
form of all epidemic models, and it categorizes the entire
population into two groups, i.e., susceptible (S) and infec-
tious (I). It also assumes that individuals are born into the
simulation with no immunity (susceptible). Once infected,
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if there is no treatment, individuals remain infected and
infectious throughout their lives and remain in contact with
the susceptible population. In contrast, in SIS, the disease is
transmitted only when a susceptible individual is in contact
with an infected individual, and after infection, infected
individuals return to the susceptible state. The SIR model
was first used by Kermack and McKendrick in 1927. The
components S, I, and R, respectively, represent the number
of susceptible, infected, and recovered individuals in the
population. Many diseases have a latent phase during which
an individual is infected but not yet infectious. This delay
between the acquisition of infection and the infectious state
can be incorporated within the SIR model by adding a
latent/exposed population, E, and letting infected (but not yet
infectious) individuals move from S to E, and from E to I.
Hence, the SEIR model is more suitable and comprehensive
for the delineation of the information propagation mecha-
nism. Thosemodels are computationally simple, theoretically
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tractable, and relatively easy for the fitting of observational
data. Nonetheless, they can be limited by their fundamental
assumption systems [6].

Unlike the aforementioned studies, in this paper,
we propose a novel trajectory linkage that utilizes both
spatial proximity and a time-window for the construction
of social networks from the historical trajectory of patient
data. We utilized a trace from each patient’s data obtained
during the outbreak of COVID-19 in SouthKorea. The patient
is linked if they meet each other within a given specific
distance (especially the same place) and within a given time-
window. Such a trajectory linkage results in undirected-graph
social networks because the original infector is assumed to
be unknown. We can also combine trajectory linkage with
prior information, such as patient information (the ‘‘who is
infected by whom’’ relationship), to construct directed and
denser networks in the form of a hybrid model.

In addition to modeling, one of the important issues in the
social epidemic networks is detecting the superspreader. The
term superspreader refers to an individual who is particu-
larly effective in transmitting infectious diseases or spreading
information. In epidemiology, a superspreader is an infected
organism that infects disproportionally more secondary con-
tacts than others who are also infected with the same dis-
ease [7]. Incorporating this knowledge, we propose a novel
centrality method to identify superspreaders in social epi-
demic networks. Our spreader centrality is inspired by the
PageRank method [8]. Accordingly, a page is more important
if it has more in-links, which are votes from important pages
that have a higher weightage. In other words, our spreader
centrality determines the importance of a node based on the
number of its out-links.

The main contributions of this work are summarized as
follows:
• We introduce a trajectory linkage algorithm to con-
struct automatically social epidemic networks from the
patient’s historical trajectory data given radius and
time-window constraints.

• We proposed spreader centrality, a new centrality mea-
sure dedicated to identifying superspreaders in social
epidemic networks.

• From the extensive experiments conducted using the
COVID-19 case in South Korea, we find that our social
network representation obtained by trajectory linkage
can result in a more complete and meaningful interpre-
tation than existing patient relational data.

To the best of our knowledge, there has not been an
approach incorporating radius and time-window in con-
structing epidemic networks. Moreover, unlike the existing
spreader centrality measure, our spreader centrality considers
the communication flow (the ‘‘who is infected by whom’’
relationship) among the patients, making it possible to iden-
tify the real superspreaders.

The rest of this paper is organized as follows. Section II
describes some previous works related to modeling social
epidemic networks and centrality measures. Section III pro-

vides a comprehensive explanation of the proposed trajectory
linkage and spreader centrality method. Section IV presents
the experimentation and a discussion of the method’s
performance. Finally, section V concludes and looks ahead
to future research.

II. RELATED WORKS
In this section, several previous studies about modeling
social epidemic networks and network centrality measure are
described.

A. MODELING SOCIAL EPIDEMIC NETWORK
Modeling the social epidemic network is an important issue
in this decade. To make a near realistic social epidemic
model, some studies have proposed some complex methods,
such as EpiRep, which adopt SI in dynamic networks [9].
ISIR [4], [10] considers the real heterogeneous contact net-
works among people in society rather than homogeneous
ones, as in the standard SIR model. By adopting a nonlin-
ear dynamical system (NLDS), which originated with the
representation of the propagation of viruses on computer
networks [11], the improved non-linear dynamical system
(INLDS) [12] improved the SIS model by utilizing the prob-
ability of social contact. The authors in [3] improved SIS to
enable it to consider the contact probability between nodes,
as determined by their social distances and their degrees of
activity. In [5], the authors adopted SEIR by introducing a
recovery method for incomplete relationship data in a really
complex social network according to statistical sampling.
Moreover, some immunity strategies have also been added
to epidemic modeling, such as in [13], where a hierarchi-
cal targeted immunization strategy was proposed to control
epidemic spread in a crowd with modular and hierarchical
social contact networks. In [14], the authors proposed a
novel community-based immunization strategy for the selec-
tion of targeted immunization nodes based on optimization.
Nonetheless, there remain many challenges to the creation of
models that can capture real-world complex dynamics [6].

Related to our research, several studies have utilized the
spatial context in social epidemic networks. In [15], social
contact graphs are utilized to model different contact pat-
terns within the population for the COVID-19 pandemic. The
authors in [16] studied social ties between family members,
friends, and neighbors, as well as the probability of obe-
sity within those networks. The work in [17] focused on
Los Angeles gang networks and the location of each gang,
combining social and spatial methods to better understand
violence and youth behavior. In [18], autism in California
was examined, and the authors reported that children living
in closer proximity to children with autism were more likely
to be diagnosed with the disorder. The authors in [19] used
social networks and spatial analytical methods simultane-
ously to model disease transmission. Social clustering, on its
own, can be influenced by the shared environment [20], [21].
After the outbreak of equine influenza in Australia, social
networks were constructed by combining contact-tracing data
on horse movements with a distance matrix between all
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premises holding infected horses. In addition, a proximity
network was constructed based on a matrix of the distances
between each pair of infected premises in the contact net-
work. They obtained a distance cut-off dichotomized at a
minimum of 5 km, while 15.3 km was the maximal network
based on empirical research.

B. NETWORK CENTRALITY
The identification of superspreaders in a social epidemic
network is a key problem affecting the design of an effective
mitigation strategy against the spread of an epidemic disease.
A corresponding strategy to identify spreaders can also be
established to accelerate or hinder information dissemination,
increase the exposure range of products, detect contagious
outbreaks, and support the execution of early intervention
strategies [22]. Hence, the identification of key spreaders in
a network has become an important research issue in its own
right. There are many classic centrality methods, such as the
degree centrality [23], closeness centrality [24], and between-
ness centrality [25]. While most of the current superspreader
identification research is under the SIR model, the author
in [26] proposed R0-adjusted centrality, which incorporates
the R0 value of a node into the existing network central-
ity measure to quantify a node’s importance from two per-
spectives, namely, the network topology and the amplifica-
tion/attenuation of the intensity of disease spreading. In [27],
the authors devised a method to detect nodes that are capable
of exerting a strong influence over a huge multilayer network
solely based on the local knowledge of a network’s topology,
for speed and scalability. The k-shell method proposed by
Kitsak et al. [28] is the most widely used method [29] and
utilizes a node’s location as one of the essential factors in
determining the most efficient spreaders. However, as the
k-shell index does not provide sufficient information on the
topological locations of nodes [30], the authors in [31] pro-
posed the measurement of a normalized local centrality based
on normalized local structure attributes. This model considers
the topology of the local network around a node and the
influence feedback of the node’s nearest-neighbor nodes. The
authors in [32] combined the local and global performances
of nodes for the measurement of nodal spreading abilities.

Recently, several significant kinds of research addressing
to identify the spreader nodes in various social networks
have been conducted. Chen et al. [33] claim that influential
nodes can be identified by extracting and synthesizing topol-
ogy feature information of traditional centrality indices and
spreading influence. Yang et al. [34] identify the influential
nodes by incorporating the degree and clustering-coefficient
of neighbor nodes. Berahmand et al. [35] incorporate the
natural characteristics of complex networks to capture
the spreader node. Wang et al. [36] identify the influ-
ential spreader by considering the weight neighborhood
nodes in complex networks. Eeti et al. [37] enhance The
so-called Temporal Threshold Page Rank Opinion Formation
model (TTPROF) by incorporating temporal evolution to
identify the influential node. Ahmad et al. [38] introduce a

community-based hybrid approach for identifying influential
nodes. Unlike the previous studies, we consider the commu-
nication flow (the ‘‘who is infected by whom’’ relationship)
of each node by adopting the PageRank metric to measure
the spreader rank. It is in line with the spreader term in
epidemiology. Wherein a spreader is an infected organism
that infects disproportionally more secondary contacts than
others who are also infected with the same disease [7].

III. METHODOLOGY
Below, we describe our proposed data-driven method to auto-
matically obtain a social network model based on the trajec-
tories of patient data. After that, we explain our centrality
measure devised for the identification of superspreaders in
a social epidemic network.

A. PROBLEM FORMULATION
Let us denote G(V ,E) as a graph G that consists of node
V and edge E , where V = {v1, v2, . . . , vN } and N is the
total number of nodes in G. Each node has an edge with
E = {(v1, v2), (v1, v3), . . . , (vN−1, vN )}, which represents
the set of links between corresponding nodes. For instance,
if node v1 is connected with node v2, the value of (v1, v2)
is 1; otherwise, it is 0. Note that there is no self-connection
of v in G. In our case, a node represents a patient, where
each patient has some visited places. We denote this as vi =
{Pi1,P

i
2, . . . ,P

i
Mi
}, where Piz corresponds to the z-th visited

place of patient i and Mi represents the maximum number
of visited places of patient i. Note that the number of visited
places of each patient may differ. The visited place informa-
tion includes the date of the visited place (dt), the place name
(pn), as well as the longitude (lo) and latitude (la) attributes,
and we can thus denote Pi1 = {dt, pn, lo, la}.

B. TRAJECTORY LINKAGE
A trajectory linkage is a data-drivenmethod for automatically
discovering a social network model. Given the history of
visited places by each patient (as shown in Fig.1a), it will
construct a social network model (as depicted in Fig.1b). The
link between two patients is determined based on their spatial
proximity when visiting a place within a given time-window.
We define our trajectory linkage output as an undirected and
unweighted edge. The indirect relation among nodes is cho-
sen because the first virus carrier among them is unknown.
For instance, in the case of COVID-19, some symptoms are
only detectable by a Lab. Therefore, the objective of the
trajectory linkage method is to find relations among patients.
An unweighted graph is desired because all patients are
equally capable of spreading the virus.

The spatial proximity is determined by calculating the
radius of the visited place between two patients. We utilize
the Haversine formula [39] to determine the radius between
two points on a sphere given their longitudes and latitudes.
Meanwhile, in the time-window (day), we use the day as a
minimum time unit.
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FIGURE 1. Discovering social network from trace data using Trajectory Linkage.

Algorithm 1 Trajectory Linkage
Input: radius, day,M ,A
Output: M

Initialisation:M matrix N × N size with all value 0
1: for i ∈ {v1, . . . , vN−1} do
2: for j ∈ {v2, . . . , vN } do
3: for k ∈ {Pi1, . . . ,P

i
Mi
} do

4: for l ∈ {Pj1, . . . ,P
j
Mj
} do

5: if i 6 j then
6: calculate R from {Pik .lo,P

i
k .la} and

{Pjl .lo,P
j
l .la}

7: calculate D from Pik .dt and P
j
l .dt

8: if (R 6 radius) AND (D 6 day) then
9: Mi,j+1 = 1

10: end if
11: end if
12: end for
13: end for
14: end for
15: end for

The overall process of the trajectory linkage method is
described in Algorithm 1. First, it requires two input param-
eters, namely radius as spatial proximity and day as a
time-window. While the output is the adjacency matrix M ,
we initialize matrix M of size N × N with all values set to 0,
which means that no node has any connection in the initial
phase. The first and second loop represents the iteration to
find the possible matchings between a pair of nodes. Note
that in the first loop, the node is started from node 1 to N −1,
whereas in the second loop, it begins from node 2 to N .
This mechanism avoids overlapping matching. The third and
fourth loops correspond to the iteration of each visited place
for each corresponding node; because we want to generate
an undirected graph, the link between nodes i and j is equal
to the link between nodes j and i. Therefore, for simplicity,
we conduct matching from node i to j only; this mechanism

is conditioned on line 5 in the algorithm. The distance R is
obtained by calculating the radius of the visited place between
the longitude and latitude of nodes i and j. The time-window
D in which two nodes meet is calculated by obtaining the
absolute value of the difference between Pik .dt and Pjl .dt ,
as shown in lines 6 and 7, respectively. If the nodes i and j have
met each other within a given less-or-equal-to radius and on
an earlier-or-equal-to day, they will be connected by updating
the value of matrix Mi,j+1 as 1. Note that i and j are equal in
value. Therefore, in matrix M , it will be in index i and j + 1
instead of index i and j.
Moreover, given radius = 0, which represents the exact

same place where two patients meet, we can rank the visited
place using our trajectory linkage algorithm. This can be
realized by adding a list variable to save a frequent of the
visited place of each patient after line 9 in Algorithm 1.
Hence, by appending the Pik .pn or P

j
l .pn value to the variable,

we can rank it based on the number of occurrences. The most
frequently visited place means that many patients are infected
because they visit this place. Therefore, this information can
be used for prevention and mitigation purposes to minimize
any increase in the rate of infection.

C. HYBRID
Besides using the trajectory linkage method, we can also
construct a social network model using given ‘‘patient infor-
mation’’ data. We refer to this as prior information. From
prior information, we can approximately know (assume) the
‘‘who is infected by whom’’ relationship between patients,
and we can, therefore, obtain a direct relation. Unfortu-
nately, this will be only a very sparse connection (as will be
discussed in Section IV). However, by combining the prior
information with our trajectory linkage method, we derive the
hybrid-undirected and hybrid-directed methods.

Obtaining a social network by a Hybrid-undirected method
is very simple. Suppose matrices M and A represent the
adjacency matrix by trajectory linkage and prior information,
respectively.We can perform a special merging operation (⊕)
between M and A, as shown in Fig. 2. Note that M and A
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FIGURE 2. Matrix H is obtained from element-wise OR operation (⊕)
between matrix M and A.

are binary matrices; value 1 indicates that the two nodes are
connected, while 0 means otherwise. The⊕ indicates that we
perform an OR operation in an element-wise manner of the
matricesM and A. Therefore, if one of them indicates that the
two nodes are connected, they will be connected.

For the hybrid-directed method, the mechanism is more
complex than with the hybrid-undirected method. The basic
idea of the hybrid-directed method is the use of given patient
information as prior knowledge. We want to infer a direct
relationship between patients. For instance, if patients i and
j meet in the same place and at the same time, we want to
know who is the first virus carrier among them. There are
two mechanisms to tackle this issue. In the first mechanism,
we can use matrix A as our prior knowledge. If patient i was
ever infected by another patient before he/she met patient j,
we can assume that patient j was infected by patient i. Unfor-
tunately, this information is limited becausematrixA is sparse
(as will be discussed in Section IV. In the second mechanism,
we can trace the history of places visited by patient i. If patient
i evermet one of the infected patients beforemeeting patient j,
we can assume that patient i infected patient j. We can obtain
this information using the trajectory linkage algorithm 1.
It can be realized by adding a variable to save the minimum
day (Pik .dt) of the infected patient i. We use both mechanisms
to obtain the day of infection for each patient. For simplicity,
we denote this information as dayInfected .

The overall mechanism of the hybrid-directed method is
described in Algorithm 2; the inputs are matrices M and
A, while the output is matrix H . Note that M contains an
indirect relationship, while A contains a direct relationship.
From the input matrices M and A, we will obtain matrix H ,
which has a direct relationship. The condition in lines 5 to
6 represents obtaining a direct relationship from the ground
truth matrix A. The condition in lines 8 to 9 corresponds to
the inferring of a direct relationship based on matrix M and
dayInfected. For instance, if patients i and j meet each other
and the patient dayInfected of patient i is earlier than the day
of their meeting (patient j meets patient i), we can assume
that patient i infected patient j. Whereas the condition in lines
12 to 13 represents the casewhere theymet each other and had
never been infected before; therefore, we assume that they
infected each other.

D. PORTION OF CONNECTION
We introduce a portion of connection as Pc to analyze the
connectivity among nodes (patients) in the social network
model. Pc can be obtained by using a fraction between the
number of connected nodes (Nc) and all possible connections

Algorithm 2 Hybrid-Directed
Input: M ,A
Output: H
1: for i ∈ {v1, . . . , vN−1} do
2: for j ∈ {v2, . . . , vN } do
3: for k ∈ {Pi1, . . . ,P

i
Mi
} do

4: for l ∈ {Pj1, . . . ,P
j
Mj
} do

5: if (Ai,j+1 = 1) then
6: Hi,j+1 = 1
7: end if
8: if (Mi,j+1 = 1) AND (dayInfected(i) <

PjM .dt) then
9: Hi,j+1 = 1

10: end if
11: if (Mi,j+1 = 1) AND (dayInfected(i) =

PjM .dt) then
12: Hi,j+1 = 1
13: Hj+1,i = 1
14: end if
15: end for
16: end for
17: end for
18: end for

(Na), as denoted in Eq. 1. Note that the self-connection node
is excluded in Na, since there is no self-infected case in our
problem. We can say that Pc will increase if the number of
connections increases in our social network model. In Trajec-
tory Linkage Algorithm 1, we can analyse the input variable’s
radius and day effects on relations between patients. For
instance, is Pc increasing if we add the number of radius, and
also, is Pc increasing if we add the number of day?.

Pc(radius, day) =
Nc(radius, day)

Na
(1)

E. SPREADER CENTRALITY
The term superspreaders refers to those who are particularly
effective in transmitting infectious diseases [7]. In simpler
terms, we could say that they infect more people than do most
others and that they are therefore most responsible for the
spread of disease. This becomes our basic foundation for the
identification of superspreaders in a social epidemic network.
The basic idea of our spreader centrality is that a patient will
be highly ranked if he/she infects many patients and that the
infected patients also infect many other patients, and so on,
recursively, in our social epidemic network. In other words,
the node will be important if it has a more important out-
link. This mechanism is denoted in Eq. 2, and is illustrated
in Fig. 3. Note that, even if it is inspired by PageRank, its
traits and objectives are different. In PageRank, the node has
a high score if it has many in-links. However, in our spreader
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centrality, the node has a high score If it has many out-links.

rj =
∑
i←j

ri(1+ di) (2)

FIGURE 3. Spreader centrality.

where di represents the number of out-link and ri spreader
score of node i. As shown in Fig. 3, we can obtain the spreader
score of node j by using equation rj = rl(1+3)+rm+rn(1+2).
We can initialize adjacency matrix C based on the spreader
score. For instance, if node j has out-link i, then rj = ri(1+di);
otherwise, the index of nodes j to i will be valued as 0.
Note that our idea was inspired by the PageRank method of
determining the important node [8]. Therefore, the calcula-
tion of the rank that we utilize is the same mechanism as in
PageRank. We utilize the power iteration method to obtain
the spreader rank of each node. To guarantee convergence
of the power iteration, matrix C should satisfy stochastic,
aperiodic, and irreducibility conditions [40], [41]. Stochastic
means that the matrix column sum must be 1. To realize this,
we update Eq. 2 by normalizing it based on the column sum.
We denote matrix C∗ as a normalized form of the spreader
score matrix C .

S = β · C∗ + (1− β) ·
1
N

(3)

The aperiodic and irreducibility properties can be satisfied
by implementing a random surfer model, as denoted by Eq. 3.
β represents the free contribution for all nodes to avoid spider
traps (a node for which all out-links are within the group
case) and dead ends (a node that has no out-links). This
technique is known as the random surfer model, whereby
in each step, the random surfer has two options: to follow
a link randomly with probability β and to jump onto ran-
dom nodes with probability (1 − β). The optimal values of
β are within the 0.8 to 0.9 range [8]. Finally, we have a
matrix S, which already satisfies all of the aforementioned
requirements.We can subject S to the power iterationmethod,
as denoted in Eq. 4,

r (t+1) = S · r t (4)

where r is a vector of spreader rank, having length N . The
index order of vector r represents the spreader rank of the

node. For instance, index 0 of vector r represents the first rank
of the superspreader. We can initialize r0 = [ 1N , . . . ,

1
N ]

T .
After some iterations, we can obtain the spreader rank of each
node. The process terminates when |r t+1 − r t | < ε.

IV. EXPERIMENT
The data used to develop our framework are described below.
Then, we present various social epidemic network models
and centrality measures, a discussion of the results, and their
comparison.

A. COVID-19 DATASET
To validate the effectiveness of the proposed algorithm,
it was evaluated using real datasets. We used COVID-19
infection cases in South Korea as our case study. The
data were obtained from the KCDC (Korea Centers
for Disease Control & Prevention), and is available at
https://www.kaggle.com/kimjihoo/coronavirusdataset. The
data are obtained using both GPS (cell phone inspection)
and interviews with the corresponding patients. The spa-
tial data were examined and recorded manually using the
corresponding stack holder. Because the data were manu-
ally compared with the data recorded automatically by the
system, we believe that these data are less vulnerable to
noise compared with the data automatically acquired by
the system. Furthermore, because the Korean data resulted
in a very complex network, for simplicity in analyzing the
network centrality, we utilized a Busan dataset. Actually, this
data is a subset of the KCDC data but is from a different
source, namely Busan Metropolitan City. There are two main
datasets, patient information and patient route data. The
patient information consists of attributes patient id, infected
by, symptoms on-site date and confirmed date. The patient
route corresponds to the history of places visited by each
patient a few days after they have suspected symptoms.
The patient route consists of patient id, date, place name,
longitude, and latitude. The recorded data covers the period
from mid-January until mid-May 2020.

We performed some data preprocessing because the use
of raw data has some problems, such as matching issues
between patient information and patient route. Sometimes,
patient id exists in patient information but not in patient route
data. Therefore we used only the patient id, which exists
in both of the main datasets. Data incompleteness exists in
patient information data. Some patients do not have symp-
toms on-site date data. This happens, because in some cases,
COVID-19 patients display no symptoms, or the reasonmight
be due to human error. We handle this condition by assuming
that if the symptoms on-site date is empty, we should replace
it by confirmed date data. Data incompleteness also exists in
patient route data. For some patients, the only place visited
is the hospital, with no longitude or latitude data. Therefore,
those kinds of records were excluded. Finally, we omitted
the hospital as a place visited by a patient because in reality,
when people display symptoms, they tend to go to a hospital.
Moreover, the last place visited by the patient must be a
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hospital and represents the place where they are treated until
cured. Therefore, the hospital may havemany links. In reality,
the hospital has high standards for how patients are treated
during the COVID-19 outbreak. Hence, we assumed that the
probability of spreading the virus in a hospital was very low.

B. SOCIAL NETWORK MODEL
The social epidemic network model can be constructed based
on patient data, trajectory linkage, hybrid-undirected, and
hybrid-directed. In the following, we present and compare all
of them.

1) BASELINE
As a baseline, we utilized merely patient information data
to construct the social epidemic network model. As shown
in Fig. 4, this resulted in a very sparse network model,
wherein the majority of the patients are not connected to any-
one. Therefore, it was nearly impossible to conduct a social
network analysis with this model. The network sparseness
might have been caused by any of three factors. First, patients
might not realize that he/she has met an infected patient
in a given place. Therefore, the staff administrator cannot
infer this information in recording patient information data.
Second, an infected patient might be an overseas-inflow case.
Such people have tested positive after visiting other countries.
Third, with respect to the data incompleteness issue, data is
sometimes not recorded, due to issues such as patient privacy
or human error.

FIGURE 4. Social network model constructed by patient information data.

2) TRAJECTORY LINKAGE
The social network model obtained from the trajectory link-
age method was denser than the baseline network, as depicted
in Fig. 5. With radius = 0 (exactly the same place) and
time-window day = 14, the Pc value of the baseline
model was 4.32× 10−5, while that of trajectory linkage was
1, 915×10−5. Therefore, we can reveal that the portion of the

connection of trajectory linkage was 443 times higher than
that of the baseline model.

FIGURE 5. Social network model by Trajectory Linkage method, with
Nc (0, 14).

FIGURE 6. Social network model constructed by Hybrid-undirected
method.

3) HYBRID
In the hybrid method, to obtain a still-denser social network
model, we combined the patient information data and our
trajectory linkage output. The hybrid method obtains two
kinds of network models, namely, hybrid-undirected and
hybrid-directed. The output of the hybrid-undirected method
is shown in Fig. 6. Note that the Pc value of trajectory
linkage is 1, 915 × 10−5, while that of hybrid-undirected
is 1, 917× 10−5. We can conclude that the hybrid-directed
method adds only a few connections. Therefore, its Pc value
was not significantly improved relative to that of the trajec-
tory linkage output.

In analyzing how the disease spreads in the epidemic
network, the directed connections have to be observed,
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FIGURE 7. Social network model constructed by hybrid-directed method.

especially the out-links. Therefore, we also constructed a
directed graph of the social epidemic network, as shown
in Fig. 7. As is apparent, the connections are fewer
than in trajectory linkage and hybrid-undirected with
Pc = 0.082× 10−5. This was caused by the ‘‘infected before
relationship’’ condition, which narrowed down the connec-
tions among the patients. As described in section 2, a link
between patients i and j can be established only if patient i
has symptoms before he/she meets patient j or if neither of
them has symptoms before they meet each other.

4) MODEL SUMMARY
As seen in Figs. 5 and 6, the social networks resulting
from the use of the trajectory linkage and hybrid-undirected
methods are not much different. The hybrid-directed method
obtained fewer connections than the trajectory linkage
and hybrid-undirected methods because there were more
constraints to consider with regard to the meeting of two
patients. Note that the baseline model was constant along
the changing radius and day because it had been purely
constructed from patient information data. By contrast, in tra-
jectory linkage, there was a dynamic link among patients
because it depended only on parameter radius and day.
We analyzed the social network (SN) topology generated

by each method, as shown in Table 1. We can conclude
that there is a decrease in the number of connected com-
ponents, transitivity, and isolated nodes of the SN that are
obtained from patient information, trajectory linkage, and the
hybrid-undirected method. Therefore, the SN model, from
patient information to the hybrid model, becomes denser. The
network density of an SN obtained using the hybrid-directed
method is lower than that of the hybrid-undirected method,
while the number of isolated nodes exceeds that of the
hybrid-undirected method. This is because there were more
constraints to consider a connection with respect to the meet-
ing of two patients, as shown in Algorithm 2. Note that with

the exception of the SN generated using the hybrid-directed
method, all of them are undirected graphs. Therefore, there
are different criteria, e.g., the hybrid-directed method has
strongly and weakly connected components.

FIGURE 8. The effects changing time-window day while the radius is
fixed radius Nc (0, day ) in Trajectory Linkage output.

We observe the values of parameter radius and day in our
trajectory linkage method, and we analyzed the changes of
the portion of connection Pc. With the radius fixed as 0,
representing the exact same place, we changed the value of
the time-window (day). As shown in Fig. 8, with an increasing
number of day, the Pc value tended to increase. The inter-
esting pattern there is that the number of patients sharply
increases in the first week, whereas over the following 14, 21,
28, and 35 days, the difference is smaller. This represents the
speed with which the corresponding government broadcasts
the information. Actually, the government broadcasted warn-
ings for citizens to avoid the corresponding place after some
cases related to this place were officially detected. However,
this information was delayed owing to several issues, such
as the patient having symptoms but not going to a hospital
(for test purposes), the test requiring at least one day to
deliver the result, and the time required by the government
to broadcast information to the citizen. Therefore, the total
delay of the broadcast may be approximately one week. After
obtaining this information, the government will lock down
the corresponding place and conduct testing for each person
who visited the corresponding place. Subsequently, citizens
will avoid that place after being informed to do so. Ideally,
the earlier the delivery of information to citizens, the less
likely it will be their chances of being infected. As shown
in Fig. 9, Busan was better in handling this issue than was the
Korean nation overall. For example, whereas Pc was nearly
flat after the first week in Busan, in the national dataset, it was
still increasing. It can be specifically concluded that overall,
the Busan government broadcasted information faster than
the Korean government.
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TABLE 1. Summary of network topological properties of each method.

FIGURE 9. National (Korea) and Busan city comparison in handling
COVID-19 with Trajectory Linkage model Pc (0, day ).

FIGURE 10. The effects changing radius while the day is fixed in
Trajectory Linkage output.

Wealso observed the effects of varying radius under a fixed
time-window day = 0,14,28. As shown in Fig. 10, the num-
ber of connected patients was not significantly increased or
changed by increasing the radius. It, therefore, appears that
the virus cannot live long and migrate to a nearby place.
As revealed in [42], COVID-19 remains viable in aerosols
for only 3 h. Furthermore, as shown in Fig. 10, in the model
with an increasing number of days denoted as Nc(radius, 0),
Nc(radius, 14), and Nc(radius, 28), the value of Pc is increas-
ing. Therefore, we can conclude that the parameter radius is
dominated by the parameter day.

Starting from here, we will utilize the trajectory linkage
model with Nc(1.5, 14) for both the hybrid-undirected and
hybrid-directedmethods to conduct a social network analysis.
Those parameter values were selected based on the Elbow
method [43]. This represents the beneficial points that sys-
tem designers have long selected to best balance inherent
trade-offs [43]. For example, the higher the radius value,
the more the patients tend to be linked to each other, as is
likely to be the case in a crowded city. Meanwhile, the higher
the day value, the more likely is it that false links will appear.
In reality, the government will lock down a place after many
related cases are reported. Consequently, citizens will avoid
that place. Therefore, there have to be no new confirmed cases
for that place unless, by coincidence, new patients infected at
other places visit nearby corresponding places.

TABLE 2. Place (visited place) rank based on Trajectory Linkage on Busan
data.

By using our trajectory linkage method, we ranked places
based on the frequency of visits by infected patients.
As shown in Table 2, the place with the greatest superspreader
effect was OC Church, followed by SS Song Practice Station,
SY Elementary School, Incheon Airport, and Busan Station.
This information can be used for mitigation measures such as
the locking down of spreader places.

The running time of Algorithm 1 and 2 is 1205.1 sec.
(20.085min.) and 260.2 sec. (4.337min.), respectively. Algo-
rithm 2 requires a faster running time than Algorithm 1
because in Algorithm 2, there is no calculation of radius
and time-window. Moreover, since it is dedicated to finding
a direct relationship, it results in a fewer number of links
compared with Algorithm 1. The implementation of this
study is conducted using a computer with Windows Server
2012 R2 operating system, Intel Core i7 4790K CPU, 32 Gb
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TABLE 3. Spreader rank based on Hybrid-undirected method on Busan dataset.

RAM, and Python (ver. 3.6.0). While the number of patients
is 938, with the total number of visited places is 4,786.

C. CENTRALITY MEASURE
Different kinds of network models, such as undirected and
directed graphs, employ different methods to calculate the
centrality. The reasons for utilizing both of them are that the
undirected graph can capture centrality based on the network
topology, while in terms of the analysis of superspreader cen-
trality in the epidemic network, a directed graph, especially
its out-links, is essential. Therefore, using those two models,
we can learn how a virus spreads in our society.

For our comparisons, we utilized some commonly used
centrality measures, such as the degree, closeness, between-
ness, and eigenvector centrality. The degree centrality of a
node in a graph is simply a count of the number of edges that
connect to it. The advantage of using degree centrality is that
it can identify and rank superspreaders. In the closeness cen-
trality, a node is considered important if it is relatively close
to all other nodes. It can identify most rapidly the individuals
who are best placed to influence the entire network. Based
on the betweenness, a node is important if it lies in between
many shortest-paths. This measure can indicate which nodes
are ‘‘bridges’’ between nodes in a network. The eigenvector
measures a node’s influence based on the number of links
it has to other nodes in the network. Therefore, it can be
used to identify nodes with influence over the whole network.
Nonetheless, in a social epidemic network, it may not be as
effective.

1) UNDIRECTED GRAPH
In the present study, we were more interested in the super-
spreaders than in all of the nodes in the network. Thus, only
the top nodes on the ranking list were considered. For this
purpose, the top-5 nodes of each ranking algorithm were
selected. As shown in Table 3, we could determine B-7 as
the top superspreader based on the degree, closeness, and
eigenvector centrality. As shown in Fig. 11, Patient B-7 was
connected to all of the networks of the OC Church cluster as
well as to other clusters.

Moreover, to identify the cluster of COVID-19 infection in
Busan city, we utilize Clauset-Newman-Moore Greedy mod-
ularity maximization [44] to detect the community. As shown
in Fig. 12, there are twelve communities detected, different
colors represent the distinct community. The biggest cluster

FIGURE 11. Undirected graph for centrality measure. It is constructed by
Hybrid-undirected method.

FIGURE 12. Twelve communities are detected using the
Clauset-Newman-Moore greedy modularity maximization in the Busan
dataset.

(blue node) related to the OC Chruch case, since the majority
of the patients of this case, are lied on this community. In this
community, from 16 members, 12 of them are related to
the OC Chruch case. The second biggest community (green
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TABLE 4. Spreader rank based on Hybrid-directed method on Busan dataset.

FIGURE 13. Directed graph for centrality measure. It is constructed by
Hybrid-directed method.

color) consists of 12 members, while 7 of them are included
as SY Elementary School case. While in other communities,
they are mixed with each other in various cases in Korea.

2) DIRECTED GRAPH
In the directed graph, as shown in Table 4, our Spreader
centrality identified B-30 as the top superspreader. It was also
related to the OC Church cluster. Rather than B-7 based on
the out-degree centrality, or B-15 based on the betweenness
and closeness, our proposed method chose B-7 because it
had fewer out-links than B-30. Note that B-7 infected many
patients both in the OC Church cluster and in other clus-
ters. Therefore, compared with classic centrality measures,
our proposed method can better capture the ‘‘who/whom’’
(infect/infected) relationship between nodes in a network.

Note that in the ranking, the order is more important than
the values themselves. In this experiment, we set ε = 1 ×
10−5. In the power iteration, our spreader centrality calcula-
tion converged after iteration 130, as shown in Fig. 14.
We normalized each centrality measure to make the sum

of the values equal to 1. Subsequently, we compared our
spreader centrality with the classic centrality in a correlation
graph, as shown in Fig. 15. As can be seen, our spreader
centrality was highly correlated with the out-degree central-
ity. This was because the spreader centrality and out-degree
centrality both considered out-links when calculating the rank

FIGURE 14. A convergence of calculation Spreader centrality in power
method iteration.

FIGURE 15. Correlation between Spreader centrality and classic centrality
(Out-degree, Betweenness, and Closeness centrality).

of each node. This similarity was also shown in the top-2
spreader nodes, as shown in Table 3.

The spreader centrality is an eigenvector-based centrality
that utilizes the power iteration method. Therefore, we also
compared our proposed method with those of the same fam-
ily, such as eigenvector, PageRank, and inversion of PageR-
ank. Note that the inversion of PageRank is a PageRank in
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FIGURE 16. Correlation between Spreader centrality and power method
based centrality (Eigenvector, PageRank, and inversion of PageRank).

which the rank value is inverted. For instance, the highest
rank in PageRank will be the lowest rank in the inversion of
PageRank. Note that our spreader centrality has the opposite
objective to that of PageRank. Therefore, this mechanism
ensures that our algorithm differs from the inversion version
of the PageRank algorithm.As shown in Fig. 16, our proposed
method did not correlate with any of them, not even with the
inversion version of PageRank

V. CONCLUSION
The modeling of a social network model from epidemic data
is important to gain an understanding of how a disease spreads
in our society. Nonetheless, most of the previous studies
construct social network models based on stochastic models
withmany assumptions. Unlike previous research, we derived
and herein propose a data-driven method called the trajectory
linkage method for the automatic discovery of social net-
works. The proposed method considers the spatial proximity
and a time-window to isolate links between patients. In an
experiment on COVID-19 datasets, the number of connected
patients was increased as the length of the time-window was
increased. In contrast, increasing the radius resulted in only
small changes in the number of connected patients. The social
network model constructed by the trajectory linkage method
can capture relations between patients better than existing
baseline data by obtaining a denser network. Furthermore,
using the proposed method, we can rank the places most
visited by patients, which represent dangerous places to visit.
Such information is useful for disease-spread-mitigation pur-
poses. Although the proposed method was originally devised
for the construction of an undirected graph, using the baseline
data, we can infer a directed graph as well.

One of the important tasks of social network analysis is the
identification of centrality. However, over the past decade,
there have been few reported studies on the identification

of superspreaders in social epidemic networks. Therefore,
we introduced our novel spreader centrality measure to iden-
tify the real superspreaders in social epidemic networks.
Our spreader centrality is with a member of the PageRank
centrality family. Hence, using the power iteration method,
we formulated our spreader centrality equation to satisfy
stochastic, aperiodic, and irreducibility properties to ensure
applicability. Based on experiment results, our spreader cen-
trality could capture the ‘‘who/whom’’ infect/infected rela-
tionship well because it considers communication among
patients in a social network, specifically with respect to the
transfer of disease among them. In the future, we can imple-
ment the trajectory linkage method for other epidemic cases.
We believe that spreader centrality can be implemented in
other domains, such as in the analysis of how rumors spread in
social networks. Moreover, we realize that our current study
has a limitation regarding the scalability of algorithm 1. The
quadratic time complexity is inevitable since finding a link
possibility between two patients requires a self-join opera-
tion, where we need to calculate the radius and time-window
(day) among the patients. Nonetheless, we can incorporate
distributed computing techniques such as MapReduce to deal
with the large-scale dataset to tackle this limitation.
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