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ABSTRACT At present, discrete wavelet transform (Mallat algorithm) is used for signal decomposition and
reconstruction. Discrete wavelets are asymmetrical, not smooth functions and do not allow decomposition
of signals with a multiplicity of less than two, which limits the number of decomposition levels. Continuous
wavelet transform has a number of positive properties (symmetry, smoothness of the basis function)
which are necessary for signal analysis and synthesis. The article proposes algorithms for calculating
direct and inverse continuous wavelet transforms in the frequency domain, which allows decomposing,
reconstructing and filtering the image with high speed and accuracy. It is established that application of
fast Fourier transform reduces the conversion time by four orders of magnitude in compared to direct
numerical integration. The results of applying algorithms to the images obtained with an optical microscope
are presented. Orthogonal symmetric and anti-symmetric wavelets with rectangular amplitude frequency
response are also presented. It is shown that these firstly designed wavelets allow one to reconstruct the
signal even faster than the algorithms created using fast Fourier transform. Continuous wavelet transform
has been found to allow multiscale analysis of signals with a multiplicity of less than two. In addition, the
construction of orthogonal wavelets in the frequency domain with the maximum possible number of zero
moments allows one to analyze the finer (high-frequency) structure of the signal, as well as to suppress its
slowly changing components, which makes it possible to concentrate energy in a few significant coefficients,
which is a prerequisite for compression.

INDEX TERMS Algorithms, image filtering, signal analysis, wavelet transforms.

I. INTRODUCTION
Currently, in various scientific problems, the phenomenon
of Raman scattering (Raman) employed in the most modern
spectrometers is widely used for the study of the structure and
properties of various materials. As a rule, all Raman spec-
trometers are equipped with built-in video cameras for out-
putting the image obtained with an optical microscope on the
display device, which allows one to adjust the laser focus and
map the sample. These tasks do not require high-resolution
images, therefore, spectrometers, the high price of which
is mainly due to the spectrograph, are not equipped with
high-quality video cameras. Hence, images obtained with a
multiple-magnification optical microscope (from 50×) have
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a low level of contrast and detail, which may be impor-
tant, for example, when laser recording images on carbon
nanomaterial films [1], [2]. In this regard, further digital
processing of images obtained by an optical microscope is
of interest in order to increase their contrast and detail. One
of the methods to improve the quality of micrographs is the
wavelet analysis method. The basics of wavelet analysis were
developed as an alternative to the Fourier transform for the
study of time (spatial) series with pronounced heterogeneity.
Wavelet transforms (WTs) are usually divided into discrete
and continuous WTs. The development of wavelets has var-
ious directions, which emerged in the work of Haar in the
early 20th century. A significant contribution to the theory
of wavelets was made by Grossman and Morlaix, who for-
mulated the main ideas of continuous WT [3]. I. Daubechies
developed orthogonal wavelets with a compact support [4].
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Mallat proposed a multi-scale method [5]. In contrast to
the Fourier transforms, which localize the frequency, but do
not give a temporal resolution of the process, and from the
apparatus of delta functions, which localizes time instants,
but does not have a frequency resolution, a WT that has
a self-adjusting movable time-frequency window identifies
both low-frequency and high-frequency characteristics of the
signal at different time intervals. The indicated universality
of wavelet analysis leads to its widespread use in various
fields of knowledge [6], [7]. Discrete WT is widely used in
engineering and programming, and continuousWT - in scien-
tific research. Families of analyzing functions called wavelets
are used in the analysis of images of various nature to study
the structure of turbulent fields and compress large volumes
of information. WT is used to determine the characteristics
of fractal objects; they are used in astrophysics, geophysics,
optics, and quantum mechanics [8]–[11].

Abdulhussain et al. presented orthogonal polynomials with
high energy compaction [12]–[14]. The amplitude-frequency
characteristics of these polynomials similar to that of
wavelets based on Gauss functions, while the wavelets we
working with have rectangular amplitude-frequency charac-
teristics, which is benefit.

In our work we use the concepts of time and frequency
domain. If the signal is time-dependent, we are referring
to the time domain. If the signal depends on a coordinate
(image), we are also referring to the time domain, although
it would be possible to refer to a spatial domain. In the case
of a Fourier transform of a signal we move to the frequency
domain, regardless of whether the signal is time-dependent
or coordinate-dependent. For a time-dependent signal, in the
case of a Fourier transform, we refer to the frequency of
the signal. For a coordinate-dependent signal, we can refer
to the spatial frequency in the Fourier transform, but for
convenience we are just referring to the frequency. Thus,
the signal can be described either in the time domain or in
the frequency domain.

II. PRINCIPLE AND ALGORITHM OF DIRECT WAVELET
TRANSFORM OF SIGNALS IN THE FREQUENCY DOMAIN
To calculate the wavelet scalogram of the signal based on the
derivatives of the Gauss function, the continuousWT formula
is used:

W (a, b) =
1
√
a

∫
∞

−∞

S (t)ψ
(
t − b
a

)
dt, (1)

where W (a, b) – wavelet scalogram if the signal, a is
the scale value, b is the translational value, S(t) – signal,
ψ - wavelet.

A lot of time is required to calculate the WT by direct
numerical integration, therefore, the wavelet scalogram is
calculated in the frequency domain using the fast Fourier
transform (FFT). The number of multiplication operations for
direct numerical integration increases proportionally to N 2,
and when switching to the frequency domain, that is, when
using FFT, the number of multiplication operations increases

proportionally to N · log2 N . (N is the number of counts in
the signal) [15]. The calculation of the wavelet spectrum is
a convolution of the signal and the wavelet, therefore, when
transforming Fourier convolutions the Fourier spectra of the
signal and the wavelet are multiplied. In order to move from
the frequency domain to the time domain, it is necessary to
calculate the inverse Fourier transform of the obtained com-
plex conjugate spectrum. Thus, in order to calculate the WT
of the signal in the frequency domain, it is necessary to obtain
the Fourier spectra of the signal andwavelet for different scale
values a, find the complex conjugate spectrum and the inverse
Fourier transform of complex conjugate spectra to obtain the
wavelet scalogram of the signal.

The algorithm for the numerical calculation of the direct
continuous fast WT of a signal S(t) according to for-
mula (1) in the frequency domain includes the following
steps:

1. The coefficients of the trigonometric series a1 (n), b1 (n)
of the signal S(k) are calculated using the FFT (n is a trigono-
metric coefficient number):

a1 (n) =
1
N

∑N−1

k=0
S (k) cos

(
2πnk
N

)
, (2)

b1 (n) =
1
N

∑N−1

k=0
S (k) sin

(
2πnk
N

)
0 (3)

2. The coefficients of the trigonometric series a2 (n) , b2 (n)
of the wavelet ψ(k) are calculated using the FFT:

a2 (n) =
1
N

∑N−1

k=0
ψ (k) cos

(
2πnk
N

)
, (4)

b2 (n) =
1
N

∑N−1

k=0
ψ (k) sin

(
2πnk
N

)
. (5)

3. The complex conjugate spectrum is calculated:

c1 (n) = a1 (n) · a2 (n)+ b1 (n) · b2 (n) , (6)

c2 (n) = b1 (n) · a2 (n)− a1 (n) · b2 (n) , (7)

where c1 and c2 are Fourier coefficients after multiplying the
Fourier coefficients of the signal and wavelet.

Most continuous wavelets are either even or odd functions.
For even wavelets, the series is composed of cosines alone,
and for odd ones, it is composed of sine functions only. For
even wavelets, b2 (n) = 0 and

c1 (n) = a1 (n) · a2 (n) , (8)

c2 (n) = b1 (n) · a2 (n) . (9)

For odd wavelets, a2 (n) = 0 and

c1 (n) = b1 (n) · b2 (n) , (10)

c2 (n) = −a1 (n) · b2 (n) . (11)

The wavelet spectrum W (a, b) (the matrix of wavelet coef-
ficients M × N ) for the input analyzed signal with a length
of N samples is obtained by calculating M inverse Fourier
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FIGURE 1. (a) The structural diagrams of the direct fast wavelet
transform: 1 – analog-to-digital converter (ADC); 2 – FFT calculator;
3 – read-only memory; 4.1 - 4.M – multipliers; 5.1 - 5.M – inverse FFT
calculators; 6 – control device. (b) The structural diagram of the inverse
wavelet transform: 1.0 - 1.M – FFT calculators; 2.0 - 2.M – multipliers;
3 – read-only memory; 4.0 - 4.Ì – inverse FFT calculators; 5 – adder;
6 – control device.

transforms from the complex conjugate spectrum using the
formula:

W (a, b) =
∑N−1

k=0
(c1 (k)+ ic2 (k)) exp

(
i
2πnk
N

)
. (12)

Here M is the number of levels of decomposition (decom-
position) of a signal with a length of N samples. M levels
of wavelet coefficients with length N are formed, so the total
number of wavelet coefficients isM×N . A certain individual
coefficient at the M level, for example, at the point n (1
<= n <= N ), is obtained by the inverse Fourier transform of
the complex-conjugate spectrum. The scale factor is different
at each level.

The block diagram of the direct fast continuous WT is
shown in Fig. 1a. The analyzed signal S (t) is fed to the ADC
(block 1), from the output of which a discrete sample S (n)
with the length of N subsamples is fed to the input of the
FFT calculator (block 2).

From the output of block 2, the coefficients of the
series a1 (n), b1 (n) of the signal simultaneously arrive
at the first inputs of M multipliers (blocks 4.1 - 4.M).
From the ROM (block 3), the coefficients of the series
a2 (n) (for even ones), b2 (n) (for odd) wavelets arrive at
the second inputs of the M multipliers (blocks 4.1 - 4.M),
from the outputs of which the multiplication results go to the
inputs of the inverse FFT calculators
(blocks 5.1 - 5.M). The results of the WT of the signal
are taken from the outputs of M inverse FFT calcula-
tors (blocks 5.1 - 5.M) in the form of an array of val-
ues of wavelet coefficients of size M scales by N shifts
W (m, n). The control device (block 6) synchronizes the
operation of ADCblocks (block 1), FFT calculators (block 2),

multipliers (blocks 4.1 - 4.M), and inverse FFT calculators
(blocks 5.1 - 5.M). This device allows you to select various
types of wavelet functions with an arbitrary step of discretiza-
tion of scale factors stored in ROM (block 3) for analysis of
the input signal [16]–[18].

III. PRINCIPLE AND ALGORITHM OF THE INVERSE
WAVELET TRANSFORM OF SIGNALS IN THE FREQUENCY
DOMAIN
Signal reconstruction is performed using the inverse continu-
ous WT formula:

S (t) = C−1ψ

∫
∞

0

∫
∞

−∞

ψ

(
t − b
a

)
W (a, b)

da · db
a3+k

, (13)

where Cψ is the normalizing coefficient:

Cψ =
∫
∞

−∞

∣∣Fψ (ω)∣∣2 · ω−1dω <∞,
Fψ (ω) is the Fourier spectrum of the basis function, ω is the
cyclic frequency, k is the exponent of the scale factor.

Calculation of WT by direct numerical integration (i.e.
direct and inverse WT in the time domain) for long time
sequences using formula (13) takes a significant amount of
time to complete. Hence, to increase performance, the authors
developed an algorithm for continuous fast WT in the fre-
quency domain using the FFT. The normalizing coefficient in
the formula (13) of the continuous inverse wavelet transform
C = Cψ in the developed algorithm is calculated from the
analog of the Parseval theorem for wavelet coefficients [19]:∫

S (t) S∗ (t) dt = C−1
∫∫

W (a, b)W ∗ (a, b)
dadb
a2

(14)

After determining the normalizing coefficient C from (14),
it is substituted into the formula

S (t) = C−1
∫
∞

0

∫
∞

−∞

ψ

(
t − b
a

)
W (a, b)

dadb
a2

. (15)

The theoretical basis for calculating the inverse continuous
fast wavelet transform of the signal S (t) in the frequency
domain is the use of formulas (14) and (15). The inverse
transformation of the product of the spectra of the wavelet
spectrum W (a, b) and the wavelet ψ (t) is used to calculate
the integral over the variable b. The reconstructed signal S (t)
is calculated by summation of the obtained integral over the
scale value a.
The algorithm for calculation of the inverse continu-

ous wavelet transform using formula (13) in the frequency
domain includes the following steps.

1. The coefficients of the trigonometric series d1 (n) of the
wavelet scalogram W (a, b) are calculated using the direct
FFT according to the formula:

d1 (n) =
1
n

∑N−1

k=0
W (a, k) cos

(
2πnk
N

)
. (16)

2. The coefficients of the trigonometric series e1 (n) of the
wavelet scalogram W (a, b) are calculated using the direct
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FFT according to the formula:

e1 (n) =
1
n

∑N−1

k=0
W (a, k) sin

(
2πnk
N

)
. (17)

3. The coefficients of the trigonometric series d2 (n) of the
wavelet ψ (t) are calculated using the direct FFT according
to the formula:

d2 (n) =
1
n

∑N−1

k=0
ψ (k) cos

(
2πnk
N

)
. (18)

4. The coefficients of the trigonometric series e2 (n) of the
wavelet ψ (t) are calculated using the direct FFT according
to the formula:

e2 (n) =
1
n

∑N−1

k=0
ψ (k) sin

(
2πnk
N

)
. (19)

5. The complex conjugate spectrum is calculated using the
formulas

f1 (n) = d1 (n) · d2 (n)+ e1 (n) · e2 (n) , (20)

f2 (n) = e1 (n) · d2 (n)− d1 (n) · e2 (n) . (21)

For an evenwavelet, the series is made up of single cosines,
and for an odd one - of single sinuses.

For an even wavelet e2(n) = 0 and

f1 (n) = d1 (n) · d2 (n) , (22)

f2 (n) = e1 (n) · d2 (n) . (23)

For and odd wavelet d2(n) = 0 and

f1 (n) = e1 (n) · e2 (n) , (24)

f2 (n) = −d1 (n) · e2 (n) . (25)

6. For an even wavelet the function s′m is calculated using
M + 1 inverse Fourier transforms of the complex conjugate
spectrum (22), (23):

s′m (n) =
∑N−1

k=0
(f1 (k)+ if2 (k)) exp

(
i
2πnk
N

)
. (26)

7. For an odd wavelet the function s′m is calculated using
M + 1 inverse Fourier transforms of the complex conjugate
spectrum (24), (25):

s′m (n) =
∑N−1

k=0
(f1 (k)+ if2 (k)) exp

(
i
2πnk
N

)
, (27)

the notation’ does not mean differentiation.
8. The normalizing coefficient C is calculated using the

formula (14).
9. The signal is reconstructed according to the formula:

S (n) = C
∑m

m=0
s′m (n), (28)

where m is the level of decomposition.
The block diagram of the inverse continuous WT device is

shown in Fig.1b.
The wavelet spectrum W (m, n) is sent to the inputs of the

FFT calculators (blocks 1.0 - 1.M), from the output of which
the series d1 (n), e1 (n) coefficients simultaneously arrive at
the first inputs of the M + 1 multipliers (blocks 2.0 - 2.M).

From the ROM (block 3), the coefficients of the series d2 (n)
(for even), e2 (n) (for odd) wavelets arrive at the second inputs
of M + 1 multipliers (blocks 2.0 - 2.M), from the outputs of
which the multiplication results go to the inputs of the inverse
FFT calculators (blocks 4.0 - 4.M). From the M outputs of
the inverse FFT calculators (blocks 4.0 - 4.M), they are fed
to the inputs of the adder (block 5), where the results of the
inverse WT are added together, from the output of which the
result of the inverse WT signal S (n) is taken. The control
device (block 6) synchronizes the operation of blocks of FFT
calculators (blocks 1.0 - 1.M), multipliers (blocks 2.0 - 2.M),
inverse FFT calculators (blocks 4.0 - 0.M) and the adder
(block 5) [16], [17], [20].

IV. MULTI-SCALE ANALYSIS OF ONE-DIMENSIONAL AND
TWO-DIMENSIONAL SIGNALS
The concept of multiresolution analysis (MRA) is fundamen-
tal in the theory of wavelets. QMA allows one to decompose
an arbitrary signal s (t) into many different-scale functions,
the combination of which gives the original signal s (t),
or approximates the signal with a certain accuracy depending
on the number of values of the scaling coefficient m. If the
value of m is small, the approximation is rough and lacking
the level of details. With an increase in values of m, the accu-
racy of approximation increases.

Compact support wavelets are currently used for MRA.
These include orthogonal wavelets of Dobeshi (dbN), Simlet
(symN), Koiflet (coifN), and biorthogonal B-spline wavelets
(biorNr), (rbioNr). The main disadvantage of these wavelets
is that they are asymmetric and non-smooth functions that
do not have an analytical representation. A fast wavelet
transform algorithm (Mallat algorithm) is used for MRA,
as follows.

First, the signal is passed through a low-frequency filter
with a pulse response g, i.e. convolution is calculated. Also,
the signal is decomposed using a high-frequency filter h.
The result is detail coefficients (after the high-frequency fil-
ter) and approximation coefficients (after the low-frequency
filter). These two filters are interconnected and are called
quadrature mirror filters. Since half of the frequency range
of the signal was filtered out, according to Kotelnikov’s
theorem, the signal readings can be thinned by a factor
of two. This will halve the time resolution due to signal
thinning. However, each of the resulting signals represents
half the frequency band of the original signal, so that the
frequency resolution is doubled. This process can be repeated
several times to further increase the frequency resolution with
further thinning of the coefficients after low-frequency and
high-frequency filtering.

This decomposition can be represented in the form of a
binary tree, where the leaves and nodes correspond to spaces
with different time-frequency localization. This tree repre-
sents the structure of the bank (comb) of filters. At each level,
the signal is decomposed into low and high frequencies. After
double decimation, the signal length should be a multiple of
2n, where n is the number of decomposition levels. Signal
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recovery occurs in the reverse order, i.e., zero elements are
added to the detail and approximation coefficients, passed
through mirror filters, and added.

For many applications, discrete two-dimensional WT is
used in a construction where the wavelet bases are obtained
by the tensor product of two one-dimensional multiresolution
analyzes by columns and by rows. There are a standard and
a non-standard construction of a two-dimensional basis. The
standard construction of a two-dimensional basis of wavelets
consists of taking all kinds of tensor products of functions
of a one-dimensional basis. For standard image decompo-
sition, one-dimensional conversion of all rows, and then all
columns, is necessary. With the non-standard construction
of a two-dimensional basis, one scaling function and three
wavelets are formed, called horizontal, vertical, and diagonal.
In this design, low- and high-pass filtering is repeated across
rows and columns by applying all four possible combinations.
Discrete WT for a non-standard two-dimensional basis is
defined by the scheme

z→ {HrHcz,HrGcz,GrHcz,GrGcz} , (29)

where H is the low-frequency filtering, G - high-frequency
filtering.

The index r means that the filter is applied to the rows, and
the index cmeans that it is applied to the columns. If the signal
(image) is given by an array of N × N elements, then each
array of approximation and detail (for horizontal, vertical,
and diagonal wavelet) coefficients of the first level consists
of N/2 × N/2 elements. For the second level - N/4 × N/4
elements, for the third level -N/8×N/8 elements, etc. Signal
decomposition into wavelet series at a given resolution level
m is performed using these coefficients [21]–[24].

V. MULTIRESOLUTION IMAGE ANALYSIS USING
WAVELETS BASED ON DERIVATIVES OF THE GAUSS
FUNCTION IN THE FREQUENCY DOMAIN
At present, the MRA of signals is performed using discrete
orthogonal wavelets. It is noted in the scientific literature
that analysis is not orthogonal for continuous WT, wavelets
do not have a compact support, there is no scaling function,
and reconstruction is not guaranteed. In this regard, the com-
pression and filtering of signals are performed using discrete
wavelets.

Continuous WT is used to analyze and study signals, since
the transitions between scale coefficients can be arbitrarily
small [3]–[5], [8]–[11], [15], [21]–[33]. All discrete wavelets
are constructed in the time domain. To obtain such wavelets,
a system of equations is solved so that the wavelets have zero
moments of the nth order. Since wavelets are constructed in
the time domain, their frequency characteristics are far from
ideal filters. For example, these wavelets are asymmetric
and non-smooth functions; therefore, their phase-frequency
characteristics are not linear. The nonlinearity of the phase
characteristic leads to signal distortion; therefore, biorthog-
onal wavelets are used to compensate for distortions. That
is, decomposition is performed with one wavelet, and

reconstruction with another wavelet. In the JPEG-2000 photo
compression scheme, the 9/7 biorthogonal transformation is
applied.

The authors developed the MRA algorithm using wavelets
based on derivatives of the Gauss function. The main advan-
tage of these wavelets is that they are smooth and symmetric
functions having derivatives of N -order. Such functions are
necessary for WT.

The forward and reverse fast continuous WT algorithms
developed in this work allow any signal to be represented as

S (t) =
∑m

m=0
sm (t), (30)

where sm (t) = Cs′m (t).
The constant C can be defined more simply using the

corollary of formula (14) (Parseval’s theorem). In the space
of real functions, the signal energy density characterizing
the signal energy density as a function of scale factor a at
a moment of time b is as follows:

EW (a, b) = W 2
l (a, b) . (31)

The local energy density at point b = t0

Eδ (a, t0) = W 2
l (a, t0) . (32)

Then

S (t0) = C
∑m

m=0
s′m (t0). (33)

The constant C calculated using the formula (14) coincides
with the constant found by the formula (33). So that when
calculating by formula (33) there is no division by zero or
multiplication by a negative number, it is better to calculate
the constant C for the function at maximum.
When performing MRA with a discrete WT, the signal

space L2 (R) is represented as a system of nested subspaces
Wm. By analogy with a discrete WT, the developed reverse
WT algorithm allows the entire signal space L2 (R) to be
represented as a sequence of closed nested subspaces in one
another:

. . . ⊂ Wm ⊂ Wm−1 ⊂ . . .W0.

The ‘‘sizes’’ of subspaces continuously expand as the value
of m decreases, and the union of all subspaces, at the limit,
gives the space L2 (R).

We form functions s′′m (t) from sm (t) such that (the
symbol′′ does not mean double differentiation):

s′′m (t) = sm (t) , s′′m−1 (t) = s′′m (t)+ sm−1 (t) ,

and so on.
If the signal s′′m−1 (t) belongs to the space Wm−1, then at

the same time it is in the space Wm, along with it the signal
s′′m (t). A decrease in the number of the space allows us to
study smaller and smaller details and features of the signal
with higher-frequency components, i.e. move from a rough
approximation to a higher resolution approximation. Then
the signal with the largest time resolution S (t) = s′′0 (t).
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The variable m is called the same as a, the scale coefficient,
or level of analysis.

If the value of m is large, then the function is a rough
approximation of S (t), lacking in the level of detail. With a
decrease ofm, the accuracy of approximation increases. In the
literature on discrete WT, an m-step discrete WT is called
MRA. The maximum value of m is called the decomposition
depth of the signal. Compared with MRA signals using dis-
crete wavelets, MRA in the frequency domain allows one to
decompose the signal into a larger number of levels, since the
multiplicity of the analysis can be less than two [31], [32].
Since with a discrete WT, the scale factor is two, the decom-
position depth m is limited by the signal duration, as the base
two logarithm of the sample size. For MRA in the frequency
domain, the scale factor can range from one to two and have
a fractional value. The smaller this coefficient, the greater the
depth of decomposition [16]–[18], [20].

In this case, the WT is carried out for the entire image,
a sawtooth-like scan along rows and columns. Unlike the
Mallat algorithm, this algorithm allows one to get much
more levels of decomposition, thereby allowing to examine
the image in more detail, and the quality factor of wavelets
increases. Also, when using this algorithm, the mosaic does
not appear when approximating the image with high-level
coefficients. The peculiarity of using this algorithm is that
it is possible to construct wavelets in the frequency domain
without the use of multiplications.

Thus, the conversion takes several times less time than the
conversion with the use of wavelets based on derivatives of
the Gauss function. The WT time decreases by a factor of
several tens of thousands compared with direct numerical
integration for a large sample length of the signal. In fact,
for the algorithm we have developed, there are no approx-
imation and detail coefficients, but there are decomposition
levels corresponding to the decomposition levels in theMallat
algorithm and we can compare the results of the decomposi-
tions. Although the conversion time in the Mallat algorithm
is almost the same as the algorithm in the frequency domain,
the quality is much worse. Reconstruction of an image with
detailed coefficients when using the algorithm in the fre-
quency domain gives a sharper image than in the MATLAB
numerical and symbolic computing environment.

VI. USE OF WAVELET ANALYSIS TO IMPROVE THE
QUALITY OF IMAGES OBTAINED USING OPTICAL
MICROSCOPES
Figure 2 shows a diagram of an experiment on laser recording
of images and outputting the images to a video camera,
performed using a Raman spectrometer Horiba HR800. Laser
image recording was carried out on a single-walled carbon
nanotube (SWCNT) film (10) on a substrate of polyethylene
terephthalate (11) (see Fig.2, b). SWCNT film (10) was
irradiated by laser radiation (1) at a wavelength of 633 nm
passing through a mirror (2) and focused by a 50× objective
(3) (see Fig. 2, a). The optical axis of the objective (3) is
perpendicular to the surface of the film (10) located in the

FIGURE 2. The experimental design for laser recording of images and the
output of this images on the screen from (a) above and (b) in profile.
1 – laser beam; 2 - a mirror; 3 - a 50 × objective; 4 - optical fiber for
illuminating the sample with white light; 5 - the optical path of the light
flux from the fiber optic irradiator; 6, 8 - lenses; 7 - two kinematic beam
splitters; 9 - video camera; 10 - single-walled carbon nanotube film;
11 - the film substrate; 12 - coordinate table.

horizontal plane (see Fig. 2, b). To observe the sample using
a video camera (9), two 50/50 beam splitters (7) are installed.
The first receives the light flux from the fiber optic irradiator
(4) passing through the lens (6) and directs it to the sample.
The second directs the image of the sample to the video cam-
era (9) through the lens (8). It should be noted that the quality
of video camera (9), built into the Horiba HR800 Raman
spectrometer, does not allow to get the image of high contrast
and detail level using objectives 50 × or higher. During the
experiments, it was shown that a short-term laser exposure to
the film is accompanied by the appearance of a brightened
point on the irradiated surface. With continuous exposure to
laser radiation and moving the film (10) in the horizontal
plane using the coordinate table (12) relative to the laser beam
focused by the objective (3), it was possible to obtain a solid
line of bleaching.

Fig. 3,a shows a 512 × 512 pixels black-and-white image
of two lines on an SWCNT film obtained this way. As noted
above, the video camera that displays the image on the screen
of the monitor has a low level of contrast and detail, there-
fore, the lines obtained during laser recording are not clearly
visible in the presented image. To obtain a better image,
the wavelet analysis method was used. The filtration process
was performed by suppressing low-frequency components
of the Fourier spectrum. That is, decomposition levels were
removed, which is equivalent to zeroing of low-frequency
components of the Fourier spectrum. Figure 3,b shows the
reconstructed image using coefficients of 1-9 levels. It is
seen that after the wavelet analysis of the image, the lines,
obtained by laser recording are clearly visible, and even
the small inclusions present on the SWCNT film became
noticeable. Thus, the reconstruction of images obtained by an
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FIGURE 3. Image obtained by (a) an optical microscope and (b) its
reconstruction using coefficients of 1–9 levels.

optical microscopewith various coefficients and a subsequent
increase in contrast can improve the quality of the obtained
image [18].

VII. CONSTRUCTION OF ORTHOGONAL SYMMETRIC AND
ANTISYMMETRIC WAVELETS IN THE FREQUENCY
DOMAIN
As with the Fourier transform, the signal can be expanded
in cosines and sines, so the signal can be expanded in terms
of the wavelet basis. For this to take place, wavelets must
be orthogonal. The family of wavelet functions ψab (t) is
generated from a single ‘‘mother’’ function ϕ (t) by means
of expansion (compression) and shift

ψ (t) =
1
√
a
ϕ

(
t − b
a

)
, (34)

where a is the scale value, b is the translational value. For
given values of the parameters a and b, the function ψab (t) is
the wavelet. The main features of wavelets are boundedness,
localization, self-similarity, and zero mean. A zero mean
means that the graph of the function must oscillate (have an
alternating sign) around zero on the time axis and have zero
area ∫

∞

−∞

ψ (t) dt = 0. (35)

The area of the function ψ (t) is equal to zero, i.e. zero
moment, which leads to the fact that the Fourier transform

FIGURE 4. (a) Symmetric orthogonal wavelet and (b) antisymmetric
wavelet.

S (ω) of this function is equal to zero at ω = 0 and has the
form of a band-pass filter. For various values of the scale
factor a, it is a set of bandpass filters. It is often necessary
for applications that all the first nmoments are equal to zero:∫

∞

−∞

tnψ (t) dt = 0. (36)

Wavelets of nth-order allow one to analyze a finer (high-
frequency) signal structure, suppressing its slowly chang-
ing components [4]–[8]. According to the literature, it is
desirable to have orthogonal symmetric and antisymmetric
wavelets to study signals; however, ideal wavelets like that
do not exist. In this regard, the construction of wavelets in
the frequency domain with the maximum possible number
of zero moments is relevant. Since orthogonal wavelets are
constructed in the frequency domain, the resulting wavelets
have almost ideal amplitude-frequency characteristics and
linear phase-frequency characteristics. Almost ideal in the
sense that they differ from theoretical characteristics only in
the calculation error.

Fig. 4 illustrates a symmetric and antisymmetric orthogo-
nal wavelets in the time domain constructed in the frequency
domain. It shows that the wavelets have many maximal and
minimal values. There are even more of them, since only
fifth of the wavelets is shown in the figures. To obtain such
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FIGURE 5. (a) Frequency-amplitude property of an orthogonal wavelet;
(b) Frequency-amplitude property of a wavelet constructed in the time
domain.

FIGURE 6. Frequency response of a wavelet constructed in the time
domain and in the frequency domain.

wavelets in the time domain using Mallat algorithm, it would
be necessary to solve equations with the same amount of
maximal and minimal values for each level of decomposition.

Fig. 5,a shows the amplitude-frequency property of an
antisymmetric orthogonal wavelet ν (ν is frequency). There
is no unevenness in the pass band or in the stop band and there
is no transition band. Fig. 5,b shows the amplitude-frequency
response of a wavelet constructed in the time domain. The

wavelet equation has the form:

ψ (t, a, b) =
sin
( t−b

a

)( t−b
a

) cos (ωt) . (37)

Fig. 5,b shows that in the passband the amplitude-frequency
characteristic is uneven. This effect is called the Gibbs phe-
nomenon. It was first studied in connection with the trunca-
tion of the Fourier series used to decompose the harmonics of
periodic signals.

Fig. 6 shows the frequency response of the wavelet con-
structed in the time domain (Fig. 5,b) and the frequency
response of the orthogonal wavelet constructed in the fre-
quency domain (Fig. 5,a) on the same graph in decibels.
Up to a frequency of 260 units, the frequency response of a
wavelet constructed in the time domain is presented, and from
260 to 512, a wavelet constructed in the frequency domain
is presented. Fig. 6 clearly shows how much the frequency
characteristics of these wavelets differ when comparing them
on the same scale. The amplitude-frequency characteristic
of the wavelet constructed in the frequency domain can be
considered ideal, since the signal is attenuated by a factor of
a billion trillions in stop band.

VIII. CONCLUSION
Wavelets based on derivatives of the Gauss function allow
us to reconstruct a signal, perform a multiresolution analy-
sis, filtering one-dimensional and two-dimensional signals.
Pearson’s correlation coefficient is higher than 0.999. The
profiling of the program shows that the wavelet transform
time using the FFT is 15,000 times lesser than with direct
numerical integration for 32768 samples of the signal. Studies
show that MRA using continuous wavelets is better than
MRA using discrete wavelets, since discrete wavelets are
not symmetrical functions, therefore, they have a non-linear
phase-frequency characteristic.

Orthogonal wavelets constructed in the frequency domain
can reduce the time of decomposition and reconstruction
of one-dimensional and two-dimensional signals, since it is
not necessary to calculate the Fourier spectra of wavelets.
They are formed in the frequency domain. They also allow
one-dimensional and two-dimensional signals to be recon-
structed with greater accuracy. Unlike the Mallat [5] algo-
rithm, which is used for discrete WT, this algorithm allows
one to obtain much more decomposition levels, that is, with a
multiplicity of less than two, thereby allowing amore detailed
investigation, filtering of the signal, i.e., the quality factor of
wavelets increases. The construction of wavelets with a large
number of zero moments allows more efficient concentration
of information in the signal in fewer significant coefficients.
This concentration mechanism is the main prerequisite for
signal compression. The amplitude-frequency characteristics
of the orthogonal symmetric and antisymmetric wavelets
are ideal, in order to obtain such characteristics in the time
domain it is necessary to solve a system of an infinite number
of equations. And this will lead to the fact that the calculation
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time of such equations will increase significantly and will
lead to an increase in the calculation error.

Wavelets obtained in the frequency domain, not only have
an ideal amplitude-frequency response, but also reduce the
time of the WT, because there is no need to calculate some
steps in the algorithm. In direct continuous WT calculation
time is reduced by more than 2 times compared to the use of
wavelets based onGauss function derivatives in the frequency
domain. In the reverse continuous calculation of WT the
calculation time is reduced by 3 orders of magnitude for a
large sample of signal in comparison with the use of wavelets
based on Gauss function derivatives in the frequency domain.
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