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ABSTRACT Widespread proliferation of wireless coverage has enabled culmination of number of advanced
location-based services (LBS). Continuous tracking of accurate physical location is the foundation of these
services, which is a challenging task especially indoors. Multitude of techniques and algorithms have been
proposed for indoor positioning systems (IPS’s). However, accuracy, reliability, scalability and, adaptability
to the environment still remain as challenges for widespread deployment. Especially, unpredictable radio
propagation characteristics in vastly varying indoor environments plus access technology limitations con-
tribute to these challenges. Machine learning (ML) approaches have been widely attempted recently to
overcome these challenges with reasonable success. In this paper, we aim to provide a comprehensive survey
of ML enabled localization techniques using most common wireless technologies. First, we provide a brief
background on indoor localization techniques. Afterwards, we discuss various ML techniques (supervised
and unsupervised) that could alleviate different challenges in indoor localization including Non-line-of-
sight (NLOS) issue, device heterogeneity and environmental variations with reasonable complexity. The
trade-offs among multitude of issues are discussed using numerous published results. We also discuss how
the ML algorithms can be effectively used for fusing different technologies and algorithms to achieve a
comprehensive IPS. In essence, this survey will serve as a reference material to acquire a detailed knowledge
on recent development of machine learning for accurate indoor positioning.

INDEX TERMS Indoor positioning system (IPS), location-based services (LBS), machine learning (ML),
non-line-of-sight (NLOS), wireless positioning, indoor tracking.

I. INTRODUCTION
Accurate real time positioning is the key to enable
location-based services (LBS). Although the global position-
ing system (GPS) is widely used for localization in outdoors,
the GPS usability is not satisfactory in the confined indoor
environments. Unlike outdoor, indoor environments are very
complexwith varying shapes, sizeswith the presence/absence
of stationary and moving objects (e.g. furniture and people).
These factors significantly alter both line-of sight (LOS)
and non-line of sight (NLOS) radio signal propagation caus-
ing unpredictable attenuation, scattering, shadowing and
blind spots that significantly degrade the accuracy of indoor
positioning.
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However, due to the high demand for LBS, significant
attention has been made on the development of indoor posi-
tioning systems (IPS) recently. Typical ranging techniques
based on received-signal-strength-indicator (RSSI) [1], time-
of-arrival (ToA) [2], time-difference-of-arrival (TDoA) [3],
angle-of-arrival (AoA) [4], and channel-state-information
(CSI) [5] have been proposed using various access tech-
nologies such as Wi-Fi [6], Bluetooth [7], ultra wide
band (UWB) [8], and radio-frequency identification tags
(RFID) [9] for indoor positioning. Most ranging techniques
require at least three known anchor nodes to calculate the
location of the unknown target. Few range free techniques
such as Centroid [10] method and DV hop [11] technique are
also studied in the literature.

All these approaches suffer from multitude of challenges
including poor accuracy, high computational complexity,
and unreliability while, most positioning devices lack strong

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 214945

https://orcid.org/0000-0002-4214-696X
https://orcid.org/0000-0002-6306-9772
https://orcid.org/0000-0001-7120-528X
https://orcid.org/0000-0002-7221-6279


A. Nessa et al.: Survey of ML for Indoor Positioning

TABLE 1. Selected acronyms and their explanations.

processing power. In addition, the ability to maintain big
databases (for large scale IPS) while ensuring security and
privacy, and supporting device heterogeneity at a reasonable
cost are some other challenges in indoor localization [12].

In recent years, artificial intelligence (AI) and machine
learning (ML) algorithms find good success in indoor local-
ization [13]–[16]. The main advantage of AI/ML approaches
is their ability to make decisions effectively using observed
data without accurate mathematical formulation.

For example, the authors in [17]–[20] have applied super-
vised and unsupervised ML techniques for NLOS identifi-
cation and mitigation while deep learning (DL) technique
is applied for NLOS mitigation in [14]. A DL Recurrent
neural network (RNN) has been used to cope with RSSI
signal fluctuation by exploring its time domain correla-
tion in [13]. Moreover, DL techniques have been used to
extract the hidden features of the RSSI measurement to min-
imize the collection of fingerprint data in [21] and explore
the unknown environment during robot navigation in [22].
In addition, supervised and unsupervised learning-based
dimension reduction techniques have been used to reduce
the complexity and storage space of fingerprint data in [23]
and [24].

ML has also proven as an effective way to fuse
multi-dimensional data collected from multiple positioning
sensors, technologies and methods. For example, both super-
vised and unsupervised learning have been applied for fusion
weight generation in [25]–[27]. However, unsupervised ML
fusion technique is superior since it calculates the weights in
real-time without offline training [28]. Furthermore, transfer
learning has been applied in fingerprint-based localization to
enhance system scalability without excessive site surveys and
without sacrificing accuracy when there is a lack of labeled
data [29].

While the literature contains a good number of articles
on the application of ML for indoor localization, to the
best of our knowledge no comprehensive survey has been
conducted on this topic. Therefore, in this paper, we dis-
cuss existing techniques for indoor localization and estab-
lish a precedent for the need of ML techniques in the said
domain. Moreover, our paper follows intuitive flow by point-
ing out the challenges and issues in indoor localization,
listing the existing solutions, and afterwards identifying the
gaps that lead us to ML- and DL-based solutions in indoor
environments.

The rest of the paper is organized as follows: A basic
discussion on the nuts and bolts of indoor localization is
presented in Section II. A brief overview of ML techniques
is presented in Section III followed by a deeper analysis
of existing ML-based solutions for IPS in Section IV. Few
potential applications are highlighted in Section V and finally
in Section VI, we discuss the limitations in ML approached
and future challenges.

II. REVIEW OF INDOOR LOCALIZATION BASICS
An Indoor Positioning System (IPS) is a GPS free system that
estimates the position of the objects or people in a confined
environment (e.g. buildings, tunnels) in a continuous man-
ner. Typically, it has two phases: 1) the distance measure-
ment phase and 2) the position estimation phase [30]. In the
distance measurement phase, an IPS estimates the distance
between the target and anchor nodes whose positions are
known apriori using a suitable ranging technique. Then, the
IPS uses these distance observations to estimate the loca-
tion of the target by using different localization/positioning
methods.

A. RANGING AND ENHANCED RANGING TECHNIQUES
The most common used localization techniques are given
below:

1) RECEIVED-SIGNAL-STRENGTH-INDICATOR (RSSI)
RSSI in general is the easiest parameter to measure, how-
ever it yields the most inaccurate distance measurement,
especially in indoors due to fading, shadowing, refraction,
scattering, and reflections. Therefore, the use of different
filters, like the Extended Kalman Filter (EKF) [31] and
other ML techniques have been used to mitigate the RSSI
fluctuations.
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FIGURE 1. Schematic diagram of positioning using RSSI measurements.

2) TIME-OF-ARRIVAL (ToA)
ToA technique uses the signal propagation time to calcu-
late the range (distance between the target and the anchor
node). ToA is in general much more accurate than the RSSI
approach.

However, processing time and synchronization time affect
the distance measurement in ToA [32]. There are few tech-
niques, such as the symmetric double sided two-way ToA
ranging [33] are proposed to eliminate the time synchroniza-
tion error. This approach averages out the error by consider-
ing many back and forth rounds signal propagation between
the nodes.

3) TIME-DIFFERENCE-OF-ARRIVAL (TDoA)
This method utilizes the difference in signal propagation
times between the target node and the number of anchor
nodes to determine the position of the target node [34]. In
this technique, at least three anchor nodes are needed to
calculate the location of the target at the intersection of the
hyperboloids.

TDoA can address the issue of synchronization error to
some extent as it accounts for the synchronization of only
the transmitters [35]. However, the NLOS propagation of
the signal significantly degrades the performance of the
ToA/TDoA-based systems. Hence, in the literature a number
of NLOS identification and mitigation methods were pro-
posed to improve the accuracy of ToA/TDoA-based localiza-
tion [36].

4) ANGLE-OF-ARRIVAL (AoA)
AoA technique uses the angle that signal makes with
an antenna array for position estimation [37]. This is an
enhanced ranging technique. Since both the angle and dis-
tance measurement are used, ideally two anchor nodes are
enough for the position estimation [38]. However, one draw-
back of this method is the requirement of antenna arrays that
makes it complex and expensive [39]. This method may also
employ time difference of arrival of the signal at individual
antenna elements but, evenmore complex hardware and accu-
rate calibration are required for this.

FIGURE 2. Schematic diagram of Trilateration-based positioning.

5) CHANNEL-STATE-INFORMATION (CSI)
This is also an enhanced ranging technique. CSI can be
used to get an accurate estimate of the received signal over
the entire signal bandwidth. This is much better than RSSI
where, only a single amplitude value for the received signal
is obtained. CSI generally needs multiple antennas and the
channel frequency response seen by each antenna has to be
estimated. CSI can provide both magnitude and the phase of
the channel response and it is suitable for both range-based
and range free localization schemes [5].

The advantages and disadvantages of different distance
measurement techniques are summarized in Table 2.

B. LOCALIZATION METHODS
The localization methods which are commonly used for
indoor localization are listed below:

1) MULTILATERATION AND TRILATERATION
It is a technique for estimating the position of the unknown
node with the help of the three or more known nodes and
the corresponding associated distances [40]. Trilateration is
a special case of multilateration where only three known
nodes are used. In a two-dimensional space, the position
of the target node is computed by the intersection of three
imaginary circles as shown in Figure 2. However, in the
practical indoor environment, these circles do not meet at
a single point due to NLOS effect that causes huge errors
in the positioning. Hence, there are two major issues in the
trilateration algorithms:

1) Target node is not at the common intersecting point of
the circles due to inaccuracy in ranging techniques.

2) The given known anchor nodes may be co-linear.

Different techniques and algorithms have been presented
to address these issues. In [41], a hybrid technique of finger-
printing and trilateration has been used to overcome the first
issue. In [42], authors proposed a least-squaremethod to solve
both the issues stated above. In the same spirit, authors in [43]
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TABLE 2. Advantages and disadvantages of different distance measurement techniques.

propose a weighted least square method to solve the non ideal
case of trilateration.

2) TRIANGULATION
It can be used for positioning accuracy when the angle of
arrival is available. It is less complex with moderate pre-
cision [44] requiring at least two anchor nodes. Location
accuracy in this technique heavily depends on the precision of
the AoA estimation. Increasing the number of anchor nodes
can enhance the localization performance.

3) FINGERPRINTING
It is a widely used indoor positioning method using var-
ious wireless access technology such as Wi-Fi, BLE, and
ZigBee [45]–[47]. Fingerprint-based localization method
involves two phases:

1) Offline phase training.
2) Online phase testing.

During the training phase, RSSI or CSI data is collected
at access points (APs) for different known indoor positions
called reference points (RPs) and a radio map is constructed
with the measured data for each recorded position. During
the online phase, the real-time position of the target node is
estimated by comparing measured data at APs for the target
node and the radio map created in the training phase.

This method provides high accuracy if more offline data
is collected accurately to construct the radio map. However,
constructing the radio map for large area deployment requires
tremendous effort (e.g., manpower, time and cost). Moreover,
for dynamic networks, when the positions of the nodes, even a
single node, are changed or deleted unexpectedly, the offline
database should be recreated.

ML algorithms are often used to enhance the accuracy
of fingerprinting and help recreating radio maps. K-Nearest
Neighbors (K-NN) is the simplest algorithm used for
fingerprint-based localizationmethods. HereK represents the
number of the nearest neighbors. In this algorithm a distance
metric is calculated that computes the distances between the
measurements in the training phase and the measurements of
the target at different APs. The most commonly used distance

metric is Euclidean distance. In this algorithm K nearest RPs
of the target are selected from the radio map which have the
lowest distances. Afterwards, the coordinates of these RPs
are averaged to estimate the location of the target. However,
other distance metrics such as Manhattan distance, Maha-
lanobis, and Minkowski distances are also used with K-NN
algorithm [48].

The authors in [48], [49] have compared Mahalanobis,
Manhattan, and Euclidean distances in fingerprint-based
localization and found that Manhattan also known as City
Block distance provides more accurate results than oth-
ers. Different improvements to the K-NN algorithms have
been found in the literature. For example, authors in [50]
and [51] have used enhanced weighted K-NN algorithm and
clustering-based K-NN algorithms, respectively for higher
accuracy.

4) CENTROID
In this method, a geometric relation is used to estimate the
location of the unknown node rather than using the distance
or angle measurement. The positions of the anchor nodes
are determined when a stable communication link is estab-
lished between each anchor node and the unknown target
node. As the position of the anchor nodes connected to the
target node form a definite geometric shape, the centroid
of that geometric shape is considered as the location of the
unknown nodes. Different algorithms have been employed in
the literature that utilized the centroid method. A BLE bea-
con RSSI-based indoor positioning system using Weighted
Centroid Localization (WCL) approach has been proposed
in [52].

5) DV HOP
This method involves estimating the distance-vector in a
multi-hop environment based on the hop count. The coor-
dinates of the ith node and the minimum hop count value
from the anchor node to the ith node are maintained in an
information table. The anchor node broadcasts the location
information to the neighbor nodes which then rebroadcast
the information to others and so on. The important task for
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TABLE 3. Advantages and disadvantages of different localization methods.

this method is to find the hop size for a particular hop. After
getting the average hop size h, the distance of the node that
is m hops away from the anchor node is simply calculated as
m × h. Based on the measured distance, target nodes locate
themselves using a position estimation algorithm.

A Voronoi diagram is typically used to scale the DV hop
algorithm so that the scope of the flooding in the DV hop
localization system is limited [52]. Additional anchor nodes
are created by promoting suitable localization nodes [11].

The advantages and disadvantages of different localization
methods are presented in Table 3

C. WIRELESS TECHNOLOGIES USED FOR INDOOR
LOCALIZATION
In this subsection, radio frequency wireless technologies that
are most commonly used in indoor localization are briefly
presented.

1) Wi-Fi
Wi-Fi is most widely used for IPS because of the ubiquitous
availability of Wi-Fi systems [53]. It can provide fairly large
coverage range however, the power consumption of WLAN
systems are comparatively higher [54]. Typically, the Wi-Fi
based localization methods are trilateration or fingerprint
based. AoA, ToA and RSSI-based ranging techniques are
used for trilateration-based methods [55]. RSSI and CSI
measurements are usually used to generate the fingerprint-
map. RSSI is more attractive because RSSI information can
be easily collected from a commodity access point (AP)
without extra hardware [56]. However, the fluctuation of
RSSI often leads to severe performance degradation. In the
literature, many machine-learning methods have been found
to mitigate the impact of RSSI fluctuations [47], [57], [58].
For pattern matching in online phase K-Nearest Neighbor
(K-NN), Artificial Neural Network (ANN) [59], Support
Vector Machine (SVM) [60] and K-means [61] and Random
Forest [62] algorithms have been used. Advance network
interface cards (NICs) are required to measure CSI that adds
extra cost. However, CSI-based fingerprinting can obtain
centimeter-level localization accuracy [63].

2) RADIO FREQUENCY IDENTIFICATION DEVICE (RFID)
RFID is a very inexpensive technology [64]. In general,
RFID-based positioning technology is durable against envi-
ronmental factors and can be used almost in any appli-
cation. The fingerprinting position method based on RSSI
measurement can be used for RFID-based indoor posi-
tioning systems [65]. Ni et al. have proposed a scheme
named LANDMARC [66] where active RFIDs are used
to track the user location. Although LANDMARC is a
comparatively long-range energy efficient system, it suf-
fers from tracking latency. Huang et al. [67] have pro-
posed an active RFID-based real-time RFID indoor posi-
tioning system. They use Kalman filters for drift removal
and Heron bilateration for location estimation. Siachalou
et al. [68] have proposed a phased fingerprint-based posi-
tioning system for tracking in warehouses and large retail
stores. Result shows that phase-based fingerprinting is
more immune to multipath fading and coupling effects
with the environment and outperforms the RSSI-based
fingerprinting.

3) ZigBee
ZigBee is a low data rate wireless personal area network [69],
[70]. The authors in [46], have proposed a fingerprint-based
positioning system where the interference data is first fil-
tered out in the training phase and then the weighted nearest
algorithm and Bayesian algorithm were used to calculate
pedestrian’s location. The reported accuracy in their work
is 81 cm. Gharghan et al. [71] have proposed a ZigBee-based
positioning systemwhere they have used log-normal shadow-
ing model (LNSM) to estimate the distance and then applied
adaptive neural fuzzy inference system (ANFIS) to improve
the distance estimation accuracy. Simulation results show
that the distance estimation accuracy has been improved by
84% and 99% for indoor and outdoor velodromes, respec-
tively. Fang et al. [72] have proposed a ZigBee-based
ensemble learning localization framework for indoor envi-
ronments that takes the advantages of various algorithms,
weights the estimation results, and combines them to improve
accuracy.
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TABLE 4. Comparison of distance measurement techniques and algorithms with appropriate wireless standards.

4) ULTRA WIDE BAND (UWB)
Since UWB is a short-range radio technology that transmits
short pulses (<1 ns) over a large bandwidth, it is less sensitive
to multipath effects and offers high precision. Localization
systems based on UWB technology achieve an accuracy of
centimeters (<30 cm) that is considerably better than BLE or
Wi-Fi. The main challenge in UWB-based IPS is the NLOS
effect. The NLOS signal significantly reduces the accuracy
of localization. ML techniques have been gaining a lot of
research attention in the literature to distinguish and mitigate
the NLOS effect [73]. The authors in [74], have proposed
an UWB system for positioning in harsh environment that
does not require any apriori knowledge. The root mean
square (RMS) of absolute range errors after NLOSmitigation
was reduced from the original 1.3 meter to 0.651 meter in
their experiment in a real office environment.

5) BLUETOOTH LOW ENERGY (BLE)
Bluetooth has been considered as a competitor to Wi-Fi due
to the wide adaptability of Bluetooth Low Energy (BLE)
by most smart phones [45]. BLE can provide a coverage
range of 70-100 meters with high energy efficiency [75].
In recent years BLE-based RSSI fingerprinting has gained
a lot of attention in research community. To improve the
accuracy in indoor localization, Yadav et al. [76] pro-
posed Inertial Measurement Unit (IMU) sensors and BLE
beacon-based positioning system that employs a probabilistic
approach involving the fingerprint-technique and Pedestrian
Dead Reckoning (PDR) [77]. These two methods are com-
bined through a fuzzy-logic Kalman filter called Trusted K
nearest Bayesian estimation (TKBE) algorithm. Result shows
that the accuracy of their proposed algorithm is less than
one meter in most of the experimental cases. The authors
in [78], compared the performance ofWi-Fi, BLE and ZigBee
with simple RSSI-based trilateration method and found the
achieved accuracy of Wi-Fi, BLE and ZigBee are 48.6 cm,
84.4 cm and 91.1 cm respectively.

The localization perspective of different measuring tech-
niques along with different localization algorithms and tech-
nologies with respect to accuracy, cost, complexity, and
scalability is summarized in Table 4.

III. MACHINE LEARNING FOR IPS
Machine Learning algorithms can effectively solve many of
the limitations of the conventional techniques used for local-
ization in indoor environments. Conventional methods often
lack scalability; therefore, cannot perform well in the large
scale IPS such as airports, shopping malls and multi-storey
buildings with large training data sets.

Furthermore, traditional IPS methods are not very flexible
in adapting well to dynamically changing environments and
in the presence of multi-dimensional and heterogeneous data
applications.

A. MOTIVATION OF USING ML IN INDOOR LOCALIZATION
Fluctuation in RSSI is the most challenging problem in IPS
and it effects the location accuracy adversely. The most
significant advantage of ML is its ability to learn useful
information from the input data with known or unknown
statistics. For instance, recurrent neural networks could effec-
tively exploit the sequential correlation of time-varying RSSI
measurements and use the trajectory information to mitigate
RSSI fluctuations [13].

One of the limiting factors in usage and accuracy of
fingerprinting-based localization methods is the presence of
high dimensional data and related computational complex-
ity. Supervised and unsupervised dimension reduction tech-
niques such as principal components analysis (PCA) [24]
and Gaussian process manifold kernel dimension reduction
(GPMKDR) [23] techniques can be applied to transform the
high dimensional features to low dimension that significantly
reduce the storage space and computational complexity of
fingerprint-based localization.

Reinforcement learning is another promising ML tech-
nique, that can achieve fast network control based on
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defined learned policies. It is used in robot navigation that
enables the robot to create an efficient adaptive control sys-
tem for itself which learns from its own experience and
behavior [89].

Scalability and adaptability of an IPS model to the chang-
ing environments is a desirable feature specially in dynam-
ically changing indoor applications. In this spirit Transfer
learning plays an important role as it enables machine learn-
ing to learn new things quickly in the new environment
by comparing with the things learnt beforehand. Transfer
learning can be applied in indoor positioning in the scenario
when the amount of data in the source domain is sufficient,
whereas the amount of data in the target domain is small.
For instance, transfer learning mechanism can be applied into
fingerprint-based localization to enhance system scalability
without excessive site surveys and without sacrificing accu-
racy when there is lack of labeled data [29]. In addition to
transfer learning, DL techniques have shown great potentials
in enhancing localization, in complex environment scenarios.
Specifically, in situations when it is difficult to extract and
model the nonlinear correlated features [14].

Furthermore, various techniques such as, Bayesian esti-
mation based concept including Kalman filters [90], [91];
unscented Kalman filters [92]; non Bayesian methods such as
Least Squares (LS) [93]–[96]; subsample interpolation [97],
[98] and deconvolution approximations [99] are proposed for
improved localization by mitigating multipath propagation
error. Bayesian methods show better performance than other
conventional algorithms in positioning accuracy.

Amalgamation of sensor data is used for accurate loca-
tion estimation in the indoor environment, and which is
strongly dependent on efficient data fusion techniques. Con-
ventional methods for data fusion include LS [93]–[95]
and MMSE [96] are not very promising. It requires the
knowledge of probability distribution in localization mea-
surements, which is often unavailable in real applications.
Also, LS method is not perfect as the noise is amplified
by squaring and also LS involves extra variables in the
equation. Maximum a Posterior (MAP) estimator [100]- and
MMSE [96]-based hybrid positioning algorithm show some
performance improvement but on expense of computational
complexity. ML algorithms are particularly good in handling
multi-dimensional and multi-variety data under dynamic,
uncertain environments. It can be effectively trained to fuse
results obtained from multiple positioning sensors, technolo-
gies, and methods.

Bayesian methods integrate multi-modal location sen-
sors and exploit historical data through a recursive
tracking process [101]. Particularly, Kalman filters have
been [102]–[104] used to estimate the most likely current
location based on prior measurements, assuming Gaussian
noise and linear motion dynamics. However unsupervised
ML fusion technique is more realistic to use in practical
scenario because it exploits the online measurements to
calculate the weights typically in real-time and does not need
to be trained during the offline phase [105].

In the following sections, we will discuss different ML
techniques used in overcoming various indoor localization
challenges, in detail. Also, summary of different ML tech-
niques are presented in Table 5.

B. SPECIFICS OF ML TECHNIQUES IN LOCALIZATION
In localization, classifier algorithms are mainly used to
extract core features of the signals. In fingerprint-method
clustering is performed based on these extracted fea-
tures. Feature extraction is also important for NLOS
identification and mitigation. K-NN [109], Support-Vector
Machine(SVM) [110], Random Forest, Decision Tree, Arti-
ficial Neural Networks (ANN) [111] are widely used classi-
fication algorithms.

Data mapping and over-fitting are the big challenges
in fingerprint-based localization systems. K-NN is widely
used for pattern matching in fingerprint-technique. However,
K-NN does not work well with large data sets and with high
dimensional data. In noisy irregular environments (such as
underground mines and subway stations) due to the pres-
ence of time varying attenuation and noise factors, RSSI
exhibits high dimensionality [112]. In such cases, SVM is
more effective since it adopts kernels mechanism to find
difference between two points of the two separate classes
and models linear and nonlinear relations with better gener-
alization performance [17]. However, SVM-based methods
are time-consuming and require lots of memory when the
number of support vectors (SVs) become large. The Decision
Tree based indoor localization provides better performance in
improving localization accuracy than other classification like
K-NN, and Neural Network [113]. However, there is a pos-
sibility of information missing when the Decision Tree deals
with continuous numerical data and performs categorization.

In practical fingerprinting scenarios, a fingerprint-map
generated in the offline phase contains a large data set. So it
is time consuming to compare the data acquired in the online
phase with each data point of the fingerprint map. Therefore,
the fingerprint-map is divided into a number of clusters and
the data of the target node is compared only with the data
point of the corresponding cluster center. Hence, the cluster
with highest matching is selected. Then, the acquired data is
compared only with the data within the matching cluster and
the location estimation is carried out. If the number of refer-
ence points is still large in each group after clustering or the
number of layers in the decision cannot be reduced, then the
problem of overfitting is likely to occur. In this case Random
Forest can be used to eliminate the over-fitting problem. ARF
model is constructed based on the fingerprint-information of
the reference points in the group after clustering [114].

Moreover, it is important in fingerprint-localization tech-
niques that each reference point must exhibit at least one
difference from other reference points in terms of extracted
features. However, it is often seen that some features are
not informative or repeat redundant information from other
features. In such a case, dimensionality reduction is important
to reduce the model’s complexity, to shorten the training
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TABLE 5. Summary of different machine-learning techniques.

period and save the storage space. In case of high dimensional
data, Principal Component Analysis (PCA) is beneficial as
it simplifies the complexity of high dimensional data while
retaining trends and patterns. PCA is mainly used for dimen-
sion reduction and shrinking the radio map for saving storage
space [24].

However, in complex environment scenarios where fea-
tures extraction is difficult and data has high dimensionality,
DL is very promising to improve localization accuracy [21].
DL is well known for its distributed computing capability and
analyzing of a huge volume of unlabeled and un-categorized
data. The biggest advantage of DL algorithms is their ability
to extract features from data directly without manual feature
extraction [107]. This eliminates the need of domain expertise

and extraction of hardcore features. Feature extraction and
classification are carried out by a DL algorithm known as
Convolutional Neural Network (CNN) [115].

Many of the indoor positioning approaches are vulnerable
to global positioning error and kidnapped-robot problems.
The global localization problem occurs when the initial posi-
tion of the target is unknown to the IPS during initialization.
While kidnapped-robot problem occurs when a well-located
target moves to an unknown environment. In such a chal-
lenging situation, RL proves to be the best technique to
use. As RL enables the agent to achieve a long-term objec-
tive by interacting with the environment (based on the
reward and penalty process), and are able to solve problems
caused by radio signal instability. Therefore, RL techniques
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TABLE 6. Research problems in localization and applied machine-learning techniques.

are able to construct the map and optimize its action
continuously [116].

The applications of ML techniques in solving various chal-
lenges in indoor localization are presented in Table 6.

IV. EXISTING ML BASED ENHANCEMENTS TO IPS
In this section, we survey the existing ML based solutions
addressing different challenges in indoor localization.

A. ML FOR NLOS ERROR MINIMIZATION
One of the main challenges in indoor positioning is the
large ranging error caused by NLOS/multipath propagation.
Therefore, it is imperative to mitigate this effect. In the liter-
ature a significant amount of work has been found on NLOS
problems. The existing literature typically deals with NLOS
mitigation in two ways:

1) Identifying NLOS propagation and then suppressing
the NLOS induced range error.

2) Mitigating NLOS effect directly without implementing
NLOS identification.

In NLOS identification, the goal is to distinguish the NLOS
signals and LOS signals between a transmitter and a receiver
by analyzing the channel statistics, range estimates or the
radio map [128].

In the literature different ML approaches have been
applied to extract different features from the received sig-
nal/waveform and classify the NLOS/LOS components.
To this end, in [17], Stefano et al. have developed least-square
support vector machine based techniques for NLOS identifi-
cation and mitigation that does not require any explicit statis-
tical model. From the received waveform the authors have
extracted different features such as energy of the received
signal, rise time, maximum amplitude of the received signal,
mean excess delay, root mean square (RMS) delay spread and
kurtosis and constructed different length feature subsets. The
authors have designed three localization strategies:

1) Identification that only considers LOS signals for local-
ization.

2) Identification and mitigation that classifies the NLOS
and LOS signals and then mitigates the range estimates
error of NLOS signals.

3) Hybrid approach that discards mitigated NLOS range
estimates in the presence of sufficient number of LOS
signals.

Results show that the identification strategy classifies the
NLOS/LOS successfully with 91% accuracy using a fea-
ture subset that includes energy of the received signal, rise
time, kurtosis. The identification and mitigation strategy
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achieves outage probability (i.e. error is less than 2 m)
around 10% without the presence of any LOS signals, while
the hybrid approach further improves the performance, spe-
cially in presence of significant number of LOS signals.
In [18], Ramadan et al. have proposed a Random Forest
based method for NLOS identification in which Channel
Impulse Response (CIR) is used for features extraction.
Authors extracted many features including mean, standard
deviation, skewness, and kurtosis from the received signal
to train the Random Forest algorithm. In the experiment, the
authors estimated CIR by placing a transmitter and receiver
at different positions in a wide hall at a height of 1.6 m.
The authors used two metrics: identification accuracy and
algorithm running time to evaluate the performance of the
Random Forest algorithm with least squares-support vector
machine (LS-SVM) [19], and other state-of-the-art classifi-
cation algorithms. Results show that Random Forest achieves
NLOS and LOS identification accuracy of 97.3% and 95%
respectively, with a reasonable computational complexity.

Henk et al. [117] have proposed two non-parametric
regression techniques for ranging error mitigation on fea-
tures extracted directly from the received waveform. The first
technique employs regression with SVM, and the second
technique employs regression with Gaussian Process (GP).
The performances of the proposed techniques were evaluated
in terms of outage. Results show that GP error mitigation has
good performance, with outages remaining below 10% for all
NLOS.

Nguyen et al. [118] have proposed Relevance Vector
Machine (RVM) based method for UWB ToA localization.
In their proposed model an RVM based classifier is used
to identify the LOS and NLOS signals. Afterwards, a RVM
regressor is adopted for ranging error prediction. The authors
have compared the performance of RVM and SVM in NLOS
identification and localization accuracy estimation. Results
show that using three features, the mis-identification prob-
ability of SVM and RVM classifier are 0.1143 and 0.1084,
respectively while the number of used relevance vectors and
support vectors are 50 and 12, respectively. It is observed
that in 63.37% cases, RVM achieves the positioning error
less than 1 m while the corresponding percentages of SVM
is 58.48%.

The current ongoing research of NLOS identification and
mitigation techniques mainly developed for UWB radio sig-
nals [117], [118]. Due to the large bandwidth of UWB signals
which means short time domain pulses, the LOS component
can be readily identified. Therefore, these techniques cannot
be readily applied to narrow band communication technolo-
gies such as Wi-Fi. In this spirit, Xiao et al. [129] proposed
two ML and one hypothesis testing algorithms using RSSI
measurements from received signals for NLOS identifica-
tion and mitigation in Wi-Fi systems. Their proposed Least
Squares Support Vector Machine Classifier (LS-SVMC), and
Gaussian Processes Classifier (GPC) identify the NLOS sig-
nals while Least Square Support Vector Machine Regres-
sor (LS-SVMR) plus Gaussian Processes Regressor (GPR)

performNLOSmitigation. Performing extensive experiments
in various indoor environments, it has been found that their
proposed techniques can distinguish between LOS/NLOS
conditions with an accuracy of around 95%. Simulation
results show that the performance of GPR is slightly bet-
ter than LS-SVMR when the training data is low. The
mean errors are.86 m and.82 m for LS-SVMR and GPR,
respectively.

In the aforementioned works [17], [18], [117], [118], the
authors defined and extracted various features by analysing
the signal properties first, and then employed them as the
input vector to the classifier (e.g., SVM, MLP). Kurtosis,
peak to lead delay, mean excess delay, and RMS delay spread
are the most commonly used features for NLOS/LOS identi-
fication. However, in the complex environment, it is hard to
define the featuresmanually. To overcome this problem, Jiang
et al. [14] proposed a DL method for UWB NLOS detection
and classification. The proposed method is based on the
Convolution Neural Network (CNN) and Long-Short Term
Memory Recurrent Neural Networks (LSTM-RNN) where
CNN was used to extract the non-temporal features from
the raw channel impulse response (CIR). Afterwards, the
extracted features in CNN are fed into the LSTM for classify-
ing LOS and NLOS signals. Results show that CNN-LSTM
outperforms the LSTM in NLOS classification compared
with single LSTM. Authors of [73] also used CNN for accu-
rate location estimation in an UWB IPS with multiple anchor
nodes.

Although supervised ML is widely used in the literature
to identify NLOS signals, it is not quite feasible to use in
the scenario where the environment often changes due to
the movement of the furniture from one location to another
location. To overcome this limitation, Fan et al. [20] proposed
an unsupervised approach called Expectation Maximization
for Gaussian Mixture Models (EM-GMM) that discriminates
the LOS and NLOS components. Specially they applied EM
over GMM to find the maximum likelihood of a received
signal to determine whether it belongs to LOS or NLOS
distribution. Moreover, the authors found that their proposed
algorithm achieves almost the same NLOS detection accu-
racy as supervised learning algorithms while it takes only
44% of running time required by them. The main advantage
of EM-GMM is that it does not require any rigorous and
explicit labeling of the database at a certain location.

The performance of different ML approaches in NLOS
classification and mitigation is shown in Table 7.

1) LESSONS LEARNED
First, based on [118] and [17], [117], we observe that the
performance of RVM classifier is better than SVM in NLOS
identification and mitigation. Moreover, RVM uses fewer
relevance vectors than the number of support vectors in
the SVM. From these observations, it can be inferred that
RVM [118] is preferred to the SVM in NLOS identification
and mitigation. Second, according to [14], DL can be used
to directly extract features for NLOS/LOS classification in
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TABLE 7. Machine learning based solutions for NLOS identification/mitigation.

a dynamic network environment with time-varying channel
impulse response (CIR). Third, based on [20] unsupervised
ML approaches are useful for classification NLOS and LOS
signal classification in an unknown environment where there
is no labelled data.

B. ML FOR ENHANCED FINGERPRINTING BASED
LOCALIZATION
1) REDUCING COMPUTATION COMPLEXITY AND SAVE
STORAGE
To reduce computation complexity and save storage space
for fingerprint-based localization of a multi storey building,
authors in [130] proposed a K-means based method to each
floor. The observation vector is compared with the cluster
head’s (CH’s) of each floor to decide the correct floor. In the
second stage the comparisons are done with floor wise. In this
model the server transmits only the cluster head info with
their corresponding floor labels to the client that significantly
reduces the complexity.

Mo et al. [124] proposed a Random Forest based
space-division model where the entire radio map is first
divided into multiple sub radio maps. Afterwards, maximum
likelihood estimation (MLE) and Kernel Principal Compo-
nents Analysis (KPCA) are applied for estimating the intrin-
sic dimensionality and extracting features of each sub radio
map respectively. Results show that their proposed method
cuts down radio map size by 74% along with noise suppres-
sion and achieves 98% coarse location accuracy.

Salamah et al. [24] proposed a Principal Component Anal-
ysis (PCA) method to improve the performance and to reduce
the computational cost of the Wi-Fi indoor localization sys-
tems. Result shows that the proposed method in [24] can
reduce the computational complexity by 70% using RF.

Jia et al. [23] proposed a supervised learning based
Gaussian Process Manifold Kernel Dimension Reduc-
tion (GPMKDR) method. In the proposed method, raw RSSI
measurements and their location labels are first processed
by GPMKDR in the offline phase. GPMKDR is used to
train a nonlinear mapping that transforms any high dimen-
sional RSSI vector to a low dimensional feature. Results
show that GPMKDR significantly improves the localization
performance in comparison with the PCA-based method.

2) MINIMIZING TRAINING TIME
Le et al. [21] proposed a machine-learning based indoor
position model to reduce the workload of fingerprinting by
applying Deep Belief Network (DBN) on the unlabeled RSSI
measurements. DBN extracts the hidden features of the fin-
gerprints, and thereby minimizes the collection of finger-
prints. In this paper, a pre-training phase is employed to train
an unsupervised deep feature learning model. Afterwards, the
model is used to extract the deep features of the labeled fin-
gerprints for localization estimation. The extracted features
are used as inputs for conventional regression and classifica-
tion techniques such as SVM and K-NN. Results show that
the proposed method improves the localization accuracy by
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1.9 m by using only 10% of labeled fingerprints while the
baseline approach uses 100% of the labeled fingerprints.

Wu et al. [125] proposed an Online Independent Support
Vector Machine (OISVM) classification-based localization
method using RSSI from Wi-Fi signals. Compared to tra-
ditional SVM, OISVM is capable of learning online and
works seamlessly with crowdsourcing. Moreover, the model
size in OISVM is smaller than SVM and it can control the
trade-off between accuracy and model size. These features
make OISVM attractive to use in commercial mobile appli-
cations. In the offline phase, the proposed method develops
a new kernel selection parameter to reduce the time cost.
Therefore, the training time of the proposed method could be
much faster than the traditional methods. In the online phase,
location estimation is conducted for new RSSI samples, and
meanwhile online learning is performed as new training data
arrives, which can be collected via crowdsourcing. Results
show that the proposed method in [125] significantly reduces
the prediction time and training time and achieves the local-
ization accuracy error by 0.8 m.

3) MINIMIZING SIGNAL FLUCTUATION
In fingerprint-based localization RSSI is widely used.
However RSSI measurement value is very unstable due
to the channel NLOS/multipath propagation, and device
heterogeneity.

To mitigate RSSI fluctuations and enhance the accuracy
of the localization, authors in [120] proposed a normal-
ized rank based SVM that achieves room level accuracy.
In the same spirit, Hoang et al. [13] proposed a Recurrent
Neural Network (RNN) based solutions for Wi-Fi finger-
printing that exploits the correlation of RSSI measurements
from time-varying RSSI and the trajectory information. The
authors used different types of RNN, including Vanilla
RNN, LSTM, Gated Recurrent Unit (GRU), Bidirectional
RNN (BiRNN), Bidirectional LSTM (BiLSTM), and Bidi-
rectional GRU (BiGRU) and evaluated the performances of
these algorithms. Result shows that LSTM structure achieves
an average localization error of 0.75 m that outperforms
feed-forward neural network, K-NN, Kalman filter, and other
probabilistic methods.

To overcome the negative effect of RSSI fluctuations in
fingerprint-based localization, researchers have proposed fin-
gerprint based on channel-state-information (CSI) where the
CSI level at different reference points are recorded in the
offline phase. Authors in [121], [122] developed a deep learn-
ing based method called DeepFi to improve the accuracy of
fingerprint-based localization that uses CSI amplitudes from
all the sub-carriers. The DeepFi system architecture includes
an offline training phase and an online localization phase.
In the offline training phase, DL is utilized to train all the
weights of a deep network as fingerprints. In the offline train-
ing phase, DeepFi adopted a greedy learning algorithm using
a stack of Restricted Boltzmann Machines (RBMs) to train
the deep network in a layer-by-layer manner. In the online
localization phase, a probabilistic data fusion method based

on the radial basis function (RBF) was developed to obtain
the estimated location. Result shows that DeepFi outperforms
several existing RSSI and CSI-based schemes in different
network scenarios.

In [115], the authors propose CiFi based on Deep Con-
volutional Neural Network (DCNN) with commodity 5GHz
Wi-Fi. CIFi collects CSI data and scans the phase information
that is later used to estimate AoA. The estimated AoA are
transformed to CSI images. These images are used to train
DCNN in the offline phase. In the online phase, the location
of the target is predicted based on the trained DCNN and new
AoA. Using CSI and RSSI, Hsieh et al. [123] proposed a DL
based method based on multi-layer perceptron (MLP) and
one-dimensional Convolutional Neural Network(1D-CNN)
to estimate the location of the object. Result shows that
the 1-D CNN network achieves excellent localization per-
formance with low network complexity. We summarize the
solutions mentioned in this subsection in Table 8.

4) LESSON LEARNED
First, based on [130], applying K-means algorithm in floor
wise in fingerprint-based localization of a multi storey build-
ing, significantly reduces the computation complexity. Sec-
ond according to [24], PCA and KPCA significantly reduce
the size of radio map as well as the computational com-
plexity. Third, based on [23] we can conclude, in the pres-
ence of labelled location-data, Gaussian Process Manifold
Kernel Dimension Reduction (GPMKDR) is preferred to
PCA for dimension reduction. Fourth, from [21], deep belief
network (DBN) can be applied to extract hidden features
of unlabelled data from crowdsourcing fingerprinting that
eliminates the need of excessive collection of radio-map in
fingerprint-based localization. It is also useful in the scenario
where environment changes very frequently. Fifth, follow-
ing [125], training time can be reduced significantly when the
system works with crowdsourcing seamlessly and dynami-
cally updates the training data. At last, according to [121],
[122], autoencoder is able to extract useful and robust infor-
mation from RSS data or CSI data, and improves the local-
ization accuracy.

C. ML FOR TRAJECTORY LEARNING
Fingerprint-based indoor positioning approaches require a
prior radio map. Therefore, when a prior map is not avail-
able, trajectory learning based localization approaches such
as SLAM [131]–[133] and crowdsourcing [134], [135]
have been devised. In trajectory learning based localization
approaches, spatial context such as maps and landmarks are
used for calibrating the localization error without additional
hardware [119], [136].

In order to deal with the scenarios when radio maps are
not available, Yoo et al. [119] proposed a ML-based map-
less indoor localization model forWi-Fi based systems where
smartphones are used to collect RSSI. The proposed model
combines Particle filter and Gaussian Process (GP) for the
position estimation and works in two phases. In the first

214956 VOLUME 8, 2020



A. Nessa et al.: Survey of ML for Indoor Positioning

TABLE 8. ML solutions for enhanced fingerprinting.

phase, the algorithm analyses the pattern of the Wi-Fi sig-
nals collected from crowds and detects the start and end
points of any landmark. Afterwards, it applies Linear Dis-
criminant Analysis (LDA) and PCA for dimension reduction
and clustering data points obtained from different landmarks.
In the second phase, authors applied dynamic wrapping with
Kalman smoothing to match different lengths and to time
synchronization of the samples. Finally, authors applied GP
and Particle filters for position estimation. Result shows that
the model achieves accurate localization results and the pos-
ture of the participants does not influence the performance.
Afterwards, the authors also extended their work in [135] for
landmark and floor detection.

D. ML FOR ROBOT NAVIGATION
Autonomous navigation of mobile robots in a complex envi-
ronment is a daunting task. Recognition of obstacles and
their locations information are required for safe and robust
navigation of the intelligent robot system [138]. In practi-
cal scenarios, this information is not available beforehand.
High-level perception capabilities are required to acquire
this information. DL, RL and their combination called Deep

Reinforcement learning (DRL) manifest great potential in
solving many challenges in robotics [137].

To explore an unknown environment during robot navi-
gation, Tai et al. [22] proposed a Deep Q-Network (DQN)
based learningmodel where Convolutional Networkwas used
to extract features from an RGB-D sensor. After training a
certain number of times, the robot can travel in new envi-
ronments autonomously. Wang et al. [127] proposed a DRL
architecture using a two-stream Q-network for the navigation
tasks in dynamic environments. The proposed architecture
divides the main task into two sub-tasks: local obstacle avoid-
ance and global navigation. It processes spatial and temporal
information separately for obstacle avoidance and generates
action values. The global navigation sub task is resolved by
a conventional Q-network framework. An online learning
network and an action scheduler are introduced to combine
two pre-trained policies and then continue exploring and
optimizing until a stable policy is obtained.

E. ML FOR FUSING TECHNOLOGIES, FEATURES AND
ALGORITHMS
Innovation and satisfying consumer expectations rely a lot
on correct matching of the technology with the appropriate
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application. Two points need to be considered before choos-
ing to design a suitable IPS platform: a) the most suitable
technology for the IPS; b) compromising IPS metrics (i.e.,
Accuracy, precision, complexity, scalability, robustness, and
cost) to achieve desired level of outcome. It is worth not-
ing that IPS platform is application dependent and might
require different technologies and performance metrics. For
example, some applications may require moderate levels of
accuracy while some applications such as industrial process
tracking and indoor navigation systems for blind require high
accuracy.

Each positioning technique and technology has certain
advantages than others. Sometimesmultiple technologies and
techniques are combined together to achieve a satisfactory
solution in a specific application [139], [140]. Fusing the
information of different technologies, techniques and algo-
rithms can improve the accuracy and robustness of the overall
system. ML techniques can be applied to amalgamate this
information in an effective way to improve the positioning
accuracy, system robustness, and reduce the overall invest-
ment in LBS system solutions. The question is how the infor-
mation obtained from different technologies and techniques
are to be used and how to weight the results obtained from
different algorithms to make a final decision.

In the literature, we found that the weight can be generated
by averaging the output of multiple algorithms [25] or taking
the weight of the best algorithm [25], [141]. The former
approach of weight selection is often negatively biased by
the output of the worst algorithm. And the latter one can be
adopted only when trained data is available. Without training
the algorithm in the offline phase, it may not be possible
to determine the best algorithm. Therefore, there are two
strategies to acquire weights: supervised weight learning and
unsupervised weight learning. Supervised learning attempts
to learn the weights by using the labeled data in the offline
phase [25]. On the other hand, unsupervised learning learns
the weights by using online data directly [26].

To improve the localization accuracy, authors in [27],
proposed a cascaded two stage ML approach for precise
localization in indoor environment that adaptively combined
different radio frequency (RF) features such as Received
Signal Strength Indicator (RSSI), Channel Transfer Function
(CTF), and Frequency Coherence Function (FCF). In the first
stage the proposedmethod usedML to identify the type of the
surrounding indoor environment. Afterwards, authors applied
the K-NN algorithm to identify themost appropriate selection
and combination of RF features. Result demonstrates that the
localization error, RMSE in the laboratory environment using
this proposed framework is 39.68 cm.

A single fingerprint-based on RSSI or CIR cannot
achieve the desired performance under dynamic environ-
ment changes. Therefore a group of fingerprints are used
to improve the accuracy. To this end, Gu et al. [141] have
proposed a Wi-Fi based localization method called Wi-Fi-
FAGOT by developing Global Fusion Profile (GFP). In the
offline phase, Wi-Fi-FAGOT first constructs a group of

fingerprints called GOOF which consists of RSSI, Signal
Strength Difference (SSD), and Hyperbolic Location Finger-
print (HLF). The GFP has been constructed by minimizing
the average positioning error over the space of all GOOF clas-
sifiers. Therefore, the constructed GFP is available to fully
exploit the complementarity among different kinds of finger-
prints. GFP improves the accuracy of localization by fully
leveraging all fingerprints without modifying any hardware,
and thus very promising for indoor localization in the Wi-Fi
environment. Result shows thatWiFi-FAGOTperforms better
than other systems in real complex indoor environments.

In [142], the authors have constructed GOOF based on
RSS Fingerprints (RSSFs), Covariance Matrix Fingerprints
(CMFs), Fourth-order Cumulant Fingerprints (FoCFs), Frac-
tional Low Order Moment Fingerprints (FLOMFs), and Sig-
nal Subspace Fingerprints (SSFs), which can be obtained by
different transformations of the received signals at multiple
antennas. Afterwards, the authors designed a parallel GOOF
multiple classifier based on AdaBoost (GOOF-AdaBoost)
to train multiple strong classifiers and proposed an effi-
cient fusion algorithm called MUCUS (Multiple Classifiers
Multiple Samples) to improve the accuracy of localization.
MUCUS combines the predictions ofmultiple classifiers with
different samples. Result shows that the localization error of
MUCUS is 31.64 cm.

Later on, by using GFP, the authors in [25] proposed a
supervisedweight learning basedKnowledgeAidedAdaptive
Localization (KAAL) approach. The authors developed two
KAAL algorithms, GFP based Multiple Function Averag-
ing (GFS-MFA) and GFP based Optimal Function Selec-
tion (GFS+OFS) to achieve highly accurate localization
results. GFS-MFA chooses the weights according to the
average of the outputs of multiple fingerprint functions,
while GFS+OFS tries to obtain weights based on the output
of the best fingerprint function in the offline phase. They
test the performance of these algorithms using four typical
fingerprint-fusions: neural-network (NN), K-NN, ELM and
RandomForest. Result shows that GFS+OFS performs better
than GFP+MFA and other conventional algorithms.

The above mentioned supervised fusion approaches cannot
perform well in multipath and changing environments [25].
To overcome this drawback Guo et al. [28] proposed an
unsupervised fusion localization method based on extended
candidate location set (UFL-ECLS). In this method, in the
offline phase multiple classifiers are trained using RSSI fin-
gerprints. Afterwards, an extended candidate location set is
constructed in the online phase by finding the location with
prediction probability greater than a certain threshold from
each classifier. UFL-ECLS iteratively updates the weights
and location of the target by minimizing the positioning
errors. Experimental results showed that UFL-ECLS can
reduce 67th percentile RMSE(root mean square error) by
16.5% as compared with KAAL [25].

To minimize the high energy consumption of Wi-Fi
enabled devices due to frequent AP scanning Niu et al.
proposed ZIL [143], an energy-efficient indoor localization
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TABLE 9. ML based solutions for fusion based localization.

system where ZigBee interfaces are used to collect Wi-Fi
signals. To identify Wi-Fi APs from ZigBee interfaces they
developed RSSI Quantification and RSSI Normalization.
To improve the localization accuracy, three K-NN based
localization approaches adopting different distance met-
rics are evaluated including weighted Euclidean distance,
weighted Manhattan distance and relative entropy. Result
shows that ZIL can achieve the localization accuracy of
87%, which is competitive compared to state-of-the-artWi-Fi
fingerprint-based approaches, and it can save energy by 68%
on average compared to the approach based purely on Wi-Fi
interface.

Utilizing Wi-Fi signals and motion sensors comprehen-
sively is an effective way to improve position estimates.
To improve the positioning accuracy authors in [126] pro-
posed a fusion location framework where an Extreme Learn-
ing Machine (ELM) regression algorithm is used to predict
the position based on motion sensors. Afterwards, Wi-Fi
fingerprint-location result is used to solve the error accumu-
lation of motion sensors with Particle filter. We summarize
the solutions mentioned in this subsection in Table 9.

1) LESSON LEARNED
Fusing the information from different technologies and tech-
niques with appropriate weights is another area we looked
into. Here, the overall fused weights can be the average of
the weights obtained from multiple algorithms or, they can
be the weights of the best algorithm. However, the average
weights could be severely impacted by the worst algorithm
and it is not easy to find out the best algorithm to select the
best weights. Also, it is generally impossible to obtain labeled
data in advance. In addition, weights need periodic updates
to handle environmental changes. Therefore, unsupervised
learning approaches [28] are more attractive than the super-
vised learning approaches [25] to obtain the optimum fused
weights in indoor localization.

V. APPLICATIONS OF INDOOR LOCALIZATION
The advancement of indoor localization and the proliferation
of smart portable devices in recent years have facilitated a
wide range of location based services (LBS).

A. CONTEXTUAL-AWARE LOCATION BASED MARKETING
Contextual-aware location based marketing is a revolutionary
idea in e-commerce, that has the potential to improve sales
and profits. This type of marketing helps the seller to reach
consumers in real time and enhance their shopping experi-
ence. This is relevant especially at this time of technological
advances, when nearly everyone owns smart mobile devices.
Widespread access to personalized mobile devices allow cus-
tomized marketing approaches based on the location, social
profile, spending pattern, navigation history, online behavior,
browsing patterns and inclination (subjects they ‘like’ and
‘follow’ on social media). The aim of this marketing strategy
is to draw an inference from the personal interests, past
shopping history, requested feedback, email reminders, and
then send them relevant advertisements and coupons from
stores close to the location of the consumer.

Indoor positioning systems are an integral component of
location-based marketing as well as other LBS. Positioning
systems allow geographically localizing the mobile device
both outdoor and indoor. The most commonly used tech-
nologies in location based marketing applications include
geofencing with GPS positioning, Bluetooth beacon RFID,
and Wi-Fi.

B. TRACKING MINING WORKERS
Due to large number of disasters withmany fatalities in under-
groundmines, currently there is a legal requirement to contin-
uously track all the coal miners. This is mandated by theMine
Improvement and New Emergency Response (MINER) act
of 2006. Therefore, the mining industry is actively pursuing
developing various solutions to track miners in underground
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mines [144]. Although zone based RFID localization [145] is
prevalent in mines, several new technologies including direc-
tional antennas [146], beam forming leaky feeders [147] and
ML algorithms [112] are researched to improve the reliability
and accuracy.

C. INVENTORY TRACKING
LBS is not just about people. There are cases when automatic
tracking of numerous items in huge warehouses and factories
are needed [148]. In this case, not only localization and
identification but also managing the localities of these items
in real time is needed. Therefore, in addition to localization
techniques and data base management, new Medium Access
Control layer protocols also needed to ensure all these items
are properly identified without collisions and blockage [149].
Often deep learning techniques are needed here to handle the
huge data [73].

D. AMBIENT ASSISTED LIVING
Accurate indoor positioning is the ground of ambient assisted
living platforms. These systems provide assistance to elderly,
infirm or disabled individuals to live comfortably in their
homes, neighborhood and public places. The elderly people
affected by neurodegenerative conditions need behavioral
tracking including monitoring daily activities, detection of
daily movement patterns, recording vital signs and detection
of endangering events (fall, injury) etc. [150]. Many IPS
technologies including Wi-Fi and Bluetooth can be used in
this application.

E. DISASTER RECOVERY
In cases of indoor trapping of individuals in the wake of fire
and earthquake, indoor localization techniques could identify
the specific location of individuals in danger and rescue them
from the building within the shortest possible time. Since
the indoor environment is usually unknown to the rescuer,
accounting for the exact number of people that are trapped
and rescuing them safely could be difficult. A positioning
system free from prior measurement, calibration, configura-
tion and deployment could be the best tool for a rescue force.
In extreme cases the in-built communication facility might
also collapse due to the disaster. Context-aware positioning
can be a game-changer in this type of scenario [151].

F. PUBLIC SAFETY AND LAW ENFORCEMENT
Efficient indoor positioning could pinpoint the location and
origin of the danger within a building/facility [152], so that
a disaster can be mitigated and managed at inception. For
example, the police have been using indoor positioning tech-
nology based on Bluetooth Beacon installed throughout cam-
pus buildings and open places to help pinpoint emergencies,
so that police can respond timely avoiding unnecessary hin-
drance and delay. Indoor positioning technology could be
taken to the next level by developing applications that detect
location of explosives, stolen items inside buildings in order
to assist trained police dogs, bomb squad or for an endangered

individual to locate the nearest emergency exit in a smoky
environment.

G. HEALTH SERVICES
Indoor localization has huge potential to improve the service
quality in the health care sector in multiple ways. IPS can
help front end workers to find the patient in time in a crowded
hospital [153]. Patients can also find therapy rooms on their
own with indoor navigation. Doctors could track the mobility
and safety of patients. Visitors could find their patients in
the medical facility without hassle. Even wheelchairs and
specialized surgery equipment can be found inside surgery
rooms easily.

VI. FUTURE CHALLENGES AND LIMITATION OF ML
Numerous ML based indoor positioning methods have been
proposed in the past few years [154]. However, adaptation
of ML-based solutions in indoor localization is still in its
infancy. A number of issues need further investigation.

Mainly, ML based models are very much application
specific. For example, a well-trained DL model developed
on RSSI based fingerprinting can provide excellent results
for the same, but it cannot be applied for CSI based
fingerprinting.

A. AVAILABILITY AND STANDARDIZATION OF TRAINING
DATA
The success of ML is data dependent. Most DL algorithms
need adequate data. Even in reinforcement learning, the agent
learns an action based on the reward/penalty feedback which
can also be considered as the training data. The amount and
quality of the available data significantly influences the per-
formances of ML algorithms and determining the appropriate
amount of the data is a tough task. That means, a realistic
estimate of the required data-set size is needed for setting the
performance bounds of different learning algorithms.

Both in supervised and unsupervised learning the training
data sets are collected using different techniques and the
collected data may vastly vary due to many factors including
device heterogeneity [120]. For example, in radio fingerprint-
ing, if the devices used to construct the radio map and the one
used during the positioning phase are different, a significant
pattern mismatch will occur. To solve this problem, it is
crucial to develop a standard framework for training and
predicting data that is independent on the hardware of the
devices.

B. COST OF TRAINING AND ESTIMATION TIME
Two time metrics, training time and response time, are indis-
pensable parts of a MLmodel. During the training timing, the
algorithm trains itself to predict the output of future test data.
During the response timing, the model predicts the output
for a given input. Few approaches such as the RL based
approaches can take a long training time since, RL learns
through interacting with the environment by trial-and-error
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process. Also many deep learning algorithms can take a long
time for training.

Therefore, selecting themost appropriate model for a given
IPS environment is crucial to get the required accuracy while
having minimal training and response times. Unnecessarily
complex ML models shall not be used although, they might
give us slightly better accuracy. This is essentially an opti-
mization problem among complexity, timings (or delay) and
accuracy.

C. CHALLENGES OF DEEP LEARNING
Most indoor localization systems are device based where,
the user devices, with limited storage capacity and com-
putational capability, perform the location estimation [12].
Therefore, although, it is well known deep learning models
are very promising, it is challenging to implement DL model
in devised based IPS [21]. This is because, DL based models
need computational and storage overhead for extracting com-
plex features automatically from large volumes of unlabelled
data.

In addition, DLmodels are very much application specific.
A model can accurately predict the outcome when the model
is trained well on that specific problem. Sufficient amount of
data and time are required for training a DL model. A well-
trained model may require retraining when the definition,
state and the nature of the problem have been changed. There-
fore, for real-time localization in complex environments, it is
difficult to retrain the DL model timely for the frequently
changing input information.

D. LACK OF VARIABILITY
Machine-learning approach lacks variability, in cases where
historical data is unavailable. Therefore, it is difficult to
ascertain that predictions made byML systems are suitable in
all scenarios. For instance, even versatile ML algorithms like
Transfer learning, that enables transferring the knowledge
learned from one task to another similar task may not reliably
transfer knowledge from a known domain to a new target
domain with satisfactory level of accuracy.

However, the world is moving towards being a huge cyber
physical system. The exponential growth in edge and dis-
tributed computing systems and omnipresent wireless access
and cloud facilities have been the backbone of this transfor-
mation. Upcoming 5G (and beyond) wireless networks that
integratemultitude of access technologies with seamless truly
broadband coverage and ultra low-latency communication
fuel this transformation.

Hence, due to the availability of advanced communica-
tion and computing infrastructure, the above mentioned chal-
lenges in indoor localization are expected to be handled
successfully in future, providing numerous location based
services both indoors and outdoors.

VII. CONCLUSION
This paper discusses various challenges in indoor localiza-
tion, along with research efforts in this regard. We found

machine-learning approaches have great potential to over-
come these challenges effectively while conventional local-
ization algorithms have limited success. We have surveyed
the state-of-the-art ML based research efforts in solving vari-
ous challenges associated with indoor localization. Further-
more, we have identified challenges related to successful
deployment of ML-based localization techniques and have
listed future research directions in this regard.
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