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ABSTRACT The development of vision-based navigation algorithms using a camera is becoming more
important. The vision-based navigation can be categorized into two types. The first is to use sequential
camera images as relative navigation. The second is to estimate the absolute navigation solution using a
camera image and database. In absolute navigation, the difference between the database and the camera
image is a major obstacle to image registration. One of the factors that make a lot of difference is the
shadow effect. This shadow increases the inconsistency between the two images and eventually degrades
the localization accuracy. This means that shadows have a significant impact when measuring the similarity
of the two templates. To mitigate this effect, we inherited and developed the Monte Carlo Localization (MCL)
algorithm based on a new similarity cost function, which is a key contribution to this article. We have
established the importance of information with information reallocation logic that considers shadow areas.
The proposed algorithm allocates the importance of the information considering a portion of the shaded
area in the camera image. First of all, we analyzed the effects of shadows on the camera. To compare
the performance of the algorithm, we used not only the shadow restoration algorithm but also various
template-based matching algorithms. The proposed algorithm is validated through various simulations and
real flight experiments as well.

INDEX TERMS Aerospace engineering, geographic information systems, Monte Carlo methods, particle

filters, adaptive systems.

I. INTRODUCTION

Autonomous robots are being studied extensively, especially
in drones (UAVs), because they can be accessed directly
in a dangerous or inappropriate environment. These drones
are known to be useful in many application areas, such as
exploration, inspection, guidance generation, and surveil-
lance, as they are significantly free to maneuver [1], [2].
Localization or navigation is an essential research area for an
airborne vehicle to perform complex tasks. A common way to
do UAV localization is to use the Global Navigation Satellite
System (GNSS). In particular, the number of satellites and
the quality of the signal play an important role in calculating
the UAV’s position. However, expected position accuracy can
be degraded by multipath problem, fewer satellites, spoof-
ing, and jamming [3]. Furthermore, according to White and
Maybeck [4], jamming can cause signal interference, which
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can make location estimation unreliable as well as spoofing.
As a result, aerial drones that rely solely on GNSS sig-
nals can be hacked by malicious behavior with catastrophic
results. Therefore, the development of vision-based naviga-
tion algorithms using a camera is becoming more important.
Localization using the vision sensor can be classified into
relative navigation and absolute navigation [5]. First, relative
navigation calculates the relative velocity to estimate the
position of the aerial vehicle using the difference between
the sequential images obtained through the vision sensor,
generally called a visual-odometry (VO) [6], [7]. However,
a VO has the disadvantage of accumulating errors caused
by various factors. On the other hand, scene-matching (SM)
based on image registration [8], [9] can be an absolute naviga-
tion technique that calculates the position of an aerial vehicle
by directly matching the database, including the geographic
information. It can be said that a kind of database-referenced
navigation (DBRN) [10] system. Except for the disadvantage
of requiring a large, it can be a good way to compensate
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for the diverging navigation solution when the use of the
global navigation satellite system (GNSS) is limited [11].
The matching result of the absolute localization based on SM
can be directly converted into the position information in the
database; hence errors are not accumulated [12].

However, there is a problem that the camera image and the
database are inconsistent. Many causes make the inconsis-
tency between the two templates. In general, it is known that
a large difference is caused by moving objects, the creation
and disappearance of buildings, illumination changes [13].
First of all, the moving object and building have a certain
structure, some researchers use this structural information
to mitigate mismatching. Yang et al. focused on regions of
interest to increase robustness [14]. Liu et al. also proposed
an optimization method using spatial-order constraint [15].
A Viewpoint-dependent matching method with a high success
rate was proposed by Shan et al. [16]. These methods of
using structural constraints require prior knowledge of the
object. The next, illumination change is hard to predict. One
of the ways to solve this problem is the shadow detection
and restoration process. Actually many researchers proposed
algorithms in this type of researches. Nan et al. have been
proposed an automatic shadow detection method to miti-
gate the shadow effect [17]. And the shadow detection and
removal method using a new color space are introduced by
Liang et al. [18]. Ding. et al. inherited the computer vision
algorithm and developed a new shadow removal algorithm
[19]. The performance of these types of using shadow restora-
tion techniques can be improved by using a specific thresh-
old, but it is difficult to apply it to various environments.
Recently, machine learning algorithms have been developed
to mitigate the shadow effect. Ma provides the convolutional
neural network feature and sharpness measure [20]. Krajnik
and Mu proposed an algorithm that increases the accuracy
of the navigation through the feature information learning
process according to the environmental change [21], [22].
While this approach has the advantage of being able to use it
in a variety of environments, it is hard to explain the process
and result.

Besides, there is a new research flow. This is a vision-based
localization system that applies the Monte Carlo localiza-
tion (MCL) measurement model by converting UAV poses
into MCL problems [23], [24]. The MCL is a particle filter
which is one of the recursive Bayes filters. In particular,
to solve the vision-based UAV localization problem, such
as satellite images and downward aerial images should be
required as the database with geo-localization information.
This type of database covers most of the globe, which is
advantageous for use in any environment. For example, users
can utilize such as Google Maps with geographic informa-
tion on various systems. The MCL sensor model plays an
important role because it directly affects the efficiency and
robustness of the localization process. There are several algo-
rithms to evaluate the similarity of image templates. The Sum
of squared differences (SSD), Normalized cross-correlation
(NCC), Mutual information (MI), and abBRIEF [24] may be
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used for calculating the likelihood of MCL. These similarity
functions are being used to compare the performance of the
algorithm in many types of researches [25]-[27]. In particu-
lar, the MI algorithm can be said to be the latest algorithm
used for unsupervised learning [28]. An improperly designed
likelihood function can over-confidently place the vehicle
in its position, which leads to filter divergence. However,
there are not many studies in this MCL frame-work that have
addressed the inconsistency problem.

Therefore, we analyze the effects of shadows on each algo-
rithm and proposes an alternative algorithm. Our proposed
measurement model uses an activation function to reduce the
effects of shadows. It is the main contribution that the impor-
tance of the information is allocated through the portion of the
shadow area in the image. We have validated the proposed
algorithm comparing with various types of similarity func-
tions and shadow restoration algorithm. Besides, simulation
results show that the proposed algorithm works much more
effectively than the conventional algorithms and similarity
functions. We also analyzed the convergence rate and accu-
racy of the filter, which varies with the number of particles
and other user parameters. And real flight experimental data
is used for validating algorithm as well.

This article is organized as follows. Some research related
to the proposed algorithm with the Monte-Carlo localiza-
tion method and basic knowledge is described in section II.
In section III, we propose the algorithm with information allo-
cation with the portion of the shadow in the image. In section
IV, we describe the simulation and experiment results, and
the analysis of the results with discussion is described in
section V. The conclusion of this research article is organized
in section VL.

Il. MONTE-CARLO LOCALIZATION WITH
INTENSITY-BASED WEIGHTING

A. MONTE-CARLO LOCALIZATION

To estimate the position of the vehicle, we choose the prob-
abilistic approach, known as the recursive Bayes filter. The
likelihood of MCL can be calculated by the prediction and
correction process. Which is updated according to (1).

PXelze, ur) = o - p(zelxe) - pO g, Xe—1) - ple—1) (1)

where z is the measurement, the vehicle’s position is x in
environment 7.

And « is a normalization constant that leads to the summa-
tion of the density equals one. p(x;|u;, x;—1) represents the
probability of the pose given the movement by control input
u; and prior position x;—1. And p(z;|x;) is the probability of
making observation z; given the vehicle’s current location x;.
The appropriate computation of this quantity is the subject
of intensity-based MCL. An improperly designed likelihood
function can over-confident the vehicle to its position, thus
leading to filter divergence. The whole process of the MCL is
summarized in table 1. Therefore, setting the likelihood based
on the camera image is an important part of vision-based
MCL. This will be covered in section I1.C.
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TABLE 1. Simple Progress of Monte Carlo Localization (MCL).

Step 1. Initialization
t=0
fori=1,.,N
x? ~ p(x,) :particle generation
Step 2. Importance sampling
fori=1,...N
Propagation
xx‘(i> ~p(x | x)
x5, = (01X,
Calculation of importance weight
w” = p(z,1x")
Step 3. Normalize and resampling
t=t+1
Step 4. Repeat step. 2~3

FIGURE 1. Camera image (-) and reconstructed image (-) with particle (*).

B. CAMERA AND RECONSTRUCTED IMAGE
First, it is about camera image, measurement, from the motion
of the vehicle. The captured sequential photographs can be
used to calculate the position of the vehicle in the database.
In the model-based particle filter, particles can be prop-
agated to estimate the position of the vehicle. It is possi-
ble to estimate more accurately by judging the similarity
with reconstructed camera images cropped from the database
based on the particles being sprayed. It is called a recon-
structed camera image. The particles are scattered over the
database with the expected vehicle’s position according to a
given system model (vehicle’s movement), with uncertainty.
Sprayed particles represent the locations where the vehicle
is expected to be located, so we can create an estimate of
each particle. In other words, it means the process of extract-
ing the virtual camera image from the database. We define
this as a reconstructed camera image. Camera image (-) and
reconstructed camera images (—) are illustrated in fig. 1.

C. INTENSITY-BASED WEIGHTING

In the intensity-based approach, UAV is assumed as the
cruising status with constant altitude, and the attitude of the
camera is fixed except the yawing, vr. Because the UAV has
a down-looking camera that captures image / with a gimbal.
The camera image is I and the intensity-based descriptor
isd; = (ti1,- -, Tic)Y. Which is developed to reduce the
computational load using binary value. ¢ is the number of
image color channels and K is the k pairs of target sample
position, p; = (X1, X;2). T;j is derived by intensity compari-
son between &/ (x;,1) and & (x;,2). Target samples are used for
calculating the intensity-based descriptor as (2). Fig. 2 shows
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FIGURE 2. Aerial image and sample target pair to calculate
intensity-based descriptor.

the conceptual sample target pair in the aerial image.

1 i Siix: i (x:
T = 5 lf Sj(xt,l) > SI(XI,Z) (2)
0, Otherwise

The next step is calculating the expected descriptor, d, from
the reconstructed camera image, 1,. The particles represent
the expected positon of the vehicle in the image database, m.
When the particle is in the real vehicle’s location, the virtual
image and the real camera image are almost identical. In the
same way, the virtual target sample position can be a p; =
(X1, Xi2), and the each position X; pis estimated by (3)

Rip = [SR((;”) ﬂ ‘xip withb=1,2, .. (3
where i is the vehicle’s yaw angle, s is a scale factor that
relates the altitude and the field of view. b represents the
number of pairs. Ultimately we can calculate the intensity-
based descriptor, di= G, ;)T , from the virtual image,
1, as well. So that we are ready to weight the similarity
between two templates. The similarity between the camera
and the virtual image can be calculated as (4) using the
descriptor, d and d.

k ¢
Ed,d)y=n) ) @t “

i=1 j=1
where n = (Kc¢)—1, and c is the number of color channels and
@ is the XNOR operator. The similarity value, the weight-
ing of information is calculated by (4). The similar the two
images are, the closer the value is to 1, and the smaller the
similarity, the closer to 0. In the ideal case, the captured
camera image and virtual image are identical. So the simi-
larity value should be 1. It will be used for calculating the
likelihood of the camera image. Therefore, the intensity-
based measurement likelihood and its distribution are defined

as (5).

pzlx, m)=£§(d,d) ~ N(u, o) Q)

where p is the mean and o is the standard deviation. And
the summarized process of the intensity-based weighting is
described in table 2. In this weighting, the calculation budget
depends on ¢ and K.

Ill. SHADOW EFFECT MITIGATION

A. SHADOW EFFECT IN INTENSITY-BASED MCL
PROBLEM

The intensity-based MCL algorithm introduced in section II
executes image registration depending on the intensity of
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FIGURE 3. Aerial image and sample target pair to calculate
intensity-based descriptor with shadow.

TABLE 2. Process of the Intensity Based Weighting.

Step 1. Choose the pixel pair randomly on the camera image then,
pixel candidate is automatically selected on the reconstructed
boundary
s :Scale factor
%, :|:SR(()l//) {}'xm withb=1.2..... R : Rotation matrix € SO(2)
’ ’ v :Rotation angle
T : Translation
Step 2. Intensity comparison to randomly selected pixel pair

.= L if 6/ (x,)> 6" (x,,)
" 0, Otherwise ’
c:color channel, &'(x,,), 8’ (x,,) :Intensity of pixel
Step 3. Descripting the information obtained from the step. 2
d,=(t,,7,.), i:i—th pairon patch

Step 4. Similarity check
Performs XNOR operations to randomly selected pair

. k¢ _ 1
é(d,d)= 77227;:, @Ti.j’ n=-">:
=1 j=1 Ke
¢ :color channel ®: XNOR operator,
K : Thenumber of set of random pixel position
Step 5. Calculate likelihood

pz|x,m)=Ed,d)~ N(u, o)

each pixel. However, if the camera image contains shadows
as shown in Figure 3, there may be significant intensity
differences from the database. As a result, the observed and
the expected intensity-based descriptors may not be matched.
It may cause a decrease in image matching accuracy and
location reliability.

If the intensity difference is used to measure the similarity
between the two templates when the target sample is placed in
the shadow, the contaminated information is utilized. In the
end, even though the similarity between the two templates
is high, the similarity function has a low value due to the
shadow area. For example, in Fig. 3, x1’s intensity is higher
than x1,, however, in practice the value of X1, can be greater
than xj3. In such a case, MCL cannot operate normally. As a
result, it can be assumed that the use of unknown information
increases localization errors.

We applied a technique to reallocate the value of infor-
mation located in the shadows. To reduce the effect on
shadows, we introduce the image processing technique first.
Which include shadow detection and pixel restoration in
section III.B. Then, the information allocation method is pro-
vided in section III.C. It uses a scheme called the importance
of information about target sample points.
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FIGURE 5. Aerial image and sample target pair (Left: with shadow /
Right: with restored shadow).

FIGURE 6. Example of shadow detection, removal, and restoration for
aerial image.

B. SHADOW DETECTION AND RESTORATION

The computer vision research field has a variety of algo-
rithms for shadow detection and pixel restoration algorithms.
We applied [29] and [30] algorithms for detecting shadow
easily. And the histogram equalization is used as shadow
area restoration [31]. Histogram equalization performs the
function of changing the distribution of pixel values in an
image to appear evenly over the entire area.

After the series of shadow detection processes, the image
containing the shadows changes as shown in Fig. 4. On the
left of Fig. 5 represent an image containing shadow, and on
the right side of the figure, it represents the restored shadow
area using image processing algorithms. If the user utilizes
an image that contains the reconstructed pixels, it can be
expected to have a similar color to the original image. This
helps improve the consistency of the images to be compared.

Fig. 6 shows the actual aerial image with shadow, the image

where the shadow was detected, and finally the image where
the shadow area was restored. We can expect that after the
shadow detection and restoration process, it will generate
an accurate matching result in MCL. If the template is well
restored, the value of the similarity function is close to 1,
otherwise, it will have a value less than 1.
C. ACTIVATION FUNCTION CONSIDERING SHADOW AREA
In this section, we propose an activation function for assign-
ing the importance of particles used in MCL. First, there
can be three cases where the sample points in the image
containing the shadow are as shown in Fig. 7.
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FIGURE 7. Possible location of the target sample pair on the image with a
shadow.

From the left side of the figure, this indicates a sample point
and its pair are both in the shadow, two sample pairs not in
the shadow, and finally only one of the target sample points is
in the shadow. We only control the importance of the particle
in the third case. Because other cases could be assumed that
the intensity of the pixels has changed with a similar level.

To determine if the sample point is in the shadow,
we should first detect the shadow area. Then generate the
target sample point and count the number of samples existing
in the shadow area. If one of the target sample point pairs
exists on the shadow, the target sample point pair is deleted.
It helps to make a complete similarity check without the use
of contaminated information. Next, the similarity function,
which is the core of vision-based MCL, is calculated, and
the calculated value is multiplied by the activation function
to give the importance of the calculated value. The similarity
function is described in (6), and Ic means the number of
points located on the shadow of the number of all target
samples K. The ratio of the target sample point located in
shadow is reflected and used for similarity tests through the
normalization process. In other words, it is a strategy to
discard contaminated information and reduce its importance.

k—lIlc ¢
A . 1
En(d,d) = nm ; ; T, ®Tij, Nm = K —loe (6)
@ : XNOR operator, ¢ : color channel, Ic : loss count
k : The number of set of random pixel position

(user parameter)

The sigmoid function was chosen to readjust the impor-
tance of the information. The sigmoid function is bounded,
differentiable, and real function that is defined for all real
input values and has a non-negative derivative at each point
as (7). It is widely used for the machine learning process
in backpropagation. The activation function is a modified
sigmoid function to multiply the factor with a value between
0 and 1 to adjust the importance of information, which can be
expressed as (8). Here a is the slope of the activation function.
This serves to make the rate constant, which decreases with
the proportion of samples placed in the shadow regardless of
the number of samples.

1

1+e*
on(K,Ilc) =1

om(x) = @)
1
T 1§ e—ale—K/2)° ®)

Fig. 8 shows the proposed activation functions for a num-
ber of different target samples. The horizontal axis represents
lc. Which is the number of points located on the shadow
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Actvaton function siglkc)

The number of target sample

FIGURE 8. Proposed activation function based on the ratio of the target
sample located in shadow (k = 10, 30, 50, 70).

TABLE 3. Process of the proposed weighting algorithm considering
shadow.

1. Initialization
t=0
forK =1,..,.N
x*® ~ p(x,) :particle generation
t=1
2. Propagation
fori=1,...N
2~ p(x, [ x,)
X0 = (o x)
Generate reconstruction image
3. Shadow detection in camera image
Count sample target located on shadow
4.Calculation of Importance weight
fori=1,..,N

Calculate Activation function: o (k,lc)
. k=le ¢ _
Similarity check : &, (d,d) = nzz 7, @7,

=1 j=1
W =p(z,|x") = &,(d.d)-o(K,lc),
5.Normalize importance weights
Resampling
t=t+1
Repeat 2~5

of the target samples pair. And the vertical axis represents
the importance of information. It will have the scaling value
from zero to one. As we can find that the activation function
changes depending on the number of used target samples.
In other words, it represents the percentage of the total num-
ber of points located in the shadow among the target samples
used. Since the larger the ratio, the more information is con-
taminated and the amount of information is reduced, so the
importance of the amount of information is also reduced.
In the last, the activation function is multiplied by (6). The
importance of information can be re-allocated. Finally, the
terminal likelihood used for MCL is defined in (9).

p(zlx, m) 2 £,(d, d) - op(K , c), )

Table 3 shows the whole process of the proposed algo-
rithm applied to the information allocation logic. This is a
significantly effective way to increase the reliability of the
calculated result. Compared to table 2, the total computa-
tional volume is slightly increased, but we can effectively

213451



IEEE Access

S. H. Choi, C. G. Park: Image-Based MCL With Information Allocation Logic to Mitigate Shadow Effect

FIGURE 9. The visual concept of the proposed weighting algorithm
considering shadow.

System Model

. . Crop the Reconstructed (
Scattering Particles
the DB Camera Images
onthe around the Particle
Similarity Activation
Test Function
Select Target Samples
Camera Image to calculate
the Similarity Value \_
k2
( Calculati
Detecting alculating .
Shad. the Sample-ratio
adow Locatedin Shadow
(.

FIGURE 10. Block diagram of the proposed overall system.

Cumulative sum

0.2

Sample
FIGURE 11. The process of multinomial resampling.

control the importance of contaminated information. And
the summarized concept and block diagram of the proposed
algorithm are described in Fig. 9 and Fig. 10.

There are several types of resampling process. We used
a multinomial resampling approach as a standard method.
The principle is to pick a realization to generate independent
samples from the uniform. To sort samples, they are arranged
in ascending order and comparing them with the cumula-
tive sum of normalized weight. These process are illustrated
in Fig. 11.

IV. SIMULATION AND EXPERIMENT

A. SIMULATION CONDITION AND RESULT

Simulation conditions are as follows. The projective image
with geo-location information is provided Ministry of Land,
Infrastructure and Transport, South Korea. There are two
kinds of databases with or without shadows. It is assumed
that the database does not have a shadow, and the camera
image has a shadow. It has the 25 [cm/pix] resolution and
the covered area is about 1.2 x 1.4 [km]. And the shadow
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TABLE 4. Detailed Simulation Conditions.

Altimeter variance (m) 100 ~ 300
Trajectory length (m) 2,500
Map size (pixel) 4,675 x 5,642
Map size (m) 1,200 x 1,400
Resolution (m/pix) 0.25
Volume (m3) 3.36 x 108

FIGURE 12. Vehicle's trajectory and the database with and without
shadow.

does not exist in the database. The total simulation time
is 60 [sec]. The system model is assumed as a constant
velocity model. We set the constant altitude at 200 m and
the initial position uncertainty is assumed as 15m standard
deviation with Gaussian distribution. Also, the camera image
is cropped from the database with shadow and its size is
600 x 400 [pixel].

For the performance comparison of MCL, three algorithms
are used, conventional intensity-based algorithm, shadow
removal and restoration, and the proposed weighting con-
sidering shadow. The intensity-based algorithm’s descriptor
Eintensiry(d, 3) with user parameters are following, C = 1, N
= 700, K = 10 ~ 70. And all simulation results are from
100 trials.

The simulation results are shown in Fig. 12. First, the blue
contour shows the detected shadow area from the camera
image and it is mosaicked to the database for the reader’s
understanding. Besides, the solid line shows the actual tra-
jectory, the black points show the used particles for MCL,
and the red points represent the resampled particles after the
calculating importance sampling.

We illustrated Fig. 13~16 to easily compare the perfor-
mance of each algorithm. Each figure shows the result of the
operation by increasing K which is the number of the tar-
gets sample points. The arrows indicate the abnormal status.
(The shadow removal algorithm has a lower performance than
the existing algorithm)

Some particular sections can be founded with the down
arrow in Fig. 13~15. In other words, when K is above 70,
there is a clear tendency, but when it is below 70, anomalies
can be seen. We described this event in discussion section V.
The K = 70 represents the number of used target sample pairs.
So we used only 140 pixels of 600 x 400 [pixel], but we were
able to get more accurate results than the shadow restoration
algorithm. The main navigation results of various simulations
are summarized in table 5. In the case of shadow restoration
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RMSE comparison (k=10, N=700)
T

Time [sec]

FIGURE 13. Performance comparison with various algorithms (K = 10).

RMSE comparison k=30, N=700

FIGURE 14. Performance comparison with various algorithms (K = 30).

RMSE comparison k=50, N=700

e
e
&% %
r 3 x:f;x B IR *,é APy
\ 1R * w W g Yl **‘
3 e
T QQ,GP ‘xyxx% |
Ea;% R R .
% ® Fpo
A i b P R

70
Time [sec]

FIGURE 15. Performance comparison with various algorithms (K = 50).

RMSE comparison k=70, N=700
T

FIGURE 16. Performance comparison with various algorithms (K = 70).

applied algorithm is more accurate than the conventional
algorithm.

In addition, the performance of the proposed algorithm was
compared with various template-based similarity measure-
ment algorithms to verify the algorithm. The SSD, NCC, and
MI are still used as standards to compare the performance
of the algorithms. In the case of the proposed algorithm,
excellent navigation performance can be guaranteed as shown
in Fig. 17, 18, and table 6, including the initial convergence
rate. It can be interpreted that the increase in the initial
convergence speed is due to discarding uncertain information
caused by shadows and measuring the similarity.
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TABLE 5. Summarized Navigation Result.

RMSE [m] K=10 K=30 K=350 K=70
Conveqtlonal 705 832 8.51 8.26
algorithm
Shadow 837 7.01 7.13 7.06
restoration
Considering 6.35 3.91 2.84 2.33
shadow

Horizontal Position Error w/o Shadow [m]

—p—SSD PF
—&—NcC PF
MIPF
—Ae— abBRIEF PF
Consider Shadow PF

[m]

Frame

FIGURE 17. Performance comparison with various weighting algorithms
(Simulation data).

Computation Time

[sec/1-shot]

N
S

)

ssD NcC ™I abBRIEF Proposed

FIGURE 18. Summarized performance with various weighting algorithms.

TABLE 6. Summarized Navigation Result and Computation Time
(Simulation).

SSD | NCC | MI | abBRIEF | Proposed
RMSE [m] | 12.5 9.6 5.9 8.9 5.0

Computation | ¢ | 16 401 | 6,004 533 56.0
Time [sec]

NCC and MI require a lot of computation time that is
difficult to use in practice. On the other hand, it can be
confirmed that SSD, abBRIEF, and the proposed algorithm
are practically available. The proposed algorithm inherits the
advantages of the abBRIEF algorithm and can compensate
for the performance degradation caused by shadows.

B. EXPERIMENTAL CONDITION AND RESULT

To verify the effectiveness of the proposed algorithm, we used
the data obtained through flight experiments. The flight test
was conducted in Hanam, Gyeonggi-do, South Korea, and
the aircraft used was DJI-Mavic Pro, which is equipped
with a 3-axis gimbal, it can always be directed downward.
A distance of about 2km was cruising at an altitude of 100m
and embedded GPS solution is used as the reference tra-
jectory. The database was processed with Google satellite
map (2016y), and continuous 40 frames extracted from the
video were used as input images to prevent an increase in the
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TABLE 7. Summarized Embedded Camera Specification.

Sensor 1/2.3” (CMOS)
Lens FOV 78.8°
Video Recording 4K: 3840x2160
Sampling rate 4 Hz

FIGURE 19. DJI-Mavic pro used for experiment with gimbaled
down-looking camera.

FIGURE 21. Estimated shadow and true trajectory in database.

Horizontal Position Error

i pr
ER- N —A abBRIEF P

o 5 10 15 20 25 30 35 40
Frame

FIGURE 22. Performance comparison with various weighting algorithms
(Experiment data).

computational volume. The specifications of the drone and
the attached camera are summarized in Table. 7 and Fig. 19.

The detailed trajectory and the area assumed to be a shadow
is shown in Fig. 20, 21. The place where the flight test was
performed is indicated by a red arrow, the particles used
according to the detailed trajectory are indicated by a red dot,
and the shadow is indicated by a blue outline.

Simulation results using flight experiment data are shown
in Fig. 22 and Table 7. Although the simulation results do not
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TABLE 8. Summarized Navigation Result (Experiment).

SSD NCC MI abBRIEF
RMSE [m] 11.3 11.0 10.6 11.4 10.2

Proposed

FIGURE 24. Wrong place or over-restored case (10 ~ 20, 50 ~ 60 [sec]).

show dramatic results, the tendency of the result is the same
as the simulation.

The SSD and NCC algorithms have lower performance
and the MI result is good, but difficult to use considering
the amount of computation. As a result, we can see that
the proposed algorithm is the best in computational time
and performance. This can be expected that if the proposed
algorithm is applied, it will be suitable for use as an alternative
navigation algorithm even when GNSS is not available.

V. DISCUSSION

A. SHADOW RESTORATION ERROR

We will revisit the adverse effect of shadow removal and
reconstruction algorithm. Fig. 23 shows an example of a
camera image when the performance of the MCL is improved
through the shadow detection and restoration process. If the
shadow area is well restored as shown in the figure, the sim-
ilarity between the two images can be expressed as well as
the real environment. As a result, more accurate navigation
solutions can be estimated compared to conventional algo-
rithms. On the other hand, Fig. 24 shows examples show-
ing why the performance was degraded compared to the
conventional algorithm even though the shadow detection
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Horizontal Position Error (SSD)

FIGURE 25. Horizontal position error with and without shadow effect
(SSD).

Estimated Likelihood Estimated Likelinood

aaaaa L
1860

FIGURE 26. Likelihood and true position with(R) and without(L) shadow
effect (SSD).

and restoration process was performed. The excessive image
restoration causes a large difference from the database which
is called the adverse effect.

The conventional algorithm has a fast computational speed
using binary descriptor. However, an intensity-based match-
ing algorithm has poor consistency of the similarity value
when using shadowed target samples. On the other hand,
the shadow removal and restoration algorithm is possible
to reduce the difference between the database and camera
images. And a slight performance improvement compared
to the conventional algorithm. However, the limitations are
clear due to the restoration of the wrong place or excessive
restoration.

B. SHADOW EFFECT AND LIKELIHOOD WITH VARIOUS
ALGORITHMS

The navigation performance degradation and likelihood
caused by the shadow are expressed with a true position. The
likelihood of SSD is well expressed only in the ideal case.
However, it is shown that the likelihood is not well expressed
in the shadows. This could be found through Fig. 25 and 26.
The navigation accuracy also differs greatly, and it can be
seen that it is not good for expressing the similarity of the
templates.

NCC is characterized by being the least affected by shad-
ows. This can be seen by the fact that the two likelihoods are
very similar in Fig. 28. However, it is difficult to improve
accuracy because of the large variance that contains the infor-
mation. Navigation accuracy is also shown in Fig. 27. It has
too enormous error as well, so it is not suitable for use as a
cost of MCL.

In the case of MI, as it uses a relatively recent algorithm,
simulation result shows fast convergence and excellent nav-
igation accuracy. Also, it belongs to the group with less
performance degradation due to the shadow effect as shown
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Horizontal Position Error (NCC)

FIGURE 27. Horizontal position error with and without shadow effect
(NCC).

Estimated Likelihood Estimated Likelihood

0.006 .
3840

3800

1620
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FIGURE 28. Likelihood and true position with(R) and without(L) shadow
effect (NCC).

Horizontal Position Error (MI)

FIGURE 29. Horizontal position error with and without shadow effect
(mi).

Estimated Likelihood

Estimated Likelihood

3800 1620

1610
3780 1600 3780 1600

FIGURE 30. Likelihood and true position with(R) and without(L) shadow
effect (MI).

in Fig. 28. This can be said to be a robust algorithm for
the shadow effect. We can confirm that likelihood does not
change significantly, such as Fig. 30.

In the case of calculating the similarity of abBRIEEF, in the
ideal case without shadows, it doesn’t cause a significant
problem, but we can see that the performance degradation
caused by the shadows occurs significantly. Fig. 31 shows the
reduction in navigation accuracy, Fig. 32 denotes the change
in likelihood caused by the shadow.

In the case of the proposed algorithm, it is designed to
alleviate the effect of shadows while retaining the high speed.
Itis shown that a certain performance is guaranteed regardless
of the presence or absence of shadows. This can be deduced
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Horizontal Position Error (abBRIEF)

FIGURE 31. Horizontal position error with and without shadow effect
(abBRIEF).

Estimated Likelihood

Estimated Likelinood

1660

3500 1640
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1600
3750 1580 3760 1580

FIGURE 32. Likelihood and true position with(R) and without(L) shadow
effect (abBRIEF).

Horizontal Position Error (Proposed)

FIGURE 33. Horizontal position error with and without shadow effect
(Proposed).

Estimated Likelihood Estimated Likelinood

3800 o 10
~ 0

~— 1600
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FIGURE 34. Likelihood and true position with(R) and without(L) shadow
effect (Proposed).

through Fig. 33. Also, the likelihood is distorted, but the
change to the peak value is not large as shown in Fig. 34. This
can be interpreted that the proposed algorithm is suitable for
use in shaded environments.

The summarized results are shown in table 8 and 9. SSD is
fast and express likelihood well in ideal situations, but with
real shadows, the performance degradation is very signifi-
cant. In the case of NCC, the change of likelihood is small,
but the speed is slow and the navigation accuracy is poor as
well.

MI expresses likelihood well and has excellent perfor-
mance because it is robust to shadows, but it is difficult to use
in practice due to the disadvantage that it takes a lot of cal-
culation time. In particular, abBRIEF algorithm using image
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TABLE 9. Summarized Navigation Result and Computation Time with
Intensity- based Weighting Algorithms.

SSD NCC MI abBRIEF Proposed
Sim. w/o
Shadow 7.7 8.6 4.7 5.9 4.2
RMSE [m]
Sim. w/
Shadow 12.5 9.6 5.9 8.9 5.0
RMSE [m]
Exp.
RMSE [m] 11.3 11.0 10.6 11.4 10.2
Computational | ¢ | 15 401 | 6,004 53.3 56.0
time [sec]

TABLE 10. Performance Grade of Navigation Result and Computation
Time with Intensity-based Weighting Algorithms.

SSD NCC MI abBRIEF Proposed
Accuracy - - Good Bad Good
Robustness Bad Good - - Good
Speed - Bad - Good Good

RMSE comparison, Conventional k=30

FIGURE 35. Horizontal RMSE with various N = [100, 300, 500, 700]
(Conventional).

descriptor, it is possible to express excellent likelihood in
ideal case. However, the disadvantage is that the performance
is greatly degraded by the shadow. On the other hand, the pro-
posed algorithm properly expresses likelihood in any situa-
tion, so that excellent navigation performance can be always
guaranteed, and the computational amount is also very good.

C. CHARACTERISTICS OF THE PROPOSED ALGORITHM
Filter performance is depending on N, which is the number
of particles used in the MCL, and K, which is the number
of sample targets for the similarity test. Therefore, this article
completed various performance comparisons using various K
and N. Fig. 35~37 show the characteristic of the algorithm,
along with various N.

Fig. 35 shows the horizontal position root mean
squared error (RMSE) of the conventional algorithm with
Monte-Carlo simulation 100 trials for various N with shadow.
As shown in the figure, we can find a slight improvement of
the filter’s performance as the increasing N, which is the user
parameter of MCL. However, it can be confirmed that the
position error does not largely converge due to the shadow,
which indicates whether the shadow in the camera image is
vulnerable to estimating the position of the robot.

The result of applying the method of detecting and restor-
ing shadows is depicted in Fig. 36. It can be confirmed that the
convergence of the position error is slightly improved com-
pared with the conventional algorithm. However, we can see
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RMSE comparison, Shadow removal k=30

Time [sec]

FIGURE 36. Horizontal RMSE with various N = [100, 300, 500, 700]
(Shadow removal and restoration).

RMSE comparison, Shadow weighting k=30

30
Time [sec]

FIGURE 37. Horizontal RMSE with various N = [100, 300, 500, 700]
(Weighting considering shadow).

Time [sec]

FIGURE 38. Normalize the number of target samples located in the
shadow with increasing N.

the limitation that the filter’s performance does not increase
significantly as N increases.

Fig. 37 shows how the proposed algorithm enables effec-
tive position estimation. We can find the fastest convergence
rate of the filter, and we can confirm that it is possible to
operate and estimate the correct solution.

The normalized number of target samples located in
shadow is shown in Fig. 38. In other words, the number
of used sample targets was divided by the total number of
particles and the number of sample targets located in shadow.
This normalized number makes the performance compari-
son intuitively. We can find that there is not a significant
performance improvement according to N. That is, we can
conclude that N is already saturated. The user does not have
to significantly increase the number of N in MCL to mitigate
the shadow effect. With this, the proposed algorithm can
be expected to be very effective in terms of computational
complexity. Next, the filter performance obtained by fixing
N and increasing K to 700 is shown in Fig. 39~41.

Fig. 39 shows the horizontal position accuracy of the con-
ventional algorithm as RMSE. It can be seen that increasing
K has a similar trend as increasing N. However, by increasing
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RMSE comparison, Conventional N=700
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FIGURE 39. Horizontal RMSE with various K = [10, 30, 50, 70]
(Conventional).

RMSE comparison, Shadow removal N=700

FIGURE 40. Horizontal RMSE with various K = [10, 30, 50, 70] (Shadow
removal).

RMSE comparison, Shadow weighting N=700

FIGURE 41. Horizontal RMSE with various K = [10, 30, 50, 70] (Weighting
considering shadow).

K, it can be confirmed once again that the running accuracy
is not always improved.

The position accuracy obtained through MCL after detect-
ing and restoring the area is illustrated in Fig. 40. Unlike the
conventional algorithm, we can see that the filter tends to
converge well, unlike when increasing N. Especially, when
K =70, it can be confirmed that the convergence of the filter
is greatly improved. Here we can infer that the efficient K is
70. This is not an absolute value. The user should consider
the ratio of the total number of pixels in the image.

Finally, the localization result is shown in Fig. 41 when
the proposed information allocation logic is applied. Unlike
all other cases, we can find that the proposed algorithm
not only has a consistent trend but also can make a very
accurate navigation solution as K increases. The increase
in errors occurring in about 30 seconds can also be greatly
reduced.

Fig. 42 show the normalized the number of target sample
located in the shadow with increasing K. As a result, our team
found that the number of normalized target samples located
in the shadows increased as K increased. It can be expected
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FIGURE 42. Normalized the number of target sample located in the
shadow with increasing K.

that the number of target samples is more sensitive than the
number of particles.

VI. CONCLUSION

In the case of the shadow restoration algorithm, it has been
confirmed that the image is excessively restored, which
means that accuracy cannot always be guaranteed. And the
conventional similarity test algorithms have at least one of
three problems. It has too high a computational burden, too
low accuracy, or largely affected by the shadow effect.

We have proposed an algorithm that can mitigate the effects
of shadows. The algorithm is designed taking into account the
real environment with shadows. The proposed system inherits
the intensity-based MCL algorithm and is characterized by
distributing the amount of information to effectively filter
out contaminated information. The proposed algorithm is
designed to be able to set the importance according to the
proportion of the target sample located in the shadow. In addi-
tion, the activation function is used to effectively express the
importance of information.

Simulations have been performed for comparison with
various similarity functions and shadow restoration algo-
rithms, and it can be concluded that the accuracy and com-
putation time are suitable for practical use. In addition,
through simulation and flight test results, we have con-
firmed that significant performance improvements have been
achieved.
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