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ABSTRACT In this paper, we propose Instance Segmentation Detector (ISD) to extract the enhanced
feature-maps under the situations where training dataset is limited in the specific industry domain such
as semiconductor photo lithography inspection. ISD is used as a new backbone network of state-of-the-art
Mask R-CNN framework for instance segmentation. ISD consists of four dense blocks and four transition
layers. Each dense block in ISD has the shortcut connection and the concatenation of the feature-maps
produced in layer with dynamic growth rate. ISD is trained from scratch without using recently approached
transfer learning method. Additionally, ISD is trained with image dataset pre-processed by means of the
specific designed image filter to extract the better enhanced feature map of Convolutional Neural Network
(CNN). In ISD, one of the key principles is the compactness, plays a critical role for addressing real
time problem and for application on resource bounded devices. To validate the model, this paper uses the
real image collected from the computer vision system embedded in the currently operating semiconductor
manufacturing equipment. ISD achieves consistently better results than state-of-the-art methods at the
standard mean average precision. Specifically, our ISD outperforms baseline method DenseNet, while
requiring only 1/4 parameters. We also observe that ISD can achieve comparable better results than ResNet,
with only much smaller 1/268 parameters, using no extra data or pre-trained models.

INDEX TERMS Semiconductor process inspection, backbone network, instance segmentation, deep learn-
ing, convolutional neural networks, computer vision.

I. INTRODUCTION
The semiconductor photo lithography is a process of drawing
semiconductor circuits on wafers, coating them thinly with
photosensitive polymer materials that respond to light on
wafers, then placing a mask on top of the desired pattern and
pecking the light to form the desired pattern. In this process,
the spin coating is used to spread the required thickness of
the photoresist uniformly on the wafer. Therefore, the spin
coating is an important process. If inspection faults occur
in this process, a defective product is produced no matter
how well the subsequent process is performed. It is greatly
affecting the defect rate in wafer-based process. As illustrated
in Fig. 1, the computer vision system is used to prevent
defects in semiconductor products by monitoring these pro-
cesses and predicting defects in the photo process in advance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhigang Liu .

FIGURE 1. The computer vision system embedded in the currently
operating semiconductor manufacturing equipment for photo lithography
inspection.

Generally, the computer vision system uses the digital image
processing [1]–[10] to try and perform emulation of vision
at human scale. The computer vision system used in the
process of spin coating also finds defects through digital
image processing algorithm.
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FIGURE 2. An example of image distorted by external environment
factors: (a) Normal image; (b) Distorted image.

FIGURE 3. Three inspection type for detecting defects in the spin coating
process of semiconductor photo lithography: (a) Suck-back state;
(b) Contamination state; (c) Dispense state.

However, many detection errors occur due to external
environmental factors such as various types of wafers and
photoresist, motor rotation speed, and diffuse reflection of
light. Fig. 2 illustrates an example of image distorted by exter-
nal environment factors. Digital image processing algorithm
has high performance in case of images with little influ-
ence on the external environment. However, performance
is extremely degraded when image distortion occurs due to
the external environment. Therefore, in the computer vision
system, if the characteristics of the image is changed or
distorted, there is a disadvantage in that a new or modi-
fied technique of digital image processing algorithm and the
specialized signal processing method should be applied to
overcome it. To overcome the influence of various image
distortion, we adopt deep learning that is robust even in the
external environment.

As illustrated in Fig. 3, there are three inspection type for
detecting defects in the spin coating process of semiconductor
photo lithography: first is the suck-back state of the nozzle
that sprays the photoresist, second is the contamination state
of the nozzle, and third is the time to spray the photoresist.
In this paper, we propose a method for detecting defects by
monitoring the first inspection type, the suck-back state of
nozzle. Therefore, in order to this, it is necessary to find a
specific area in an image and extract features within the area
to determine whether the defect is defective. Deep learning
techniques [11] that can detect specific areas in an image
have object detection, semantic segmentation, and instance
segmentation. Among them, the instance segmentation tech-
nique can be applied to inspect not only the suck-back state
of nozzle but also the contamination of the nozzle.

Image segmentation is a computer vision process designed
to simplify image analysis by splitting input into segments
that represent objects or parts of objects and form a collection

of pixels. Instance segmentation is a subtype of image seg-
mentation which identifies each instance of each object
within the image at the pixel level. Instance segmentation
can also be thought as object detection where the output is
a mask instead of just a bounding box. Agarwal et al. [12]
presented recent advances in object detection in the age of
deep convolutional neural networks. The objective of instance
segmentation is to detect specific objects in an image and
create a mask around the object of interest.

In computer vision, transfer learning is usually expressed
through the use of pre-trained models. To achieve desired
performance, the common practice in advanced instance
segmentation systems is to fine-tune models pre-trained
on ImageNet [13]. This fine-tuning process can be viewed
as transfer learning [14]–[19]. Researchers usually train
CNN models on large scale classification datasets like
ImageNet [13] first, then fine-tune the models on target
tasks, such as object detection [20]–[35], image segmenta-
tion [36]–[39], etc. However, we directly train model without
involving any other additional data or extra fine-tuning pro-
cess. There are numerous state-of-the-art pre-trained CNN
models available. Fine-tuning on pre-trained models can
quickly convergence to a final state and requires less instance-
level annotated training data than basic classification task.
As is well-known, fine-tuning can mitigate the gap between
different target category distributions. However, it is still a
severe problem when the source domain (e.g., ImageNet)
has a huge mismatch to the target domain such as indus-
trial images, medical images, etc. As illustrated in Fig. 3,
the image used for inspection is completely different from the
image on source domain (e.g., ImageNet). Without having
enough number of dataset, deep artificial neural networks
cannot be trained well and it is difficult to collect enough data
size in the specific industry domain.

In this work, we investigate three questions. First, is it
possible to train instance segmentation networks from scratch
directly with only smaller dataset without the pre-trained
models? Second, are there any principles to design a resource
efficient network structure for instance segmentation, mean-
while keeping high detection accuracy? Third, is there any
methodology to improve inspection performance other than
network design? To meet this goal, we propose instance
segmentation detector (ISD) and pre-processing that is per-
formed by using image filter before training.

II. RELATED WORK
A. INSPECTION METHOD
Computer vision systems [40]–[46] are widely used for on-
line inspection and quality control to improve the finished
product quality and lower the costs in various industries.
The computer vision system used in current semiconductor
industries performs the specialized digital image process-
ing and signal processing to extract features necessary for
defect detection, and determines the defect by means of a
neural network as a classifier. The specialized digital image
processing removes noise from the input image of specific
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FIGURE 4. An example of detecting the contamination state of nozzle by
means of the specialized digital image processing: (a) Original image;
(b) Pre-processed Image; (c) Image where contamination is detected.

FIGURE 5. An example of detecting the suck-back state of nozzle by
means of the specialized signal processing: (a) The suck-back line is
detected by means of filtering image within processing area; (b) The
suck-back line is detected by means of signal processing which is
adopting adaptive threshold and sum of pixels in x direction.

domain, improves brightness or contrast, emphasizes edges,
and makes the image more clearly to extract features. Feature
extraction is obtained by the signal processing method that
calculates the sum of the vertical component pixels and the
horizontal components of the pre-processed image by means
of digital image processing, and applies an adaptive thresh-
old. Recognizing the extracted features and determining
whether there are defects is composed of a neural network.
Fig. 4 (c) illustrates an example of automatically detecting
the contamination state of nozzle by means of digital image
processing. Fig. 5 also illustrates an example of automatically
detecting the suck-back state of nozzle by means of signal
processing during the spin coating process of semiconductor
photo lithography.

In the spin coating process of semiconductor photo lithog-
raphy, various types of nozzle for spraying photoresist are
used depending on the kind of photoresist and the charac-
teristic of wafer. Fig. 6 illustrates an example of various
types of nozzle. Therefore, digital image processing and sig-
nal processing method used in the computer vision system
should be applied to the specialized technique depending on
external environment such as various types of nozzle, wafer
characteristics and diffuse reflection of light etc. If a new
nozzle or a new wafer is used, the defect detection accuracy
of the computer vision system is inevitably reduced.

Considering these problems, we propose instance segmen-
tation method based on generalized deep learning in order
to be more robust to the external environment and further
improve performance instead of the specialized digital image

FIGURE 6. An example of various types of nozzle for spraying photoresist.

FIGURE 7. An example of instance segmentation process.

processing and signal processing method used for semicon-
ductor photo lithography inspection.

B. ENHANCED FEATURE MAP
The discriminative feature is very important factor in image
classification problem, and the smaller the variance within
the same class and the larger the variance between different
classes, the easier it is to solve the classification problem
in general. The feature-map of CNN to detect nozzle type
is clearly distinguished between the nozzle types. However,
since the inspection in semiconductor photo lithography is
performed in the same nozzle type, it is difficult to extract
the discriminative CNN feature-map. It is hard to extract
the discriminative feature from the proposed regions of the
Region Proposal Network (RPN) using CNN feature-map of
the same nozzle type. As illustrates in Fig. 7, the mask area
cannot be achieved without the discriminative CNN feature-
map in the proposed regions.

The reason for not being able to extract the discriminative
feature in the proposed regions is that it is not enough to
extract the discriminative feature by means of only original
pixel information in the corresponding area as a gray scale
image. In order to enhance a feature-map of CNN with only
the original pixel information of the image, it may be possible
to extract the discriminative feature by performing a lot of
deep learning by increasing the network layer of CNN with
a large number of various training images. Deep convolu-
tional neural networks require a large corpus of training
data in order to avoid over-fitting. Over-fitting refers to the
phenomenon when a network learns a function with very
high variance such as to perfectly model the training data.
Unfortunately, many application domains do not have access
to big data, such as industrial image analysis and medical
image analysis, and collection of such training data is often
expensive and laborious.
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Data augmentation overcomes this issue by artificially
inflating the training set with label preserving transforma-
tions. Recently there has been extensive use of generic data
augmentation to improve CNN task performance. Data aug-
mentation encompasses a suite of techniques that enhance
the size and quality of training datasets such that better deep
learning models can be built using them. Data augmentations
based on basic image manipulations are geometric trans-
formation, flipping, color space, cropping, rotation, transla-
tion, noise injection, color space transformations, geometric
versus photometric transformations, kernel filters, mixing
images, random erasing, feature space augmentation, adver-
sarial training, generative adversarial networks, neural style
transfer, and meta-learning [47]–[52].

However, we propose the pre-processing method that
reduces the amount of training images and decreases the
number of network layer in CNN rather than data augmen-
tation. The specialized image filter for the semiconductor
photo lithography inspection is applied to the pre-processing
method in order to enhance the feature-map of CNN.

C. BACKBONE NETWORK FOR INSTANCE SEGMENTATION
A lot of deep convolutional neural networks (CNN) [53]
originally designed for classification tasks have been adopted
for the detection task as well. And a lot of modifications have
been done on them to adapt for the additional difficulties
encountered. Object detection is a natural extension of the
classification problem. The constant challenge is to correctly
detect the presence and accurately locate the object instance
in the image. It is a supervised learning problem in which,
given a set of training images, one has to design an algorithm
which can accurately locate and correctly classify as many
object instances as possible in a rectangle box while avoiding
false detections of background or multiple detections of
the same instance. The process of detecting instance seg-
mentation can be spilt into three parts: extracting feature-
maps, proposing regions, classifying and regressing binary
mask. Among them, the backbone network that extracts
feature-maps play a major role in instance segmentation
detection models. Huang et al. [54] partially confirmed the
common observation that, as the classification performance
of the backbone increases on ImageNet [13] classification
task, so does the performance of object detectors based on
those backbones. It is the case at least for popular object
detectors like Fast R-CNN [21], Faster R-CNN [22], Mask
R-CNN [55] and R-FCN [23] although for SSD [24] the
object detection performance remains around the same. Since
there are significant efforts that have been devoted to design
network architectures for image classification, many diverse
and powerful networks are emerged, such as VGGNet [56],
GoogLeNet [57], ResNet [58], DenseNet [59], DPN [60]
etc. In practice, most of the detection methods [20]–[22],
[24], [55] directly utilize these structures pre-trained on
ImageNet [13] as the backbone network for detection task.
Some other works try to design specific backbone net-
work structures for object detection, but still require to

pre-train on ImageNet [13] classification dataset in advance.
Kim et al. [61] proposes PVANet for fast object detection,
which consists of the simplified ‘‘Inception’’ block from
GoogLeNet [57]. Huang et al. [54] investigated various
combination of network structures and detection frameworks,
and found that Faster R-CNN [22] with Inception-ResNet-v2
[62] achieved very promising accurate performance.
Nakazawa et al. [63] proposed the CNN architecture
for wafer map pattern generation in the semiconductor
manufacturing.

Therefore, we propose a suitable backbone structure for
extracting the enhanced feature-map to detect instance seg-
mentation in industrial domain, which is the proposed ISD
instead of ResNet [58] that is the backbone network of state-
of-the-art Mask R-CNN framework.

D. LEARNING NETWORK MODEL FROM SCRATCH
There are no previous works that train deep CNN-based
instance segmentation in industrial domain from scratch.
In generic object detection, Shen et al. [64] proposed Deeply
Supervised Object Detectors (DSOD), an object detection
framework that can be trained from scratch. In semantic
segmentation, J′egou et al. [65] demonstrated that a well-
designed network structure can outperform state-of-the-art
solutions without using the pre-trained models. It extends
DenseNet [59] to fully convolutional networks by adding an
up sampling path to recover the full input resolution.

Thus, our proposed approach has very appealing advantage
in that it is learning network model from scratch without
using the pre-trained model on ImageNet [13] for instance
segmentation.

III. OUR APPROACH
We first introduce the whole framework of our ISD architec-
ture, following by pre-processing for extracting the enhanced
feature-map. Then we describe the training process and
objective in detail.

A. ISD ARCHITECTURE
The whole framework for semiconductor photo lithography
inspection is based on Mask R-CNN framework. There are
two stages of Mask R-CNN framework. First, it generates
proposals about the regions where there might be an object
based on the input image. Second, it predicts the class of
the object, refines the bonding box and generates a mask in
pixel level of the object based on the first stage proposal. Both
stages are connected to the backbone network structure.

Many approaches to instance segmentation are based on
segment proposals. However, our approach is focus on the
backbone network which extracts the enhanced feature-maps
for the object mask. The state-of-the-art Mask R-CNN frame-
work uses ResNet [58] and ResNetXt [66] as backbone net-
work. However, as illustrates in Fig. 8, our approach uses the
compact ISD instead of ResNet [58] for addressing real time
problem and learning from scratch.
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FIGURE 8. The network structure by using ISD for instance segmentation
on Mask R-CNN framework.

ISD based on the state-of-the-art DenseNet [59] is moti-
vated by combining the advantage of shortcut connection and
concatenation of the feature-maps produced in layers with
dynamic growth rate. In order to improve the performance
of instance segmentation with better parameter efficiency,
we investigated all the state-of-the-art CNN based instance
segmentation. The design principle of ISD is compact model,
which is suitable for real time embedded system such as
computer vision system and make them easy to train under
reducing over fitting on tasks with smaller training set sizes.

ISD comprises layers, each of which implements a com-
posite function of operations such as Batch Normalization
(BN) [67], rectified linear units (ReLU) [68], Pooling [69],
or Convolution (Conv). ISD has the concatenation of the
feature-maps produced in layers in order to encourage
strengthen feature propagation and feature reuse. Further,
ISD has the shortcut connection for addressing vanishing

TABLE 1. ISD architecture.

and exploding gradients. ISD is composed of four dense
blocks and four transition layers similar to DenseNet [59];
see Table 1.

However, crucially in contrast to DenseNet [59], ISD com-
bine features through summation before they are passed into
a dense block combined features by concatenating them with
post-activation. Fig. 9 illustrates this layout schematically.
Santhanam et al. [70] presented the result that pre-activation
ResNets consistently outperforms the original post-activation
only at very high-network depths (≥ 152 depths). ISD has
38 depths at low-network depths and post-activation ISD out-
performed pre-activation on the results of experiment. Thus,
in our approach, ISD has a structure with post-activation as
shown in Fig. 9. Moreover, as illustrated in Fig. 10, there
is dynamic growth rate unlike DenseNet [59], which applies
different growth rate in each layer in order to optimize the
model. The growth rate that regulates the amount of infor-
mation on each layer determine the number of feature-map.
The dynamic growth rate substantially reduces the number of
parameters, optimizing the model more compact and improv-
ing the performace.

ISD has mainly three hyper-parameters: First, we refer to
n as number of layers in each dense bock. Second, we refer to
k as growth rate of the network. Third, we refer to bw as bot-
tleneck width. We optimized the hyper-parameters through
experimental results.

B. PRE-PROCESSING FOR ENHANCED FEATURE MAP
Edge detection is one of the significant section of the image
processing algorithms which have many applications like
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FIGURE 9. Dense block network model with post-activation in ISD.

FIGURE 10. A dense block with dynamic growth rate of k = 2, 5, 3 in each
layer on ISD.

image morphing, pattern recognition, image segmentation
and image extraction etc. As the edge is one of the major
information contributors to any image, hence the edge detec-
tion is a very important step in many of the image processing
algorithms. It represents the contour of the image which
could be helpful to recognize the image as an object with its

detected edges. Kabade et al. [71] proposed block level canny
edge detection algorithm which is the special algorithm to
carry out the edge detection of an image in order to reduce
the time and memory consumption. In case of the suck-back
state among the inspection types shown in Fig. 3, it is hard to
extract the feature from an image overlapped by nozzle image
and photoresist image. In addition, the image of photoresist is
varied by depending on the type of nozzle, and the image of
nozzle is varied by depending on the kind of photoresist. The
specific image filter modified by the sobel edge detector [72],
which is composed of a pair of 3× 3 convolution masks, one
estimating gradient in the horizontal x-direction and the other
estimating gradient in vertical y-direction, is adopt to identify
points in an image at which the image brightness changes
sharply or, more formally, has discontinuities. Pre-processing
is performed by using convolution on the image by means of
the specific image filter.

The edge occurs where there is a discontinuity in the
intensity function or a very steep intensity gradient in the
image. Thus, the edge could be located at which the derivative
is maximum. The gradient is a vector, whose components
measure how rapid pixel value are changing with distance in
the x and y direction. Thus, the components of the gradient
may be found using the following approximation:

∂f (x, y)
∂x

= 1x =
f (x+ dx, y)− f (x, y)

dx
(1)

∂f (x, y)
∂y

= 1y =
f (x, y+ dy)− f (x, y)

dy
(2)

where dx and dymeasure distance along the x and y directions
respectively. In discrete images, one can consider dx and dy
in terms of numbers of pixel between two points, dx= dy= 1

1x = f (x+ 1, y)− f (x, y) (3)

1y = f (x, y+ 1)− f(x, y) (4)

The different operation in ‘‘(3)’’ and ‘‘(4)’’ correspond to
convolving the image with the following image filter mask.

1x =

−1 0 1
g 0 g
−1 0 1

 (5)

1y =

−1 g 1
0 0 0
−1 g 1

 (6)

In ‘‘(5)’’ and ‘‘(6)’’, g is adaptively applied according to the
image intensity. The image pre-processed by means of the
specific image filter is shown in Fig. 11. The pre-processed
image that is used as the input of ISD has significance in
extracting the enhanced feature-map for inspection

C. MODEL TRAINING
In our approach, we focus on the instance segmentation task
without using the pre-trained models. We train models on
target dataset directly without using IamgeNet dataset as
shown in Fig. 12. ISD is trained with various nozzle image
as shown in Fig. 12, to classify the nozzle type.

VOLUME 8, 2020 218115



J. Han, S. Hong: New Backbone Network for Instance Segmentation: Application on a Semiconductor Process Inspection

FIGURE 11. The image pre-processed by means of the specific digital
image filter: (a) Original image; (b) The image processed by means of the
filter of equation ‘‘(6)’’ (g = 4).

FIGURE 12. Illustration of training model on target dataset directly.

The image dataset used to train Mask R-CNN is prepared
by using image annotation tool (i.e. VGG image annota-
tor) which manipulates the labeled segmentation of image.
In addition, filtering the input dataset is performed for pre-
processing of training model. Fig. 13 illustrates the training
process.

D. TRAINING OBJECTIVE
The training objective is the losses being used to converge the
huge number of weights and the hyper-parameters that must
be conducive to this convergence.

In training model for classifying nozzle type, categorical
cross entropy loss generally used to classify image is adopt

FIGURE 13. Training process of instance segmentation using ISD as the
backbone network of Mask R-CNN framework.

to the loss of ISD (i.e. LISD). It is a softmax activation plus a
cross entropy loss.

LISD = − log

(
esp∑C
j esj

)
where:
sp = the CNN score for the positive class
C = the number of classes
sj = the score inferred by the network for each class in C
In training model for detecting suck-back state of noz-

zle, the training loss is adopt from Faster R-CNN and
Mask R-CNN, which is a weighted sum of the classifica-
tion loss(cls), the localization loss(box) and segmentation
mask loss(mask). Where Ltotal_cls and Ltotal_box are same as
in Faster R-CNN [22] and Ltotal_mask is same as in Mask
R-CNN [55]

Ltotal = Ltotal_cls+Ltotal_box+Ltotal_mask

Ltotal_cls =
1

Ncls

∑
i

Lcls
(
pi, p∗i

)
Lcls

(
pi, p∗i

)
= −p∗i log pi − (1− p∗i ) log (1−pi)

where:
pi = Predicted probability of anchor i being an object
p∗i = Ground truth label of whether anchor i is an object
Ncls = Normalization term, set to be batch size

Ltotal_box =
α

Nbox

∑
i

p∗i ·L
smooth
1 (ti − t∗i )

where:
ti= Predicted four parameterized coordinates
t∗i = Ground truth coordinates
Nbox= Normalization term, set to the number of anchor
locations
α= Balancing parameter

Ltotal_mask= −
1
m2

∑
1≤i,j≤m

[
yij log ŷkij+(1−yij) log (1−ŷ

k
ij)
]
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TABLE 2. Hardware specification.

where:
yij= Label of cell (i, j) in the true mask for the region of size
m×m
ŷkij= Predicted value of the same cell for the ground truth
class k

IV. EXPERIMENT
We implement ISD based on the tensorflow platform [73].
The hardware platform is notebook with two GPUs as illus-
trated in Table 2. Since image related to semiconductor pro-
cess is not available in open datasets for deep learning such
as ImageNet, MS COCO, pascal VOC etc., the experimental
dataset is acquired from computer vision system embedded in
the currently operating semiconductor manufacturing equip-
ment for photo lithography inspection. The size of image
is 640 × 495 pixels and gray color. Intuitively, larger input
images will bring better performance for instance segmen-
tation. However, an additional difficulty is that real world
applications like computer vision system demand inspection
to be solved in real time. Fastest detectors are usually better
than the best performing ones. Thus, we reduced the size of
image used as the input of ISD to 120× 120 pixels. We eval-
uate ISD with different depth and growth rates for com-
pactness. We verify the effectiveness of the method through
the comparison experiment. A consistent setting is imposed
on all the experiments, unless when some components or
structures are examined.We adopt the standardmeanAverage
Precision (mAP) to measure the instance segmentation
performance.

A. CLASSIFICATION RESULTS ON ISD
In order to classify nozzle type, 18,304 images that have
already been correctly classified into 8 types of nozzle,
were collected from real operating semiconductor manufac-
turing equipment. Then, we split these images randomly into
13,728 training datasets and 4,576 validation datasets. The
classification training accuracy after only 10 epoch is 99.8%
and the validation accuracy is 99.9% for classifying nozzle
type. The classification training and validation accuracy in
each epoch is illustrated in Fig. 14. The average processing
time for each epoch is 37 seconds. In addition to classification
of nozzle type, we also test to detect instance segmentation
of nozzle type. We used 385 training dataset and 138 vali-
dation dataset for instance segmentation. Fig. 15 illustrates
the result on detecting instance segmentation in each nozzle
type.

FIGURE 14. The classification training and validation accuracy in each
epoch. ISD has 38 depths with shortcut connection. The uniform growth
rate (k) is 6.

FIGURE 15. The experimental result of detecting instance segmentation
of nozzle type.

B. COMPARISON WITH PRE-PROCESSING
In order to detect suck-back state of nozzle, we used 266
training datasets and 144 validation datasets for instance
segmentation in each nozzle type. The average processing
time for each epoch is 208 seconds. We evaluate the perfor-
mance of pre-processing on instance segmentation task in the
standard mean average precision.

In aspect of the mask, the mask of nozzle type was detected
well even without pre-processing using image filter. How-
ever, the mask of suck-back state for inspection was not
detected or incorrectly recognized when the pre-processing
is not performed. Fig. 16 illustrates comparison with pre-
processing in aspect of mask. We can observe that the pre-
processing using image filter can achieve higher accuracy,
which is consistent to our conjecture that the enhanced
feature-map is extracted by pre-processing.

In aspect of the standard mean average precision, compar-
ison of pre-processing is illustrated in Table 3. mAP@0.50
in validation is improved by 4.27% when the pre-processing
is performed. Interestingly, mAP@0.75 in validation is
improved with a large margin (18.19%) when the pre-
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FIGURE 16. Instance segmentation of suck-back state for inspection.
In case of training ISD with pre-processing, the mask performance is
better than without pre-processing.

TABLE 3. Comparison of performing pre-processing. ISD has 38 depths
with shortcut connection and the uniform growth rate (k) is 6.

processing is performed.We can observe that the greatest task
performance improvement was yielded by pre-processing.

C. INSTANCE SEGMENTATION RESULTS ON ISD
Model optimization and performance are an important trade-
off for the applications of deep neural networks in actual
instance segmentation tasks for real time application. In order
to optimize ISD, we conduct experiments with three cases
which are the number of depth, shortcut connection and
dynamic growth rate.

1) THE NUMBER OF DEPTH
We have experimented with various depths on ISD. As illus-
trated in Table 4, we empirically demonstrate that the deeper
layer is the better performance, as is well known. However,
using 42 depths is sufficient to deliver good performance
and it is better in aspect of resource effectiveness. We can
observe that our compactness model with only 85K param-
eters achieves performance to 95.49% at mAP@0.50 in
validation, which shows great potential for applications on
computer vision system in real time.

2) SHORTCUT CONNECTION
We have experimented with and without shortcut connection.
We observe that ISD with 62 depths using shortcut connec-
tion significantly improves the performance from 42.55%
to 57.87% at mAP@0.75 in validation. We experimentally

TABLE 4. Comparison with different depths and shortcut connection.
We experiment with model weights having the lowest validation loss
obtained during the training up to 100 epochs. The uniform growth
rate (k) is 6.

found that shortcut connection improves the performance
by means of alleviating vanishing and exploding gradients,
encouraging feature reuse.

3) GROWTH RATE
As aforementioned, ISD use dynamic growth rate that applies
different growth rates in each layer. In Table 5, we compare
three options: (A) uniform growth rates (k, k, · · · , k) are
used; (B) increasing growth rates (1, 2, 3, · · · , k) are used;
(C) decreasing growth rates (k, k−1, k−2, · · · , 2, 1) are
used; As illustrated in Table 5, we observe that ISD with
54 depths using increasing growth rates improves the per-
formance from 91.32% to 95.83% at mAP@0.50 in valida-
tion, while requiring only 1/2 parameters. We experimentally
found that dynamic growth rate improves the performance
better than uniform growth rate. It substantially reduces the
number of parameters.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
We compare our results with state-of-the-art backbone net-
works of Mask R-CNN framework. Results are summarized
in Table 6. ISD achieves consistently better results than stat-
of-the-art methods with much more compactness structure.
Specifically, our ISD-38 achieves 95.24% at mAP@0.50 in
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TABLE 5. Comparison of dynamic growth rate with shortcut connection.
We experiment with model weights having the lowest validation loss
obtained during the training up to 100 epochs.

TABLE 6. Comparison with state-of-the-art backbone networks.
We experiment with model weights having the lowest validation loss
obtained during the training up to 100 epochs. The growth rate of
DenseNet is 12. The uniform growth rate of ISD is 6.

validation, which outperforms the baseline DenseNet-38 with
a large margin (16.97%, mAP@50), while requiring only 1/4
parameters. We also observe that ISD-38 can achieve compa-
rable better results at mAP@0.75 than ResNet-38 requiring
a huge memory space to store the massive parameters, with
only much smaller 1/268 parameters, which shows great
potential for application on resource bounded devices.

As the size of the network increases, the inference and
the training become slower and require more data. There is
generally a trade-off between performance and speed. When
one needs real time detectors, like for computer vision, one
loses some precision. In Table 6, the highest result of 96.59%
at mAP@50 in validation are obtained with ResNet-38. Our
ISD-42 achieves 95.49% at mAP@50 in validation, 1.1%
lower. However, the speed has improved significantly by

217 times. Interestingly, our ISD-42 is 3.45% higher than
ResNet-38 at mAP@75 in validation.

V. CONCLUSION
This paper presents a novel backbone network, the ISD,
to solve the problem that training dataset limited in specific
industry domain might cause overfitting at training and qual-
ity mismatch at inference, for addressing real time problem
and for application on resource bounded devices. Our model
is simple to construct and can be trained directly on full
images. According to our method including pre-processing,
enhanced feature-maps can be obtained for instance seg-
mentation. We demonstrate that our ISD-42 significantly
outperforms state-of-the-art DenseNet-42 in terms of both
accuracy (9.73% more accurate) and speed (3 times faster) at
mAP@50 in validation. Also, our ISD-42 improves 217 times
faster in speed and 3.45% higher accurate than state-of-the-
art ResNet-38 at mAP@0.75 in validation.

In addition to backbone network of Mask R-CNN frame-
work, the ISD can be applicable to many instance segmen-
tation architecture. We believe that it can be useful to many
future instance segmentation research efforts in diverse indus-
try domainwhich is requiring real time and good performance
with only smaller training dataset.
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