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ABSTRACT This thesis studies the problem of three-dimensional guidance considering maneuvering
acceleration and input saturation based on the background of missile intercepting maneuvering target. On the
basis of the three-dimensional guidance model with impact angle constraints, a three-dimensional guidance
law is designed by using the integral sliding mode control and adaptive control. To solve the problem of input
saturation, an adaptive anti-saturation integral sliding mode three-dimensional guidance law is designed by
introducing an auxiliary system. The stability of the designed guidance law is proved by Lyapunov theory,
which ensures that the sliding mode manifold converges to zero in finite time. The effectiveness of the
designed guidance law is verified by simulation analysis.

INDEX TERMS Three-dimensional guidance law, input saturation, integral sliding mode control, adaptive
control.

I. INTRODUCTION
With the complexity of the war environment and the
increasing improvement of the performance of high maneu-
vering targets, the missile must have the ability to intercept
air maneuvering targets [1]. The design of robust three-
dimensional guidance law is the key link to ensure the suc-
cessful interception of the target. In order to achieve the best
damage effect, the missile is usually required to intercept
the target at the desired impact angle [2]. Therefore, it is of
great significance to study the three-dimensional guidance
law with impact angle constraints.

Among the common guidance law design methods in auto-
matic seeking guidance system, the main methods include
classical control methods and modern control methods.
In [3], [4], a bias pure proportional guidance law is designed
for intercepting stationary or slow targets. In order to achieve
the best damage effect, a proportional guidance law with
angle constraint is designed for the relative motion model
of three-dimensional missile and target [5], [6]. In [7], [8],
the guidance law with impact angle constraint is designed
based on the optimal control theory. Because the sliding
mode guidance law is robust to external disturbances and the
uncertainty of system parameters, it has been widely used in
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aircraft guidance and control [9]–[15]. In [10], [11], based
on the sliding mode control, an adaptive guidance law with
impact angle constraints is designed. In order to obtain high
precision guidance performance, the finite-time guidance
law is designed by using the terminal sliding mode control
in [12], [13]. In [14], the sliding mode three-dimensional
guidance laws with impact angle constraints are designed for
maneuvering target interception. In [15], a robust guidance
law with impact angle constraints is designed for intercept-
ing maneuvering targets based on the adaptive control and
nonsingular terminal sliding mode control. In [16], the non-
linear disturbance observer is used to estimate the target
acceleration on line, and the three-dimensional guidance law
is designed by using the finite-time control. In the actual
guidance process, the acceleration command of the missile
has certain physical constraints. If the acceleration instruction
constraint is not considered in the design of the guidance
law, it may lead to the decline of the guidance performance
and even cause the instability of the whole guidance system
in [17]. In [18], [19], based on the adaptive control and opti-
mal control, the adaptive three-dimensional guidance law and
the optimal guidance law with input saturation constraints are
designed. In [20], an anti-saturation three-dimensional guid-
ance law with impact angle constraints is designed. In [21],
to deal with the problem of input saturation, an adaptive
dynamic surface three-dimensional guidance law is designed
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by using the smooth tangent function andNussbaum function.
In [22], [23], by introducing an adaptive algorithm to esti-
mate the upper bound of target acceleration online, a three-
dimensional guidance law with acceleration constraint is
designed by using the dynamic control, but the state of the
guidance system can only be guaranteed to be uniformly
bounded. In order to further improve the interception prob-
ability for high maneuvering targets, in this paper, a 3D guid-
ance strategy with impact angle constraints is designed based
on the integral terminal sliding mode theory and adaptive
algorithm. Compared with the above references, the innova-
tions are as follows

(1) By designing the integral terminal sliding mode surface
with adaptive gain and automatically adjusting the adaptive
gain parameters according to the error information, the sys-
tem error converges to the sliding mode surface quickly and
the control performance of the system is improved.

(2) In this paper, the adaptive terminal sliding mode
controller and anti-saturation adaptive terminal controller
are designed respectively, so that the state of the sys-
tem converges to the equilibrium point quickly in finite
time.

(3) Compared with [15], this paper considers input sat-
uration and finite-time stability, which is of more practical
engineering significance.

The structures of this paper are as follows: Firstly, the guid-
ance model of three-dimensional space with impact angle
constraints is given. Secondly, based on the integral terminal
sliding mode control theory and adaptive control method,
the adaptive integral terminal sliding mode guidance law and
the anti-saturation adaptive integral terminal sliding mode
guidance law are designed respectively. Finally, the effec-
tiveness of the designed guidance law is verified by digital
simulation.

II. SYSTEM DYNAMICS AND PROBLEM STATEMENT
Fig. 1 shows the three-dimensional guidance geometry of
the missile intercepting the maneuvering target. The rela-
tive kinematic equation of the missile and target is given as
follows [13]

Ṙ = (ρ cos θt cosφt − cos θm cosφm)Vm (1)

Rθ̇L = (ρ sin θt − sin θm)Vm (2)

φ̇LR cos θL = (ρ cos θt sinφt − cos θm sinφm)Vm (3)

θ̇m =
azm
Vm
− φ̇L sin θL sinφm − θ̇L cosφm (4)

φ̇m =
aym

Vm cos θm
+ φ̇L sin θL cosφm tan θm

− θ̇L sinφm tan θm − φ̇L cos θL (5)

θ̇t =
azt
ρVm
− φ̇L sin θL sinφt − θ̇L cosφt (6)

φ̇t =
ayt

ρVm cos θt
+ φ̇L sin θL cosφt tan θt

− θ̇L sinφt tan θt − φ̇L cos θL (7)

FIGURE 1. Geometry in a three-dimensional space.

where ρ = Vt/Vm, Vm and Vt are the missile velocity and
target velocity, respectively. R is the relative distance. θm and
φm represent the direction of the velocity of the missile rela-
tive to the line-of-sight. θt and φt represent the direction of the
velocity of the target relative to the line-of-sight coordinate
system. θL and φL are the angles of sight. aym and azm are the
missile accelerations in the pitch and yaw directions. ayt and
azt are the target accelerations in the pitch and yaw directions,
respectively.

Based on (5) and (7), the following equation holds

θ̈L =
cos θt
R

azt −
cos θm
R

azm − φ̇2L cos θL sin θL −
2Ṙθ̇L
R

(8)

φ̈L =
cosφt
R cos θL

ayt −
sin θt sinφt
R cos θL

azt +
sin θm sinφm
R cos θL

azm

−
cosφm
R cos θL

aym + 2φ̇L θ̇L tan θL −
2Ṙφ̇L
R

(9)

Let x =
[
x1
x2

]
=

[
θL
φL

]
, combining (8) and (9), the three-

dimensional guidance system described as

ẍ = F+ Bu+ D (10)

where u is control input, D is external disturbances, in the
following form

F =

−φ̇2L cos θL sin θL − 2Ṙθ̇L
R

2φ̇L θ̇L tan θL −
2Ṙφ̇L
R

 ,

D =

 cos θt
R

azt
cosφt
R cos θL

ayt −
sin θt sinφt
R cos θL

azt

 ,

B =

 −
cos θm
R

0

sin θm sinφm
R cos θL

−
cosφm
R cos θL

 ,u = [ azmaym
]
.

To facilitate the terminal guidance law design, the following
lemma and assumption are given.
Assumption 1: Considering the system (10), assume that

the external disturbances D is bounded, that is ‖D‖ ≤ D,
where D is positive constant.
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Lemma 1 [13]: Considering system ẋ = f (x, t), x ∈
Rn, suppose V (x) is a C1 smooth positive definite func-
tion (defined on U ⊂ Rn) and V̇ (x) + ζV δ(x) is negative
semi-definite on U ⊂ Rn for δ ∈ (0, 1) and ζ ∈ R+,then
there exists an area U0 ⊂ Rn such that any V (x) which stars
from U0 ⊂ Rn can reach V (x) ≡ 0 in finite time. Moreover,
if Tr is the time needed to reachV (x) ≡ 0, then Tr ≤

V 1−δ(x0)
ζ (1−δ) ,

where V (x0) is the initial value of V (x).
Lemma 2 [9]: Consider the following n order integral

system

ẋ1 = x2, · · · , ẋn−1 = xn, ẋn = u (11)

If ε ∈ (0, 1) that satisfies for any αn ∈ (1 − ε, 1), and the
design controller is

u = −k1sigα1 (x1)− k2sigα2 (x2)− · · · − knsigαn (xn) (12)

where α1, α2, · · · , αn satisfies αi−1 =
αiαi+1

2αi+1−αi
, i =

2, 3, · · · , n, αn+1 = 1. λn + knλn−1 + · · · + k2λ + k1 is the
polynomial of Hurwitz. Then, the system is globally finite
time stable.

III. GUIDANCE LAW DESIGN
Based on the integral terminal sliding mode control and adap-
tive algorithm, the adaptive guidance law and anti-saturation
guidance law are designed for the three-dimensional guid-
ance system (10), respectively, to ensure the missile to inter-
cept the maneuvering target successfully.

A. DESIGN OF ADAPTIVE INTERTAL SLIDING MODE
CONTROLLER
The integral sliding mode surface is defined as follows

s =
[
s1
s2

]
=

[
ẋ1 − ẋ1(0)+ 3̂1

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
ẋ2 − ẋ2(0)+ 3̂2

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

]
(13)

where k1, k2, l1 and l2 are positive constants, 0 < α1 < 1,0 <
α2 < 1,0 < β1 < 1,0 < β2 < 1,3̂1 and 3̂2 are the adaptive
gains.

Computing the derivative of s, it can obtained as

ṡ =
[
ṡ1
ṡ2

]
=


ẍ1 +

˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
+3̂1(k1sigα1 (x1)+ k2sigα2 (ẋ1))

ẍ2 +
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt
+3̂2(l1sigβ1 (x2)+ l2sigβ2 (ẋ2))


= F+ Bu+ D+M

+

[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

]
(14)

whereM =
[
k13̂1sigα1 (x1)+ k23̂1sigα2 (ẋ1)
l13̂2sigβ1 (x2)+ l23̂2sigβ2 (ẋ2)

]
.

In order to deal with the unknown upper bound of tar-
get maneuvering, an integral sliding mode three-dimensional

guidance law is designed using the adaptive control as
follows

u = −B−1
(
F+ k3s+ k4sign(s)+M

+ k5
s
‖s‖

tanh(D̂)
)

(15)

˙̂
31 = −p1s1

∫ t

0
(k1sigα1 (x1)+ k2sigα2 (ẋ1))dt (16)

˙̂
32 = −p2s2

∫ t

0
(l1sigβ1 (x1)+ l2sigβ2 (ẋ2))dt (17)

˙̂D =
γ

k5
cosh2(D̂) ‖s‖ (18)

where k3, k4, k5, γ, p1 and p2 are positive constants.
Theorem 1: Considering system model (10) select-

ing the sliding modemanifold (13), under thedesigned
three-dimensional guidancelaw (15), the s sconverges to
zeroin finite time, then theline of sight angularrate θ̇L and φ̇L
and will convergeto zero in finite time.

Proof: Choose the Lyapunov function candidate as

V1 =
1
2
sTs+

1
2γ

D̃2 (19)

where D̃ = D− k5 tanh(D̂).
The time derivative of V1 can be written as

V̇1 = sTṡ−
k5
γ
D̃

1

cosh2(D̂)
˙̂D

= sT (Bu+ D+ F+M

+

[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

])
−
k5
γ
D̃

1

cosh2(D̂)
D̂ (20)

Substituting (15) -(18) into (20) yields

V̇1 = sT(−k3s− k4sign(s)

+

[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

]
+D− k5

s
‖s‖

tanh(D̂))−
k5
γ
D̃

1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)+ n+ D ‖s‖ − k5 tanh(D̂) ‖s‖

−
k5
γ
D̃

1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)

≤ 0 (21)

where n = sT
[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

]
.

From (20), it can get that V1 is bounded. Meanwhile, it
can conclude that adaptive parameter estimate D̂ is bounded,
which means that there is positive constant D̄ > 0, satisfying
D̂ ≤ D̄.
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Choose the Lyapunov function candidate as

V2 =
1
2
sTs+

1
γ

(
D̄− k5 tanh(D̂)

)2
(22)

where D̄ is positive constant, satisfying D̄ > D̂ and
D̄ > D.
The time derivative of the V2 can be written as

V̇2 = sTṡ−
2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

= sT (Bu+ D+ F+M

+

[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

])
−

2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

= −k3sTs− k4sTsign(s)+ n+ D− k5
s
‖s‖

tanh(D̂))

−
2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)+ D̄ ‖s‖ − k5 tanh(D̂)

−

 p1s21
(∫ t

0 (k1sig
α1 (x1)+ k2sigα2 (ẋ1))dt

)2
p1s22

(∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt
)2


−
2k5
γ

(
D̄− k4 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

≤ −k4 ‖s‖ −
(
D̄− k5 tanh(D̂)

)
‖s‖

≤ −ρV 1/2
2 (23)

where ρ = min(
√
2k4,
√
γ ‖s‖). Considering (23) and

Lemma1, it can conclude that the sliding mode manifold s
converges to zero in finite time.

According to (13), the inequality is satisfied

ẍ1 = −
˙̂
31

∫ t

0
(k1sigα1 (x1)+ k2sigα2 (ẋ1))dt

− k13̂1sigα1 (x1)− k23̂1sigα2 (ẋ1)

ẍ2 = −
˙̂
32

∫ t

0
(l1sigβ1 (x2)+ l2sigβ2 (ẋ2))dt − l13̂2sigβ1 (x2)

− l23̂2sigβ2 (ẋ2) (24)

As can be seen from the [9], x1 and x2 converges to zero in
finite time, that is, the line of sight angular rate θ̇L and φ̇L will
converge to zero in finite time.

Theorem 1 is proved.
Remark 1: In the guidance law (15), the design con-

straints of the guidance law are not considered, but in the
actual guidance process, only the aerodynamic force provides

maneuverability for the missile in the final guidance stage,
which leads to the fact that the power actuator of the mis-
sile can only provide limited acceleration. So it is of great
significance to design the guidance law with acceleration
saturation.

B. DESIGN OF ANTI-SATURATION ADAPTIVE INTEGRAL
SLIDING MODE CONTROLLER
Considering the input saturation, the (10) can be rewritten as

ẍ = F+ Bsat(u)+ D (25)

In order to cope with input saturation, the auxiliary sys-
tem (26) is introduced, as shown at the bottom of the page,
where 1u = u − uc,uc is the actual control input, η is the
state of the auxiliary system, σ, kη, kη1 and γ1 are positive
constants, 0 < γ1 < 1.

An adaptive anti-saturation three dimensional guidance
law is designed as

uc = −B−1 (F+ k3s+ k4sign(s)+M

+ k5
s
‖s‖

tanh(D̂)− kηη
)

(27)

˙̂
31 = −p1s1

∫ t

0
(k1sigα1 (x1)+ k2sigα2 (ẋ1))dt (28)

˙̂
32 = −p2s2

∫ t

0
(l1sigβ1 (x1)+ l2sigβ2 (ẋ2))dt (29)

˙̂D =
γ

k5
cosh2(D̂) ‖s‖ (30)

Theorem 2: Considering the system model (10) sujecting
to input saturation, selecting the sliding mode surface (14),
and under the adaptive anti-saturation integral sliding mode
guidance law (27), the line of sight angular rate θ̇L and φ̇L
converge to zero in finite time.

Proof : Choose the Lyapunov function V3 as

V3 =
1
2
sTs+

1
2
ηTη +

1
2γ

D̃2 (31)

Applying (27), the time derivative of V3 can be written as

V̇3 = sTṡ+ ηTη̇ +
1
γ
D̃ ˙̃D

= sT


Bsat(u)+ D+ F+M

+

 ˙̂31
∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt




+ ηTη̇ −
k5
γ
D̃

1

cosh2(D̂)
˙̂D

η̇ =

−kηη −
η

‖η‖2

(∣∣∣sTB11u
∣∣∣+ 1

2
1uT1u

)
+1u− kη1sig(η)γ1 , ‖η‖ ≥ σ

0, ‖η‖ < σ

(26)
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= sT(−k3s− k4sign(s)+ D− k5
s
‖s‖

tanh(D̂))+ n

+ sTB1u+ kηsTη + ηTη̇ −
k5
γ
D̃

1

cosh2(D̂)
˙̂D

≤ sT(−k3s− k4sign(s)+ D− k5
s
‖s‖

tanh(D̂))

+n+ kηsTη − kηηTη −

(∣∣∣sTB1u∣∣∣+ 1
2
1uT1u

)
+ ηT1u− kη1ηTsig(η)γ −

k5
γ
D̃

1

cosh2(D̂)
˙̂D (32)

As

sTB1u−
∣∣∣sTB1u∣∣∣ ≤ 0 (33)

kηsTη + ηT1u ≤
1
2
kηsTs+

1
2

(
kη+1

)
ηTη +

1
2
1uT1u

(34)

According to (33) and (34), then (32) can be rewritten as

V̇2≤−k3sTs− k4sTsign(s)−
(
kη −

1
2

(
kη + 1

))
ηTη

− kη1ηTsig(η)γ1+D‖s‖−k5 tanh(D̂)‖s‖−
k5
γ
D̃

1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)−
(
kη −

1
2

(
kη + 1

))
ηTη

− kη1ηTsig(η)γ1 + D̃ ‖s‖ −
k5
γ
D̃

1

cosh2(D̂)
˙̂D

≤−k4sTsign(s)−
1
2

(
kη+1

)
ηTη−kη1ηTsig(η)γ1− k3sTs

≤ 0 (35)

From (35), it can get that V3 is bounded. Meanwhile, it can
conclude that D̂ is bounded, which means the existence of
positive constant D̄ > 0, satisfying D̂ ≤ D̄.

Proof : Choose the Lyapunov function candidate as

V4 =
1
2
sTs+

1
2
ηTη +

1
γ

(
D̄− k5 tanh(D̂)

)2
(36)

Applying (27), the time derivative of (36)can be written as

V̇4 = sT

Bsat(u)+ D+ F+M

+

[
˙̂
31

∫ t
0 (k1sig

α1 (x1)+ k2sigα2 (ẋ1))dt
˙̂
32

∫ t
0 (l1sig

β1 (x2)+ l2sigβ2 (ẋ2))dt

]
+ ηTη̇ −

2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

= sT(−k3s− k4sign(s)+ D− k5
s
‖s‖

tanh(D̂))

+n+ sTB1u+ kηsTη + ηTη̇

−
2k5
γ

(
D̄− k4 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

≤ sT(−k3s− k4sign(s)+ n+ D− k5
s
‖s‖

tanh(D̂))

− kηηTη −

(∣∣∣sTB1u∣∣∣+ 1
2
1uT1u

)
+ ηT1u

− kη1ηTsig(η)γ −
2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

(37)

According to (33) and (34), (37) can be rewritten as

V̇4 ≤ −k3sTs− k4sTsign(s)−
(
kη −

1
2

(
kη1 + 1

))
ηTη

− kη1ηTsig(η)γ1 + n+ sT(D− k5
s
‖s‖

tanh(D̂))

−
2k5
γ

(
D̄− k5 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)−
1
2

(
kη − 1

)
ηTη

− kη1ηTsig(η)γ1 + D̄ ‖s‖ − k5 tanh(D̂) ‖s‖

−
2k5
γ

(
D̄− k4 tanh(D̂)

) 1

cosh2(D̂)
˙̂D

≤ −k3sTs− k4sTsign(s)−
1
2

(
kη − 1

)
ηTη

− kη1ηTsig(η)γ1 −
(
D̄− k5 tanh(D̂)

)
‖s‖

≤ −k4sTsign(s)− kη1ηTsig(η)γ1 −
(
D̄− k5 tanh(D̂)

)
‖s‖

≤−min
(√

2k4, 2
γ1+1
2 kη1,

√
γ ,‖s‖

)
min

(
V 1/2
4 ,V (γ+1)/2

4

)
(38)

From (38) and lemma1, it can be seen the sliding mode
manifold s can converge to zero.

IV. SIMULATION RESULTS
In order to show the effectiveness of the designed guidance
law, the simulation parameters is given in Table 1.

A. SIMULATION ANALYSIS OF ADAPTIVE INTEGRAL
SLIDING MODE GUIDANCE LAW

In order to verify the effectiveness of the adaptive integral
sliding mode guidance law (15), compared with the guidance
law NTSMGL in reference [14] and external disturbances

are considered as D =

[
cos θt
R azt

cosφt
R cos θL

ayt −
sin θt sinφt
R cos θL

azt

]
. The

parameters of the observer are selected as: k1 = 0.25, k2 =
0.2, k3 = 0.5, k4 = 0.3, k5 = 1.5, γ = 0.7, l1 = 0.5,
l2 = 0.5, α1 = 0.6, α2 = 0.65, β1 = 0.75, β2 = 0.75,
p1 = 0.02, p2 = 0.02. The maximum acceleration of the
missile is um = 25g. The simulation results are shown
in fig. 2.

TABLE 1. Initial engagement parameters for the missile and target.
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FIGURE 2. Simulation results under guidance law(15).

The trajectory and relative distance curve of missile and
target under the NTSMG and proposed guidance law are
given in Fig.2 a)-(b), respectively. it can be seen that these two
guidance laws can intercept the target successfully. Fig.2(c)-
(d) gives the curves of θ̇L and φ̇L of line-of-sight angular rate
respectively. It can be seen from the simulation result that
the line-of-sight angular rate θ̇L and φ̇L can converge to zero
fast under the two kinds of guidance laws, and have faster
convergence rate and higher convergence accuracy than the
NTSMG. From the acceleration curve of the missile given
in Fig.2(e), it can be seen that the acceleration saturation
phenomenon of the guidance law designed in this paper and

tends to be stable value after a period of time compared with
that of NTSMG. From the adaptive parameter curve given in
Fig.2(f), it can be seen that it can tend to a steady state in a
short time, which shows that the adaptive law is effective in
the guidance process.

B. SIMULATION ANALYSIS OF ANTI-SATURATION
ADAPTIVE SLIDING MODE GUIDANCE LAW
In order to demonstrate the effectiveness of theanti-
saturation adaptive slidingmode guidance law (27), the fol-
lowing two forms of target maneuvering are simulated and
analyzed.

VOLUME 8, 2020 211479



T. Li, H. Qian: Design of Three-Dimensional Guidance Law With Impact Angle Constraints and Input Saturation

FIGURE 3. Simulation results under guidance law(27).

Case1 : azt = ayt = 8 m/s2
;

Case2 : ayt = azt = 8 cos(4t) m/s2.
The guidance law parameters are chosen as: σ = 0.01,

kη = 1.25, kη1 = 0.5 and γ1 = 0.72, other guidance
parameters are the same as in section 4.1, the simulation
results are shown in Fig. 3.

Fig.3 (a)-(b) gives the trajectory curve and relative distance
curve of missile and target under two forms of target maneu-
verability. It can be seen that the missile can accurately inter-
cept the target and satisfy the guidance accuracy. Fig.3(c)-(d)
show the curves of θ̇L and φ̇L of line-of-sight angular rate,
which can fast converge to zero in finite time, and that ensures

that the missile can hit the target accurately. From the curve
of missile acceleration given in Fig.3 (e), it can be seen that
after a period of time, the the acceleration curve tends to be
steady value, and the control amplitude is always within the
constraint range in the whole control process, which satisfies
the input constraint. From the adaptive parameter curve given
in Fig.3 (f), it can be seen that the adaptive estimation value
can tend to a steady state value in a short time.

V. CONCLUSION
In this paper, a three-dimensional guidance scheme with
impact angle constraints and input saturation is designed for
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intercepting maneuvering targets. The main results are as
follows:

(1) An adaptive algorithm is introduced to estimate the
upper bound of the maneuvering acceleration of the target,
which relaxes the requirement of the prior information of the
maneuvering acceleration of the target.

(2) The adaptive three-dimensional guidance law and
anti-saturation three-dimensional guidance law are designed
based on the integral terminal sliding mode control, respec-
tively, which can ensure that the line of sight angular rate
converges to zero in finite time.

(3) The system state is proved to be finite time stable under
the designed guidance strategy by using Lyapunov theory, and
the effectiveness of the guidance scheme is verified by digital
simulation.

REFERENCES
[1] G. Li and Y.Wu, ‘‘Nonsingular adaptive-gain super-twisting guidance with

an impact angle constraint,’’ Proc. Inst. Mech. Eng., G, J. Aerosp. Eng.,
vol. 233, no. 5, pp. 1705–1714, Apr. 2019.

[2] X. B. Li, G. R. Zhao, S. Liu, and X. Han, ‘‘Adaptive integral sliding
mode guidance law with impact angle constraint considering autopilot
lag,’’ J. Phys., Conf. Ser., vol. 1267, Jul. 2019, Art. no. 012081.

[3] K. S. Erer and O. Merttopçuoglu, ‘‘Indirect impact-angle-control against
stationary targets using biased pure proportional navigation,’’ J. Guid.,
Control, Dyn., vol. 35, no. 2, pp. 700–704, Mar. 2012.

[4] C.-H. Lee, T.-H. Kim, and M.-J. Tahk, ‘‘Interception angle control guid-
ance using proportional navigation with error feedback,’’ J. Guid., Control,
Dyn., vol. 36, no. 5, pp. 1556–1561, Sep. 2013.

[5] S. K. Pandit, B. Panchal, and S. E. Talole, ‘‘Design of 3D guidance law for
tactical missiles,’’ Proc. Int. Conf. Modern Res. Aerosp. Eng. Singapore:
Springer, 2018, pp. 61–68.

[6] W. Pang, X. Xie, and T. Sun, ‘‘Improved bias proportional navigation
with multiple constraints for guide ammunition,’’ J. Syst. Eng. Electron.,
vol. 2017, vol. 28, no. 6, pp. 1193–1202.

[7] B.-G. Park, T.-H. Kim, and M.-J. Tahk, ‘‘Range-to-go weighted opti-
mal guidance with impact angle constraint and seeker’s look angle lim-
its,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp. 1241–1256,
Jun. 2016.

[8] X. Chen and J. Wang, ‘‘Optimal control based guidance law to control both
impact time and impact angle,’’Aerosp. Sci. Technol., vol. 84, pp. 454–463,
Jan. 2019.

[9] J. G. Sun, S. M. Song, and H. T. Chen, ‘‘Finite-time tracking control of
hypersonic aircrafts with input saturation,’’ Proc. Inst. Mech. Eng. G, J.
Aerosp. Eng., vol. 232, no. 7, pp. 1373–1389, 2018.

[10] H. Sun, S. Li, and C. Sun, ‘‘Finite time integral sliding mode control
of hypersonic vehicles,’’ Nonlinear Dyn., vol. 73, nos. 1–2, pp. 229–244,
Jul. 2013.

[11] V. I. Utkin and H. C. Chang, ‘‘Sliding mode control on electro-mechanical
systems,’’ Math. Problems Eng., vol. 8, no. 4, pp. 451–473, 2002.

[12] S. Lyu, Z. H. Zhu, S. Tang, and X. Yan, ‘‘Fast nonsingular terminal sliding
mode to attenuate the chattering for missile interception with finite time
convergence,’’ IFAC-PapersOnLine, vol. 49, no. 17, pp. 34–39, 2016.

[13] Y. Si and S. Song, ‘‘Three-dimensional adaptive finite-time guidance law
for intercepting maneuvering targets,’’ Chin. J. Aeronaut., vol. 30, no. 6,
pp. 1985–2003, Dec. 2017.

[14] S. R. Kumar and D. Ghose, ‘‘Three-dimensional impact angle guidance
with coupled engagement dynamics,’’ Proc. Inst. Mech. Eng. G, J. Aerosp.
Eng., vol. 231, no. 4, pp. 621–641, Mar. 2017.

[15] S. He and D. Lin, ‘‘Adaptive nonsingular sliding mode based guidance
law with terminal angular constraint,’’ Int. J. Aeronaut. Space Sci., vol. 15,
no. 2, pp. 146–152, Jun. 2014.

[16] Z. Zhang, C. Man, S. Li, and S. Jin, ‘‘Finite-time guidance laws for
three-dimensional missile-target interception,’’ Proc. Inst. Mech. Eng. G,
J. Aerosp. Eng., vol. 230, no. 2, pp. 392–403, Feb. 2016.

[17] J.-P. Dong, J.-G. Sun, Y. Guo, and S.-M. Song, ‘‘Guidance laws against
towed decoy based on adaptive back-stepping sliding mode and anti-
saturation methods,’’ Int. J. Control, Autom. Syst., vol. 16, no. 4,
pp. 1724–1735, Aug. 2018.

[18] G. Hexner and A. W. Pila, ‘‘Practical stochastic optimal guidance law for
bounded acceleration missiles,’’ J. Guid., Control, Dyn., vol. 34, no. 2,
pp. 437–445, Mar. 2011.

[19] D. Zhou and B. Xu, ‘‘Adaptive dynamic surface guidance law with input
saturation constraint and autopilot dynamics,’’ J. Guid., Control, Dyn.,
vol. 39, no. 5, pp. 1–8, 2016.

[20] W. Wang, S. Xiong, S. Wang, S. Song, and C. Lai, ‘‘Three dimensional
impact angle constrained integrated guidance and control for missiles
with input saturation and actuator failure,’’ Aerosp. Sci. Technol., vol. 53,
pp. 169–187, Jun. 2016.

[21] X. L. Liang, M. Z. Hou, and G. R. Duan, ‘‘Adaptive dynamic surface
control for integrated missile guidance and autopilot in the presence of
input saturation,’’ J. Aerosp. Eng., vol. 28, no. 5, pp. 1–8, 2015.

[22] D. Zhou and B. Xu, ‘‘Adaptive dynamic surface guidance law with input
saturation constraint and autopilot dynamics,’’ J. Guid., Control, Dyn.,
vol. 39, no. 5, pp. 1155–1162, May 2016.

[23] B. Xu and D. Zhou, ‘‘Three dimensional adaptive dynamic surface guid-
ance law accounting for autopilot lag,’’ in Proc. Amer. Control Conf.,
Jun. 2014, pp. 578–583.

TONG LI received the M.E. degree in automa-
tion from Harbin Engineering University, Harbin,
China, in 2015. He is currently pursuing the Ph.D.
degree in engineering. His current research interest
includes navigation guidance and control.

HUAMING QIAN is currently a Professor with
the College of Automation, Harbin Engineering
University. His current research interests include
sensor technology and intelligent systems, and
integrated navigation technology.

VOLUME 8, 2020 211481


