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ABSTRACT Under the conditions of low detection probabilities, high clutter rates, low data-sampling
rates, large measurement errors, and unknown prior information of the target position, multi-object tracking
is difficult. This paper proposes a multidimensional information fusion method in active sonar via the
generalized labeledmulti-Bernoulli (GLMB) filter. After modeling the positionmeasurement, radial velocity
measurement and amplitude measurement of the target and clutter, new target births are adaptively generated
by the measurement-driven model, predictions are made by the target motion model and updates are
performed via multidimensional measurements with the generalized likelihood in the GLMB filter, which
enables the measurement information of different dimensions to be elegantly applied to information fusion
and significantly improves the filter performance. The contribution of specific dimension measurement
to fusion can be evaluated by the Kullback-Leibler (KL) divergence. In the efficient implementation,
we propose flat Gibbs sampling to realize multiple hypothesis optimization. Moreover, the filtering recursion
is derived from Gaussian mixtures. Simulations are presented to verify the proposed method.

INDEX TERMS Random finite sets, generalized labeled multi-Bernoulli filter, multidimensional informa-
tion fusion, flat Gibbs sampling.

I. INTRODUCTION
In the complex and changeable marine environment,
the acoustic scattering caused by an uneven seabed [1], [2],
rolling surfaces [3], fish in the water, and the noise of human
activities, such as navigation, fishing, and underwatermining,
lead to substantial clutter interference in submarine detection
using active sonar. The energy of an acoustic signal rapidly
attenuates when the signal propagates under water [4], and
the weak echo signal often causes target missed detection.
In addition, active sonar works at a low frequency and over a
limited bandwidth with a small array aperture, which results
in a large measurement error. Moreover, the acoustic velocity
in water is relatively slow, and the detection time covering
a certain range is long, which results in a low detection data
rate. Thus, the multi-object tracking in active sonar faces four
challenges: low detection probabilities, high clutter rates, low
data rates and large measurement errors.
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The objective of multi-object tracking is to jointly esti-
mate the number of targets and their trajectories from a
sequence of noisy and cluttered observation sets in the pres-
ence of unknown prior information of new target births. Three
major algorithms have been developed: joint probability data
association filtering (JPDA) [5], multiple hypothesis track-
ing (MHT) [6], [7], and random finite set (RFS) [8]–[10].
RFS is rigorous, elegant, and suitable for the multidimen-
sional heterogeneous information fusion and semantic target
information fusion scenarios to which traditional methods
are difficult to apply. Led by Mahler and Vo-Vo, a group of
outstanding scholars engaged in this work and successively
proposed the implementation methods of probability hypoth-
esis density (PHD) filter [11] and its cardinalized version, car-
dinalized PHD (CPHD) [12], the multi-target multi-Bernoulli
(MeMBer) filter [8], [13], and the newly derived generalized
labeled multi-Bernoulli (GLMB) filter [14]–[16] and its spe-
cial case, the labeled multi-Bernoulli (LMB) filter [17]–[19].
Among them, GLMB filtering is based on the labeled RFS
theory and strictly derived, which has better cardinality
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estimation accuracy and OSPA metric [20], [21] perfor-
mances than PHD, CPHD, andMeMBer. Therefore, we study
the multidimensional information fusion and multi-object
tracking in active sonar based on GLMB.

Under the conditions of low detection probabilities, high
clutter rates, low data-sampling rates, and large measurement
errors in active sonar, the performance of the GLMB filter
is seriously degraded. In [22], [23], the A-PHD filter was
proposed based on the echo amplitude information, through
which the variance in the cardinality estimation was signif-
icantly reduced compared to the PHD filter. In [24], [25],
the echo amplitude information was also used to propose the
A-LMB filter, which was applied to radar target tracking and
achieved better processing results than the LMB filter. Using
the multidimensional measurement information, we propose
a multidimensional information fusion method via the gener-
alized labeled multi-Bernoulli (MDI-GLMB) filter. Our main
innovations are as follows:
•Multidimensional measurement modeling.
In the GLMBupdate step, the positionmeasurement, radial

velocity measurement and amplitude measurement of the tar-
get and clutter are modeled, and the generalized likelihood of
themeasurement is calculated.Multidimensional information
fusion is implemented in the active sonar.
• Evaluation of the contribution of certain information to

fusion by the Kullback-Leibler divergence [26].
In multidimensional measurement, each measurement

dimension has a different ability to distinguish the target
and clutter, and its contribution to information fusion also
differs. Thus, the contribution evaluation based on the rela-
tive entropy (Kullback-Leibler divergence, or simply the KL
divergence) is proposed.
• Flat Gibbs sampling.
In the MDI-GLMB filter, in addition to position mea-

surement, amplitude measurement and radial velocity
measurement are also included. The finite Gibbs sam-
pling [15], [27]–[29] method fails to achievemultiple hypoth-
esis optimization. A flat Gibbs sampling method is proposed
to achieve robust multiple hypothesis optimization.

The paper is organized as follows. Background on
active sonar target measurement, the GLMB filter, and the
unscented Kalman filter (UKF) is provided in Section II.
In Section III, the position measurement, radial velocity
measurement and amplitude measurement of the target and
clutter are modeled. Section IV presents the implementation
of the MDI-GLMB filter. Numerical results are presented in
Section V, and concluding remarks are given in Section VI.

II. BACKGROUND
This section briefly introduces the background of active
sonar measurement, the UKF, and GLMB filtering. Readers
can refer to [4], [15], [30] for detailed expositions. For the
convenience of subsequent description, we first present
the following notations and definitions. Single-object states
are represented by lowercase letters (e.g., x, x), while
multi-object states are represented by uppercase letters

(e.g., X ,X). Symbols for labeled states and their distributions
are bolded (e.g., x, X, π ) to distinguish them from unlabeled
states, and spaces are represented by blackboard bold (e.g.,
X, Z, L).

A. ACTIVE SONAR MEASUREMENT
Active sonar usually uses the combined hyperbolic frequency
modulation and single frequency signals to detect targets,
which can be used to simultaneously measure the target
position, echo amplitude and target radial velocity. The mea-
surement of target i at time k can be expressed as

z(i)k =
[
θ
(i)
k , r

(i)
k , ṙ

(i)
k , a

(i)
k

]
.

Note that SL represents the source level of active sonar,
TL represents the acoustic transmission loss, NL represents
the noise level of the marine environment, TS represents the
target strength,GT andGS represent the time processing gain
and spatial processing gain, respectively, and SNR represents
the echo signal-to-noise ratio. The active sonar equation is

SNR = SL − 2TL − NL + TS + GT + GS (1)

In [22], [24], [25], the Rayleigh distribution describes the
amplitude fluctuation of the target and clutter. The probability
density functions of the clutter and target amplitudes are
expressed as follows:

g (a) = a exp
(
−a2

2

)
, a ≥ 0 (2)

g (a |d ) =
a

1+ d
exp

(
−a2

2 (1+ d)

)
, a ≥ 0. (3)

The expected SNR is 1+ d , which is typically defined in the
log scale as SNR (dB) = 10 log10 (1+ d).

The SNR of the target echo can be estimated from the
active sonar equation, and the detection probability (PD) of
the target can be calculated based on the detection threshold
and probability distribution. z(i)k may or may not be detected,

∅,
[
θ
(i)
k , r

(i)
k , ṙ

(i)
k , a

(i)
k

]
.

where ∅ indicates that z(i)k is missed.

B. UKF IN MDI-GLMB
The observation model of active sonar is nonlinear, in which
the UKF is applied to the continuous measurement of the
target position and radial velocity for state estimation. The
target state equation is

x(i)k+1 = Fkx
(i)
k + 0kuk (4)

where x(i)k is the state vector of target i at time k , Fk is the state
transition matrix, 0k is the process noise distribution matrix,
and uk is the process noise vector. Assuming1 as the period,

x(i)k =
[
p(i)x,k , ṗ

(i)
x,k , p

(i)
y,k , ṗ

(i)
y,k

]T
, uk = [ux , uy]T ,
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Fk =


1 1 0 0
0 1 0 0
0 0 1 1

0 0 0 1

, 0k =


0.512 0
1 0
0 0.512

0 1

.
The measurement equation can be expressed as (5), as

shown at the bottom of the next page where w(i)k is the
measurement noise, w(i)k ∼ N

(
0,Rik

)
; Rjk is the covariance of

the measurement noise, in which Rik = diag
([
σ 2
θ , σ

2
r , σ

2
v
])
.

Using the unscented transform (UT) for the nonlinear
observation model in the UKF, the predicted measurement is

z(i)k+1|k =
2nx+1∑
n=1

wnh
(
ξ
(i,n)
k+1

)
n = 1, 2, · · · , 2nx + 1 (6)

where nx is the dimension of the state vector, nx = 4; ξ (i,n)k+1
represents a state sample of target i with weight wn.
The UKF recursion equations based on the filter model of

active sonar are provided for convenience as follows:

x(i)k+1|k = Fkx
(i)
k (7)

P(i)k+1|k = FkP
(i)
k F

T
k + Qk (8)

S(i)k+1 = R(i)k+1 +
2nx+1∑
n=1

wn
[
h
(
ξ
(i,n)
k+1

)
− z(i)k+1|k

]
×

[
h
(
ξ
(i,n)
k+1

)
− z(i)k+1|k

]T
(9)

K (i)k+1 =
2nx+1∑
n=1

wn
[
ξ
(i,n)
k+1 − x

(i)
k+1|k

]
×

[
h
(
ξ
(i,n)
k+1

)
− z(i)k+1|k

]T (
S(i)k+1

)−1
(10)

v(i)k+1 = z(i)k+1 − z
(i)
k+1|k (11)

x(i)k+1 = x(i)k+1|k + K
(i)
k+1v

(i)
k+1 (12)

P(i)k+1 = P(i)k+1|k − K
(i)
k+1S

(i)
k+1

(
K (i)k+1

)T
(13)

where x(i)k+1|k is the state prediction vector, P(i)k is the state

error covariance matrix, P(i)k+1|k is the error covariance matrix

of the prediction state, S(i)k+1 is the innovation covariance
matrix, v(i)k+1 denotes the innovation, K (i)k+1 is the filter gain,
and Qk is the process noise covariance matrix.

When measurement of the target is missed, the update step
is

x(i)k+1 = x(i)k+1|k (14)

P(i)k+1 = P(i)k+1|k (15)

C. LABELED RFS AND GLMB FILTER
Denote a generalization of the Kronecker delta, which takes
arbitrary arguments such as sets, vectors, and integers,
as follows:

δY [X ] ,

{
1, if X = Y
0, otherwise.

For a given set S, 1S (·) denotes the indicator function of S,
and F (S) denotes the class of finite subsets of S. For a finite
set X , its cardinality (number of elements) is denoted by |X |.
In addition, we denote by f X the multi-object exponential,
where f X =

∏
x∈X f (x) and f

∅
= 1; 〈f , g〉 denotes the inner

product, 〈f , g〉 =
∫
f (x) g (x) dx.

To estimate the identity or trajectory of a target in a multi-
object scenario, a state x ∈ X is augmented by a label l ∈ L,
that is, x = (x, l). Labels for individual targets are ordered
as pairs of integers l = (k, i), where k is the birth time of the
new target, and i is a unique index to distinguish new targets
born at the same time. The label set of a labeled RFS X is
given by L (X) = {L (x) : x ∈ X}, where L : X× L→ L is
the projection defined by L ((x, l)) = l. The labels of targets
in X must be distinct, i.e., |L (X)| = |X|.
In the implementation of the GLMB filter, known as δ −

GLMB, its filtering density at time k is

π (X) = 1(X)
∑

ξ∈4,I∈F(L)
w(I ,ξ)δI [L (X)]

[
p(ξ)

]X
(16)

where 1(X) is the distinct label indicator, 1(X) =
δ|X| [L (X)], and w(I ,ξ) = w(ξ) (I ). Each ξ ∈ 4 repre-
sents a history of association maps ξ = (θ1:k), while each
I ∈ F (L) represents a set of object labels. Each pair (I , ξ)
with weight w(I ,ξ) and distribution p(ξ) represents a possible
association between targets and measurements, and clearly,∑
ξ∈4,I∈F(L)

w(I ,ξ) = 1.

The predicted density of δ − GLMB is

π̄+ (X) = 1(X)
∑
ξ,J ,L+

w̄(ξ,J ,L+)+ δJ∪L+ [L (X)]
[
p̄(ξ)+

]X
(17)

where ξ ∈ 4, J ∈ F (L), L+ ∈ F (B), and

w̄(ξ,J ,L+)+ = 1F(B) (L+) r
L+
B,+

[
1− rB,+

]B+−L+
×

∑
I∈F(L)

1F(I ) (J)
[
P̄(ξ)S

]J [
1− P̄(ξ)S

]I−J
(18)

P̄(ξ)S =
〈
p(ξ) (·, l) ,PS (·, l)

〉
(19)

p̄(ξ)+ (x+, l+)= 1L (l+)

〈
PS (·, l+) f+ (x+ |· , l+) , p(ξ) (·, l+)

〉
P̄(ξ)S (l+)

+ 1B+ (l+) pB,+ (x+, l+) (20)

where r l+B,+ is the probability of a newborn target with label
l+, and pB,+ (x+, l+) is the distribution of its kinematic state.
PS (·, l) is the probability if target l exists. f+ (x+ |· , l+) is
the probability density from state (x, l) to new state (x+, l+).

Then, the updated density in δ − GLMB filtering at time
k + 1 is

πZ+ (X) ∝ 1(X)
∑

ξ,J ,L+,θ+

w(ξ,J ,L+,θ+)Z+ δJ∪L+ [L (X)]

×

[
p(ξ,θ+)Z+

]X
(21)

VOLUME 8, 2020 211337



X. Sun et al.: Multidimensional Information Fusion in Active Sonar via the GLMB Filter

where θ+ ∈ 2+, and

w(ξ,J ,L+,θ+)Z+ = 12+(J∪L+) (θ+)
[
ϕ̄
(ξ,θ+)
Z+

]J∪L+
w̄(ξ,J ,L+)+

(22)

ϕ̄
(ξ,θ+)
Z+ (l+) =

〈
p̄(ξ)+ (·, l+) , ϕ

(θ+(l+))
Z+ (·, l+)

〉
(23)

p(ξ,θ+)Z+ (x+, l+) =
p̄(ξ)+ (x+, l+) ϕ

(θ+(l+))
Z+ (x+, l+)

ϕ̄
(ξ,θ+)
Z+ (l+)

(24)

where2 is the set of association maps θ . The map θ specifies
which targets generated which measurements, i.e., target l
generates measurement zθ(l) ∈ Z . When target l is unde-
tected, θ (l) = 0. The multi-object likelihood function is

g (Z |X) ∝
∑
θ∈2

12(L(X)) (θ)
∏

(x,l)∈X

ϕ
(θ(l))
Z (x, l) (25)

In association maps θ , a measurement is associated with at
most one target, and a target is also associated with at most
one measurement. For a possible domain I , 2(I ) ⊆ 2,
the likelihood of target l ∈ I with measurement j is

ϕ
(j)
{z1:|Z |}

(x, l)=


PD (x, l) g

(
zj
∣∣ x, l)

k
(
zj
) , if j∈{1, · · · , |Z |}

1− PD (x, l) , if j=0
(26)

where g
(
zj
∣∣ x, l) is the target measurement likelihood, and

k
(
zj
)
is the intensity of the Poisson clutter.

III. MULTIDIMENSIONAL MEASUREMENT MODELING
GLMB filtering was implemented in [14], [15] using only
position measurements of the target and clutter. In [24], [25],
amplitude information aided LMB filtering (i.e., A-LMB)
was proposed. We further model multidimensional measure-
ments (position, radial velocity and echo amplitude) in active
sonar, calculating the target likelihood and clutter likelihood,
which can be used in the update step of the GLMB filter.

A. POSITION MEASUREMENT
Normally, the location of clutter is unknown. Assuming that
it is uniformly distributed in the two-dimensional plane of
azimuth and range, the intensity function of clutter modeled
by a Poisson RFS is

k
(
z(θ,γ )j

)
= λc (27)

where λc is the intensity of clutter.
In continuous multiple scans in active sonar, the position

measurements of the same target are adjacent, and we can

FIGURE 1. Position measurement likelihood probability density functions
of the target and clutter.

predict the target position based on the target motion model.
The likelihood function of z(θ,γ )j from target li is

g
(
z(θ,r)j

∣∣∣ xi, li)
=

1

2π ·
(
det S(i)p

)1/2
· exp

[
−
1
2

(
z(θ,r)j − z(θ,r)p,i

)T (
S(i)p

)−1 (
z(θ,r)j − z(θ,r)p,i

)]
(28)

where S(i)p is the position innovation covariance matrix of
target li. det (·) represents the matrix determinant operation.
z(θ,r)p,i is the predicted position measurement of target li.

To intuitively show the difference in the likelihood prob-
ability density function between the target and clutter
in position measurement intuitively, assume that S(i)p =

diag
([
π
/
180, 100

]2) and λc = 1. The position measure-
ment likelihood probability density functions of the target
(shown in pseudocolor) and clutter (shown in the blue-green
plane) can be drawn as in Fig. 1.

B. RADIAL VELOCITY MEASUREMENT
Clutter is mainly formed by the sound scattering from the
seabed and surface in active sonar. Therefore, the radial
velocity measurement of clutter obeys a zero mean Gaussian
distribution. The likelihood function of z(ṙ)j from clutter is

gṙ
(
z(ṙ)j

∣∣∣ c) = 1√
2πS(i)ṙ

exp

−
(
z(ṙ)j
)2

2S(i)ṙ

 (29)

In the UKF, position measurement and radial velocity mea-
surement are used for filtering processing, and the likelihood

z(i)k = h
(
x(i)k
)
+ w(i)k =

arctan (p(i)y,k/p(i)x,k) ,
√(

p(i)x,k
)2
+

(
p(i)y,k

)2
,
p(i)x,k ṗ

(i)
x,k + p

(i)
y,k ṗ

(i)
y,k√(

p(i)x,k
)2
+

(
p(i)y,k

)2

T

+ w(i)k (5)
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FIGURE 2. Radial velocity measurement likelihood probability density
functions of the target and clutter.

function of z(ṙ)j from target li is

gṙ
(
z(ṙ)j

∣∣∣ xi, li) = 1√
2πS(i)ṙ

exp

−
(
z(ṙ)j − z

(ṙ)
p,i

)2
2S(i)ṙ

 (30)

where z(ṙ)p,i is the radial velocity prediction of target li, and

S(i)ṙ represents the radial velocity innovation covariance of
target li.

To intuitively show the difference in the likelihood proba-
bility density function between the target and clutter in radial
velocity measurement, assume that S(i)ṙ = 1 and z(ṙ)p,i =
3m/s. The radial velocity measurement likelihood probability
density functions of the target (shown as the red-dotted line)
and clutter (shown as the blue-solid line) can be drawn as
in Fig. 2.

C. AMPLITUDE MEASUREMENT
The amplitude measurement likelihood probability density
functions of the target and clutter are given in the background
section, specifically shown in (2) and (3). However, measure-
ment sets are obtained based on CFAR detection. Note that
τ represents the detection threshold and Pτfa represents the
false alarm probability. The amplitude measurement of the
target and clutter must be greater than or equal to the detection
threshold, that is, z(a)j ≥ τ . The likelihood function of z(a)j
from clutter is

gτa
(
z(a)j

∣∣∣ c) = 1
Pτfa

z(a)j exp

−
(
z(a)j
)2

2

, z(a)j ≥ τ (31)

Suppose that the SNR of target li is 1 + d . The likelihood
function of z(a)j from target li is

gτa
(
z(a)j

∣∣∣ d, li) = 1
PτD

z(a)j
1+ d

exp

−
(
z(a)j
)2

2 (1+ d)

, z(a)j ≥ τ

(32)

where PτD is the probability of detection; obviously,

ga
(
z(a)j

∣∣∣ d, li) = PτDg
τ
a

(
z(a)j

∣∣∣ d, li).

FIGURE 3. Amplitude measurement likelihood probability density
functions of targets and clutter.

Generally, the underwater acoustic channel and target atti-
tude are time-varying, which leads to estimation error of
the target SNR based on the active sonar equation. To solve
this problem, we use the method in [22], [23], where the
modeled target SNR is uniformly distributed in [dB1, dB2].
The likelihood function of z(a)j from target li is (33), as
shown at the bottom of the next page where dB1 (dB) =
10 log10 (1+ d1); dB2 (dB) = 10 log10 (1+ d2); P

τ
2D is the

probability of detection; Obviously, ga
(
z(a)j

∣∣∣ d1, d2, li) =
Pτ2Dg

τ
a

(
z(a)j

∣∣∣ d1, d2, li).
To intuitively show the difference in the likelihood prob-

ability density function between the target and clutter in
amplitude measurement, we have drawn Fig. 3. In this figure,
10 dB (shown as the red-dotted line), 20 dB (shown as the
blue-dotted line) and 10-20 dB (shown as the black-dotted
line) targets are selected for comparison with clutter (shown
as the blue-solid line).

D. GENERALIZED LIKELIHOOD OF MULTIDIMENSIONAL
MEASUREMENT
We denote the implementation of GLMB filtering that only
uses position measurement [8], [9] as GLMB in this paper.
The likelihood of the jth measurement associated with target
li is

ψ
(j)
Z (xi, li)=

{
PτD (xi, li) g

(
z(θ,r)j

∣∣∣ xi, li)/k (z(θ,r)j

)
, j>0

1− PτD (xi, li) , j=0
(34)

We denote the implementation of GLMB filtering that
jointly uses position and radial velocity measurement as
V-GLMB. The likelihood of the jth measurement associated
with target li is

ψ
(j)
Z (xi, li) =



PτD (xi, li) g
(
z(θ,r)j

∣∣∣ xi, li) gṙ ( z(ṙ)j ∣∣∣ xi, li)
k
(
z(θ,r)j

)
gṙ
(
z(ṙ)j

∣∣∣ c) ,

j > 0
1− PτD (xi, li) ,
j = 0

(35)

VOLUME 8, 2020 211339



X. Sun et al.: Multidimensional Information Fusion in Active Sonar via the GLMB Filter

We denote the implementation of GLMB filtering that
uses position and amplitude measurement in combination as
A-GLMB. The likelihood of the jth measurement associated
with target li is

ψ
(j)
Z (xi, li)

=



PτD (xi, li) g
(
z(θ,r)j

∣∣∣ xi, li) (PτDgτa ( z(a)j ∣∣∣ d, li))
k
(
z(θ,r)j

) (
Pτfag

τ
a

(
z(a)j

∣∣∣ n)) ,

j > 0
1− PτD (xi, li),
j = 0

(36)

We denote the implementation of GLMB filtering with
multidimensional (e.g., joint position, radial velocity and
amplitude) measurement as MDI-GLMB. The likelihood of
the jth measurement associated with target li is (37), as shown
at the bottom of the next page.

E. ANALYSIS OF THE KL DIVERGENCE
In multidimensional measurement, each measurement
dimension has a different ability to distinguish the target
and clutter, and its contribution to information fusion also
differs. The KL divergence is proposed in this paper to
evaluate the contribution of each measurement dimension.
The KL divergence [26] is a physical quantity to measure the
difference degree of two probability distributions. A larger
KL divergence corresponds to a greater difference between
the two distributions; intuitively, a greater difference between
target and clutter in the probability distributions corresponds
to an easier clutter reduction or better performance in the
OSPA metric and cardinality estimation.

The KL divergence of the target and clutter in position
measurement is

D(θ,r)KL =

∫∫
PτD (xi, li) g

(
z(θ,r)j

∣∣∣ xi, li)
× log

PτD (xi, li) g
(
z(θ,r)j

∣∣∣ xi, li)
k
(
z(θ,r)j

)
 rdrdθ (38)

The KL divergence of the target and clutter in radial velocity
measurement is

D(ṙ)KL =
∫
gṙ
(
z(ṙ)j

∣∣∣ xi, li) log
gṙ

(
z(ṙ)j

∣∣∣ xi, li)
gṙ
(
z(ṙ)j

∣∣∣ c)
dṙ (39)

TABLE 1. KL divergence between the target and the clutter in different
scenarios.

The KL divergence of the target and clutter in amplitude
measurement is

D(a)KL =
∫
ga
(
z(a)j

∣∣∣ d, li) log
ga

(
z(a)j

∣∣∣ d, li)
ga
(
z(a)j

∣∣∣ c)
da (40)

Table 1 shows the values of D(θ,r)KL , D(ṙ)KL and D(a)KL in two
typical application scenarios. The KL divergence in each
measurement dimension is greater than zero, which indicates
that the measurement of each dimension contributes to infor-
mation fusion. The implementation of the MDI-LMB filter
will be able to achieve better performance in multi-object
tracking in active sonar.

IV. IMPLEMENTATION OF MDI-GLMB
In this section, we will introduce the implementation of the
MDI-GLMB filter in detail. First, new targets are generated
based on the measurement-driven birth model under the con-
dition that their initial position and intensity are unknown.
Second, the joint prediction and update step is performed.
Finally, a flat Gibbs sampling method is proposed to achieve
multiple hypothesis optimization.

A. MEASUREMENT-DRIVEN BIRTH
The standard implementation of the RFS filter relies on a pri-
ori knowledge of newborn targets; however, this knowledge is
unknown in active sonar. Based on the measurement-driven
model [17], [33]–[35], we can adaptively generate new tar-
gets and their distribution. The measurement sets at time k
(denoted Zk ) are used to generate new targets at time k + 1.
Therefore, the multi-Bernoulli birth distribution at time k+1
(denoted πB,k+1) is

πB,k+1 =

{
r (l)B,k (z) , p

(l)
B,k (x| z) : l = lB (z)

}
z∈Zk

(41)

gτa
(
z(a)j

∣∣∣ d1, d2, li) = 2

Pτ2Dz
(a)
j

exp
−

(
z(a)j
)2

2 (1+ d2)

− exp

−
(
z(a)j
)2

2 (1+ d1)


/[ln (1+ d2)− ln (1+ d1)], z(a)j ≥ τ (33)
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where lB (z) is the label of a newborn target driven by mea-
surement z ∈ Zk ; the birth probability and probability dis-
tribution of the newborn target are r (l)B,k (z) and p(l)B,k (x| z),
respectively.

The probability density of the newborn GLMB is

πB (X+) = 1(X+)wB (L (X)) [pB]X (42)

where

wB (I ) =
∏
i∈B

(
1− r (i)B

)∏
l∈I

1B (l) r
(l)
B

1− r (l)B
(43)

The new-born likelihood for each measurement z ∈ Zk can
be found by

rU ,k (z) = 1−
∑

(I ,ξ)∈F(L)×4

∑
θ∈2(I )

1zθ (z)w
(I ,ξ,θ) (44)

where w(I ,ξ,θ) can be given by the GLMB filter from the
last time. Clearly, a measurement that has been used in all
hypotheses cannot generate a newborn target (rU ,k (z) = 0),
while for measurements that have not been assigned to any of
the targets, the newborn likelihood is 1 (rU ,k (z) = 1).

In the measurement-driven birth model, the newborn like-
lihood of z ∈ Zk is

rB,k+1 (z) = min

(
rBmax , λB,k+1 ·

rU ,k (z)∑
ς∈Zk rU ,k (ς)

)
(45)

where λB,k+1 is the expected number of newborn targets;
rBmax ∈ [0, 1] is the maximum existence probability of a
newborn target to ensure that rB,k+1 (z) does not exceed
1 when λB,k+1 is too large. Generally, a larger rBmax indicates
a faster track (target) confirmation but a higher incidence of
false tracks, while a smaller rBmax indicates a slower track
confirmation but a lower incidence of false tracks. The mean
cardinality of the newborn GLMB is the sum of the existence
probabilities ∑

z∈Zk
rB,k+1 (z) ≤ λB,k+1 (46)

New target confirmation has a time delay based on the
measurement-driven model, and every clutter measurement
attempts to become a new target, which makes the GLMB
filter work in a harsh tracking environment.

B. PREDICTION AND UPDATE
Equation (16) provides the GLMB filtering density at time k .
After the steps of new target adaptive generation and joint

prediction and update, the GLMB filtering density at time
k + 1 is

πZ+ (X) ∝ 1(X)
∑

I ,J ,I+,θ+

w(I ,ξ)w(ξ,J ,I+,θ+)Z+ δI+ [L (X)]

×

[
p(ξ,θ+)Z+

]X
(47)

where I ∈ F (L) , ξ ∈ 4, I+ ∈ F (L+) ,L+ ∈ F (B) , θ+ ∈
2+, and,

w(I ,ξ,I+,θ+)Z+

= 12+(I+) (θ+)
[
1− P̄(ξ)S

]I−I+ [
P̄(ξ)S

]I∩I+
·
[
1− rB,+

]B+−I+ [rB,+]B+∩I+ [ϕ̄(ξ,θ+)Z+

]I+
(48)

P̄(ξ)S

=

〈
p(ξ) (·, l) ,PS (·, l)

〉
(49)

ϕ̄
(ξ,θ+)
Z+ (l+)

=

〈
p̄(ξ)+ (·, l+) , ϕ

(θ+(l+))
Z+ (·, l+)

〉
(50)

p̄(ξ)+ (x+, l+)

= 1L (l+)

〈
PS (·, l+) f+ (x+ |· , l+) , p(ξ) (·, l+)

〉
P̄(ξ)S (l+)

+ 1B+ (l+) pB,+ (x+, l+) (51)

p(ξ,θ+)Z+ (x+, l+)

=
p̄(ξ)+ (x+, l+) ϕ

(θ+(l+))
Z+ (x+, l+)

ϕ̄
(ξ,θ+)
Z+ (l+)

(52)

Equation (47) integrates all possibilities (birth, death,
or survival) for each target and the one-to-one assignment
between targets and measurements including missed detec-
tion.

C. MULTIPLE HYPOTHESIS TRUNCATION
At time k , we consider a fixed component (ξ, I ) of the GLMB
filter, I = {l1:R}. At time k + 1, the newborn target set is
B+ = {lR+1:P}, and the measurement set is Z+ = {z1:M }. The
goal is to find a set of pairs (I+, θ+) ∈ F (L+) × 2+ (I+)
with significant w(I ,ξ,I+,θ+)Z+ .

For each pair (I+, θ+) ∈ F (L+)×2+ (I+), the association
between the target and measurement can be defined by

γi =

{
θ+ (li) , if li ∈ I+
−1, otherwise

(53)

ψ
(j)
Z (xi, li) =


PτD (xi, li) g

(
z(θ,r)j

∣∣∣ xi, li) (PτDgτa ( z(a)j ∣∣∣ d, li)) gṙ ( z(ṙ)j ∣∣∣ xi, li)
k
(
z(θ,r)j

) (
Pτfag

τ
a

(
z(a)j

∣∣∣ c)) gṙ ( z(ṙ)j ∣∣∣ c) , j > 0

1− PτD (xi, li), j = 0

(37)
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After joint prediction and update,

I+ = {li ∈ I ∪ B+ : γi > 0}, θ+ (li) = γi (54)

Assuming that for all i ∈ {1 : P}, P̄(ξ)S (li) ∈ (0, 1) and

P̄(ξ)D (li)
〈
p̄(ξ)+ (·, li) ,PD (·, li)

〉
∈ (0, 1), the probabilitymatrix

of the one-to-one assignment betweenmeasurements (includ-
ing missed detection) and targets (including new-births and
deaths) can be defined as

ηi (j)=


1− P̄(ξ)S (li), 1 ≤ i ≤ R, j < 0

P̄(ξ)S (li) ψ̄
(ξ,j)
Z+ (li), 1 ≤ i ≤ R, j ≥ 0

1− rB,+ (li), R+ 1 ≤ i ≤ P, j < 0

rB,+ (li) ψ̄
(ξ,j)
Z+ (li), R+ 1 ≤ i ≤ P, j ≥ 0

(55)

where ψ̄ (ξ,j)Z+ (li) =
〈
p̄(ξ)+ (·, li) , ψ

(j)
Z+ (·, li)

〉
; j ∈ {−1 : M} is

the index of the measurement assigned to label li, where j = 0
indicates that li is missed in detection, and j = −1 indicates
that li no longer exists.
In the implementations of GLMB, V-GLMB, A-GLMB

and MDI-GLMB, the measurement likelihood (ψ (j)Z+ (·, li)) is
given in (34), (35), (36), and (37), respectively.

According to the definition of (53) and based on (54)
and (55),

R∏
n=1

ηn (γn) =
[
1− P̄(ξ)S

]I−I+ [
P̄(ξ)S ψ̄

(ξ,θ+)
Z+

]I∩I+
,

P∏
n=R+1

ηn (γn) =
[
1− rB,+

]B+−I+ [rB,+ψ̄ (ξ,θ+)Z+

]B+∩I+
.

Then, (48) can be converted into

w(I ,ξ,I+,θ+)Z+ = 12+(I+) (θ+)
P∏
i=1

ηi (γi) (56)

Multiple hypothesis truncation calculates the weights
(w(I ,ξ,I+,θ+)Z+ ) of (I+, θ+) ∈ F (L+) × 2+ (I+) and retains
a number of hypothesis pairs with higher weights; according
to (56), it can be equivalently converted into the calculation

of
P∏
i=1
ηi (γi). Furthermore, the implementation of multiple

hypotheses truncation in GLMB, V-GLMB, A-GLMB and
MDI-GLMB is equivalent to optimization of the association
between targets and measurements.

D. FLAT GIBBS SAMPLING
Murty’s method [36], [37] is often used for multiple hypoth-
esis truncation, but it is computationally expensive and com-
plex to implement. The Markov chain Monte Carlo (MCMC)
stochastic simulation method [29], [38] is a more effi-
cient alternative; however, in high dimensional distributions,
MCMC sampling is inefficient. An efficient implementation
of the GLMB filter using Gibbs sampling [26], [27] was
proposed in [15]. We used Gibbs sampling to implement the
MDI-GLMB filter directly, but we could not obtain good
results. Now, we analyze the reasons.

TABLE 2. Flat Gibbs sampling algorithm.

If

ηi (jm) = max (ηi)� 1 (57)

where ηi (jm) is the likelihood probability that target i is
associated with measurement jm, then in the finite Gibbs
sampling, we will likely obtain the same sample of target
i associated with measurement jm in each sampling, that
is, no sample of target i has died, was missed in detection
or is associated with other measurements. The finite Gibbs
sampling may miss the optimal hypothesis.

In theMDI-GLMBfilter, η is a generalized joint likelihood
of the target position residual, signal amplitude and target
radial velocity. When target i is missed, the hypothesis of
jm = 0 may be lost in the finite Gibbs sampling due to the
coupling effect of the target position likelihood, amplitude
likelihood and radial velocity likelihood (e.g., clutter with a
large signal amplitude close to that of the target may lead to
max(ηi)� 1).
This paper proposes a flat Gibbs sampling algorithm for the

MDI-GLMB filter, which can solve the drawback that finite
Gibbs sampling may miss the optimal hypothesis. As the
name suggests, flat Gibbs sampling aims to flatten the likeli-
hood probability distribution ηi (e.g., ηi (ηi > 1) = 1) so that
the optimal hypotheses can be obtained by finite sampling.
where Categorical (c, η̃n)is the likelihood probability distri-
bution of discrete random variable c.

V. NUMERICAL STUDIES
In a circular area with a radius of 25 km, the active sonar
continuously scans 100 times at regular intervals. Twelve
targets (includingmissed detections) are simulated in a clutter
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FIGURE 4. Target trajectories, where start positions for each track are
shown by©, and stop positions for each track are shown by 4.

environment to verify the effectiveness of the multidimen-
sional information fusion algorithm. Three targets each are
newly born at times k = 1 and k = 20, and two targets
each are newly born at times k = 40, k = 60, and k = 80;
among them, two targets die at time k = 71. Fig. 4 shows the
simulated multi-object trajectories. The direction of 0◦ and
90◦ are marked as the x-axis and y-axis, respectively. Fig. 5
shows the real radial velocity of each target in each scan.

Specifically, the initial states of the 3 newborn targets at
time k = 1 are

x(1)1 = [−10000,−2,−5000, 0]T ,

x(2)1 = [−6000, 1, 4000,−2]T ,

x(3)1 = [−2000,−1,−8000, 4]T .

where x(1)1 and x(3)1 die at time k = 71. The initial states of
the 3 newborn targets at time k = 20 are

x(4)20 = [−6000,−2, 4000,−3]T ,

x(5)20 = [−6000, 4, 4000,−1]T ,

x(6)20 = [−10000,−2,−5000, 3]T .

The initial states of the 2 newborn targets at time k = 40 are

x(7)40 = [−2000, 3,−8000, 4]T ,

x(8)40 = [8000,−2,−2000, 3]T .

The initial states of the 2 newborn targets at time k = 60 are

x(9)60 = [−2000, 5,−8000, 1]T ,

x(10)60 = [8000,−5,−2000,−1]T .

The initial states of the 2 newborn targets at time k = 80 are

x(11)80 = [−10000,−3,−5000,−4]T ,

x(12)80 = [8000,−1,−2000, 3]T .

Note that 1 represents the detection interval of the active
sonar, with 1 = 60s; through x(j)k+1 = Fkx

(j)
k , we can

know the real target state in each scan. Note that σθ , σr and
σṙ represent the measurement error in the target azimuth,

FIGURE 5. Radial velocity of each target in each probe scan.

distance, and radial velocity, respectively, with σθ = 2 ·
π
/
180 (rad), σr = 100 (m), and σṙ = 0.3 (m/s); through

z(j)0k = h
(
x(j)k
)
+ w(j)k , the target azimuth, distance, and

radial velocity measurement can be simulated, and the target
amplitude measurement (a(j)k ) can be simulated based on the
probability density function in (3). Themeasurement of target
j at time k is z(j)k =

[
z(j)0k ; a

(j)
k

]
; if a(j)k < τ , this indicates

that target j was missed at time k . Clutter is modeled as a
Poisson RFS, and the locations are random with a uniform
distribution. Amplitude measurement of clutter is simulated
based on the probability density function in (2); the radial
velocity is a Gaussian random number with zero mean and
a standard-deviation of σṙ = 0.3. The process noise vector of
the UKF filter is uk = [0.005, 0.005]T (m

/
s2).

A. NEWBORN TARGET STATE INITIALIZATION
The initial state vector of newborn targets and their initial
state covariance matrix are unknown in active sonar. Con-
sidering that a new target is driven by measurement z =
[θ, r, ṙ, a]T ∈ Zk , the state vector and state covariance matrix
can be initialized as

m(z)B,k =
[
px,k , ṗx,k , py,k , ṗy,k

]T (58)

P(z)B,k =


rxx 0 rxy 0
0 50 0 0
rxy 0 ryy 0
0 0 0 50

 (59)

where px,k = r cos θ ; ṗx,k = ṙ cos θ ; py,k = r sin θ ; ṗy,k =
ṙ sin θ ; and the detailed calculations of rxx , rxy and ryy are [39]

rxx =
1
2
(r2 + σ 2

r )(1+ λ
′
θ cos 2θ)+ (λ−2θ − 2)r2 cos2 θ,

rxy =
1
2
(r2 + σ 2

r )λ
′
θ sin θ + (λ−2θ − 2)r2 sin θ cos θ,

ryy =
1
2
(r2 + σ 2

r )(1− λ
′
θ cos 2θ)+ (λ−2θ − 2)r2 sin2 θ.

where λθ = e−σ
2
θ /2; σ 2

θ is the variance in azimuth θ ; σ 2
r is the

variance in distance r ; and λ′θ = λ
4
θ .

VOLUME 8, 2020 211343



X. Sun et al.: Multidimensional Information Fusion in Active Sonar via the GLMB Filter

FIGURE 6. Measurements, true trajectories and tracking trajectories of the MDI-GLMB filter, A-GLMB filter, V-GLMB filter,
and GLMB filter.

FIGURE 7. Cardinality statistics for the (a)MDI-GLMB filter, (b)A-GLMB
filter, (c)V-GLMB filter, and (d)GLMB filter.

B. WEAK TARGET SCENARIO
A numerical study of a weak target scenario is performed
to verify the effectiveness of MDI-GLMB filtering for weak

FIGURE 8. OSPA metric versus time for the MDI-GLMB filter, A-GLMB
filter, V-GLMB filter, and GLMB filter.

targets (low detection probability). In this scenario, clut-
ter is modeled as a Poisson RFS with λc = 3.82 ×
10−4m−1 (rad)−1 (i.e., an average of 60 clutters per scan),
probability of false alarm Pfa = 0.001, SNR of signal 1+d =
10 (i.e., SNR (dB) = 10), detection threshold τ = 3.7169,
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FIGURE 9. Measurements, true trajectories and tracking trajectories of the MDI-GLMB filter, A-GLMB filter, V-GLMB filter, and GLMB
filter.

detection probability PD = 0.5337, and survival probability
PS = 0.95. The expected number of newborn targets driven
by measurement is λB,k+1 = 1, and the maximum intensity
of the newborn target is rBmax = 0.1λB,k+1.

Using the simulated measurement sets in the weak tar-
get scenario, we can run MDI-GLMB, A-GLMB, V-GLMB,
and GLMB filtering. The tracking trajectories of each filter
divided into the x component and y component versus time
are shown in Fig. 6 (a)-(d). In the figure, the crosses represent
measurements, the dashed lines represent the true trajectories
of targets, and the straight lines represent the multi-object
tracking trajectories. As the figure shows,
• After 5-20 scans of newborn target confirmation delay,

the MDI-GLMB filter can estimate and track the targets with
different velocities. When a target is dead, after 3-5 scans, the
filter can accurately determine that the target tracking is lost.
In the weak target scenario, a small number of false alarms
with MDI-GLMB filtering remains.

• The filtering performance of GLMB, V-GLMB,
A-GLMB, and MDI-GLMB increases in turn. In addition,
the probability of target missed tracking (missed detection)
of the GLMB filter is very high, which verifies the necessity
and effectiveness of multidimensional information fusion for
active sonar.
To verify the cardinality estimation and OSPA metric per-

formance of the MDI-GLMB filter, we compare it with the
A-GLMB, V-GLMB and GLMB filters for over 100 Monte
Carlo (MC) trials. In each trial, the same target tracks
in Fig. 4 are used, but a new set of measurement data is
randomly generated. Fig. 7 (a)-(d) shows the mean and stan-
dard deviation of the estimated cardinality distribution versus
time for the filters under study. These results confirm that the
cardinality estimation performance ofMDI-GLMB is slightly
better than that of A-GLMB and significantly better than that
of V-GLMB and GLMB. In addition, these results show that
the contribution of the amplitudemeasurement to information
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FIGURE 10. Cardinality statistics for the (a)MDI-GLMB filter, (b)A-GLMB
filter, (c)V-GLMB filter, and (d)GLMB filter.

fusion is greater than that of the radial velocity measurement,
which also verifies the fusion contribution evaluation based
on the KL divergence. The OSPA metrics of the four filters
are compared (p = 1, c = 1000) in Fig. 8, which shows
that MDI-GLMB has a lower OSPA metric than A-GLMB,
V-GLMB andGLMB,which further verifies the effectiveness
of the MDI-GLMB filter.

C. GENERAL TARGET SCENARIO
A numerical study of a general target scenario is performed
to verify the effectiveness of MDI-GLMB filtering for targets
with general echo strength. In this scenario, clutter is modeled
as a Poisson RFS with λc = 3.82 × 10−4m−1 (rad)−1,
probability of false alarm Pfa = 0.001, SNR of signal 1+d =
100 (i.e., SNR (dB) = 20), detection threshold τ = 3.7169,
detection probability PD = 0.9339, and survival probability
PS = 0.95. The location and intensity of newborn targets are
unknown. The expected number of newborn targets driven by
measurement is λB,k+1 = 1, and the maximum intensity of
the newborn target is rBmax = 0.1λB,k+1.
Using the simulated measurement sets in the general tar-

get scenario, we can run MDI-GLMB, A-GLMB, V-GLMB,
and GLMB filtering. The tracking trajectories of each filter
divided into the x component and y component versus time
are shown in Fig.9 (a)-(d). In the figure, the crosses represent
measurements, the dashed lines represent real trajectories
of targets, and the straight lines represent the multi-object
tracking trajectories. As the figure shows,
•After 1-3 pings of newborn target confirmation delay, the

MDI-GLMB filter can estimate and track the targets with dif-
ferent velocities. When a target is dead, after 1-3 pings, it can
accurately determine that the tracking is lost. The numbers of
missed detections and false alarms in MDI-GLMB filtering
are very few in the general target scenario.
• MDI-GLMB has equivalent filtering performance to A-

GLMB, both of which can accurately estimate the number

FIGURE 11. OSPA metric versus time for the MDI-GLMB filter, A-GLMB
filter, V-GLMB filter, and GLMB filter.

of targets and their trajectories. The filtering performance of
GLMB, V-GLMB, and A-GLMB increases in turn. In addi-
tion, the GLMB filter shows some target missed tracking,
which verifies the necessity and effectiveness of the multi-
dimensional information fusion for active sonar.

To verify the cardinality estimation and OSPA metric per-
formance of the MDI-GLMB filter, we compare it with the
A-GLMB, V-GLMB and GLMB filters for over 100 MC
trials. In each trial, the same target tracks in Fig. 4 are used,
but a new set of measurement data is randomly generated.
Fig. 10 (a)-(d) shows the mean and standard deviation of the
estimated cardinality distribution versus time for the filters
under study. These results confirm that the cardinality estima-
tion performance ofMDI-GLMB is slightly better than that of
A-GLMB and significantly better than that of V-GLMB and
GLMB. In addition, these results show that the contribution
of amplitude measurement to information fusion is greater
than that of radial velocity measurement, which also verifies
the fusion contribution evaluation based on the KL diver-
gence. The OSPA metrics of the four filters are compared
(p = 1, c = 1000) in Fig. 11, which shows that
MDI-GLMB has a lower OSPA metric than A-GLMB,
V-GLMB andGLMB,which further verifies the effectiveness
of the MDI-GLMB filter.

VI. CONCLUSION
In this paper, a method of multidimensional information
fusion in active sonar via the GLMB filter was proposed,
which can accurately estimate the number of targets and their
trajectories in the presence of low detection probabilities,
high clutter rates, low data-sampling rates, and largemeasure-
ment errors. The key innovation lies in the multidimensional
measurement modeling of active sonar, which enables one to
be elegantly apply the measurement information of different
dimensions to the information fusion via the GLMB filter
and significantly improves the filter performance. Based on
the KL divergence of each dimensional measurement, we can
know the necessity of fusion for a specific dimension mea-
surement. A flat Gibbs sampling method was proposed to
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efficiently implement the MDI-GLMB filter. The numerical
studies show the necessity and effectiveness of the proposed
MDI-GLMB filter. Future work will consider the application
of the MDI-GLMB filter to real data in active sonar.
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