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ABSTRACT This study presents two dynamic models, namely recurrent neural network and long short-term
memory (LSTM)models, for predicting PM2.5 concentrations in Taiwan by using PM2.5 time series obtained
at air quality monitoring stations and weather information obtained at neighboring weather stations. The
proposed models can efficiently predict PM2.5 by incorporating a learned memory structure with a forgetting
gate. To evaluate the predictive performance of the proposed models, large-scale databases established by
Taiwan’s Environmental Protection Administration, and Central Weather Bureau were used; these databases
include hourly data from 77 air quality monitoring stations and 580 weather stations over a 1-year period.
The results demonstrated that the proposed models outperformed three traditional machine learning methods
(gradient boosting, support vector machine, and classification and regression tree models) by 27.12% and
33.69% on average in terms of the coefficient of determination and root mean square error, respectively.
A geographical divergence analysis was conducted to compare predictive performance in different regions.
The results revealed that the most significant improvement in predictive performance was achieved in central
Taiwan. The seasonal and pollution effect on predictive performance were reduced by the LSTM and the
source distribution of PM2.5 emission in Taiwan was also analyzed.

INDEX TERMS Dynamic system, air quality, time series prediction, geographical monitoring stations.

I. INTRODUCTION
Air pollution is a major environmental concern and continues
to pose a serious threat to health worldwide [1]. Long-term
exposure to fine particulate matter, especially the particle
with a diameter not larger than 2.5 µm (PM2.5), has been
linked to an increasing range of adverse health effects such
as stroke, ischemic heart disease, lung cancer, respiratory
infection, and chronic obstructive pulmonary disease [2], [3].
PM2.5 has drawn considerable attention from citizens, scien-
tists, and governments since it is a crucial indicator for air
pollution early warning system [4]–[6]. As a result, the ability
of predicting PM2.5 is considered as a critical part to help
governments take countermeasures and improve environmen-
tal management [5], [7]. There are two major paradigms
of methodology related to PM2.5 prediction, deterministic
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and statistical methods. The statistical methods have shown
better performance because the nonlinear and heterogeneous
nature of processes in the formation and transportation of air
pollution [8]. With the advance of technology and decreasing
cost of sensors for collecting air quality data, data mining
and machining learning methods become more and more
important, such as time series analysis [9], [10], random
forest [11], [12], principal component analysis [13], Kalman
filters [14], support vector machines (SVMs) [15], [16], and
artificial neural networks (ANNs) [5], [7], [17].

PM2.5 predictions are challenging because the formation
and transportation of PM2.5 is strongly influenced by spatial
and temporal variations at both micro- and macro-scales [18],
[19]. These limitations of time and space also results in
variations of predictive performance when applying different
models in different countries [20]–[24]. For example, a study
applied a gradient boosting model (GBM) to predict PM2.5
in Taiwan; however, the model did not provide satisfactory
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predictive performance in central and southern Taiwan
because of the effect of industrial emissions in these regions
[25]. Moreover, the trends of PM2.5 time series are highly
related to seasonal variations. Although the model considers
features such as date attributes, it requires improvement to
effectively capture the sequential pattern of measurements
through a dynamic system.

To overcome the spatio-temporal heterogeneity of PM2.5
predictions, several types of approaches have been proposed,
which can be divided into two main streams: dynamic models
and geographical divergence analysis. Dynamic models are
designed to handle the sequential inputs, which is capable to
capture the spatio-temporal evolution of PM2.5 time series
data [26]. Recurrent neural network (RNN) and long-short
termmemory (LSTM)model are the twomajor models which
have beenwidely used in time series data prediction including
PM2.5 [27]–[29]. On the other hand, geographical divergence
analysis focuses on identifying the spatial patterns, which can
predict or explore the spatio-temporal heterogeneity of geo-
graphical events. Several geostatistical and machine learning
models such as geographically weighted regression (GWR),
mixed-effect model, geographically weighted gradient boost-
ing machine (GW-GBM), and clustering analysis have been
adopted to predict PM2.5 concentrations [18], [30], [31].

This study focused on PM2.5 concentration prediction in
Taiwan along with a geographical divergence analysis. Traf-
fic emissions and local meteorological conditions are major
factors associated with the daily variability of PM2.5 in the
urban areas of western Taiwan [32]–[35]. The seasonal vari-
ability of PM2.5 in Taiwan is strongly influenced by the
southwesterly and northeasterly monsoonal flow [36]–[38].
Moreover, Taiwan is surrounded by the Pacific Ocean and its
topography is dominated by the Central Mountain Range that
runs from north to south. The complex terrain and various
meteorological conditions engender large spatial and tem-
poral variations in PM2.5 concentration. The Environmental
Protection Administration (EPA) of Taiwan established air
quality monitoring stations in seven regions to record air
quality.

The recent study integrated air quality data provided by
the EPA and meteorological data provided by the Central
Weather Bureau (CWB) to predict PM2.5 [25]. Accordingly,
to improve predictive performance [25], the present study
presents two dynamic models, namely recurrent neural net-
work (RNN) and long-short term memory (LSTM) models
that can provide long-termmemory of the correlations among
time series items. An RNN is an artificial neural network
that connects a current input and the state of the previous
time step and subsequently outputs a prediction [39]. Because
an RNN has memory of only the state of the previous time
step, the proposed LSTM system with a forgetting gate was
developed to prevent the RNN from storing only short-term
states and forgetting long-term states [40]. To demonstrate
the effectiveness of the proposed models, this study applied
identical experimental data to those used in [25] to test the
predictive performance of the proposed models; additionally,

three traditional models (GBM, classification and regres-
sion tree model [CART], and support vector machine model
[SVM]) were used for comparison.

The results revealed that the performance of the LSTM
model was superior to that of the RNN model. Specifically,
the average coefficient of determination (R2), root mean
square error (RMSE), normalized RMSE (NRMSE), and
mean absolute percentage error (MAPE) of the LSTMmodel
were 0.86, 4.46, 0.24, and 0.30, respectively, which were
superior to those of the RNN model by 53.94%, 40.94%,
42.29%, and 49.29%, respectively.

The contributions of this study are summarized as follows:
1) We employed two dynamic models, RNN and LSTM

models that can provide long-termmemory of the correlations
among time series items. Besides, three traditional machine
learningmodels, CART, GBM, and SVMwere applied for the
predictive performance comparison. The predictive perfor-
mance of the LSTM model was considerably superior to that
of the RNN model and all three traditional machine learning
models.

2) This study provides a geographical divergence analysis
that was conducted to compare predictive performance in dif-
ferent seven air monitoring regions. To our best knowledge,
it is the first study investigating the seasonal variation and
domestic emission in the task of air quality prediction in
Taiwan.

3) Although PM2.5 is strongly influenced by seasons,
the LSTM model can satisfactorily overcome the seasonal
variation of PM2.5 in Taiwan. Otherwise, compared with
other regions in Taiwan, we determined that CT had the
lowest predictive performance of traditional models result-
ing from highest domestic PM2.5 emission. Nevertheless,
the LSTMmodel clearly improved predictive performance in
this region.

II. DATA COLLECTION
The EPA and CWB databases constitute the main sources of
data used by researchers for air quality forecasting. The EPA
database provides 264799 samples collected from 77 air sta-
tions for 2017. The data are typically collected in seven mon-
itoring regions (Fig. 1): northern Taiwan (NT), the Chu-Miao
(CM) area, central Taiwan (CT), the Yun-Chia-Nan (YCN)
area, the Kao-Ping (KP) area, the Hua-Dong (HD) area, and
Yilan (YI). The data include the following attributes: index,
city, county, station name, date, detected items, and time in
hours. Additionally, the following substances are monitored:
PM2.5, NO2, PM10, NO, NOX , SO2, CO, O3, THC, NMHC,
and CH4. These substances are primarily released into the air
through burning of fuel in vehicles and power plants.

To provide quality assurance, the EPA has strict guidelines
for air quality monitoring. The EPA provides an annual report
on quality assurance operations for the air quality monitoring
system. The accuracy of the PM2.5 data (2017) used in present
study was 96.3%. The annual report for the period from
2001 to 2017 can be downloaded from the EPA website
[41]. The air quality monitoring stations established by the
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FIGURE 1. Air quality monitoring stations.

EPA can be divided into six categories. The first category
comprises 60 general stations, most of which are located
in urban and suburban areas. The second category contains
five stations located close to industrial factories. The third
category comprises five stations that are located close to
main roads and have a relatively low sampling altitude. The
fourth category contains four background stations (two of
which simultaneously function as general stations) that are
located away from pollution sources and provide baseline
monitoring data. The fifth category comprises two national
park stations (one of which serves as the general station).
Finally, the sixth category contains two stations located in
rural area.

Fig. 2 illustrates the monthly temporal variation of the
mean PM2.5 concentrations in the seven regions, where YI
has missing data except for December. This figure indicates
that the PM2.5 concentrations reach a peak in most regions
during spring (February, March, and April), drop dramati-
cally during summer (May, June, and July), and start to go
upwards during autumn (September, October, andNovember)
and winter (November, December, and January).

The CWB has established 580 weather stations for mon-
itoring and reporting weather conditions in Taiwan [42]
(Fig. 3). The collected weather data includes the following
attributes: longitude, latitude, station name, city, county, wind
speed, wind direction, temperature, and pressure. The num-
ber and date of data sets from the CWB and EPA must be
synchronized for model training. This study used fivefold
cross validation to confirm the prediction results in the study
[25]. The data were randomly split into five folds, four of
which were used for training, with the remaining one used
for testing.

FIGURE 2. Monthly variations of the mean PM2.5 concentrations in the
seven air monitoring regions.

FIGURE 3. Weather stations.

III. METHODOLOGIES
We analyzed the predictive performance of the RNN and
LSTM models. Next, we applied three traditional machine
learning models, namely a CART model, GBM, and SVM
model, for comparison.

A. TWO DYNAMIC MODELS
1) RNN MODEL
An RNN exhibits a temporal dynamic behavior in which an
artificial neural network connects the current input and the
state of the previous time step; the network then outputs a
prediction. Furthermore, an RNN has an input layer, a hidden
layer, and an output layer [39]. The input layer uses an input
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FIGURE 4. Flowchart of LSTM.

vector x, and the output layer produces an output variable y.
After an input value xt and output value yt−1 are given,
the hidden layer with the hidden state ht applies a sigmoid
function f (z) to determine what percentage of xt and yt−1
should be transmitted into an output value yt .

ht = V ∗ xt + U ∗ ht−1, (1)

ot = W ∗ ht , (2)

where V , U , and W are weighting vectors and ot is an
intermediate result. Finally, the output value yt is determined
using the sigmoid function f (z),

yt = f (ot ). (3)

In the RNN, the current output depends on the current input
and previous output. The RNN remembers only short-term
information (i.e., the state of the previous time step) and
long-term information is forgotten with time. Accordingly,
this study proposes the LSTM model to overcome this
problem.

2) LSTM MODEL
In a PM2.5 time series, neighboring samples are highly related
to each other. Furthermore, PM2.5 is strongly affected by
meteorological factors for different seasons. Therefore, this
study developed the LSTMmodel for prediction using PM2.5
time series with long-term correlations. The LSTM model
can prevent the RNN model from forgetting long-term states
because the RNN model remembers only the state of the
previous time step [40].

The LSTMmodel is a modified version of the RNNmodel.
The LSTM model handles datasets comprising items with
long-term correlations; by contrast, the RNN model cannot
[43]. The LSTM architecture comprises an input layer, a hid-
den layer, and an output layer. Hence, the LSTM and RNN
models have the same architecture, except for hidden layer.
The input layer uses 81 features as the input vector x and
the output layer produces an output variable y for PM2.5
concentration prediction. The hidden layer’s weighting vector
and bias number are determined according to the data length.

Given an input value xt and output value yt−1, the hidden
layer uses a forgetting gate, an input gate, and an output

gate to determine what percentage of xt and yt−1 should be
transmitted into an output value yt , as shown in Fig 4. First,
the forgetting gate determines the percentage of xt and yt−1
to be reserved by applying a sigmoid function σ , as expressed
in Eq. (4):

ft = σ (Wfy ∗ yt−1 +Wfx ∗ xt + bf ), (4)

where Wfy and Wfx are the weighting vectors and bf is the
bias vector, respectively. The sigmoid function σ returns a
value ft in the range [0, 1]. Second, the input gate saves and
modulates xt and yt−1 by applying the sigmoid function and
tanh activation function, respectively. The sigmoid function
returns a percentage It , and a tanh function returns a tempo-
rary modulation parameter M̃t , as expressed in Eq. (5) and
Eq. (6):

It = σ (WIy ∗ yt−1 +WIx ∗ xt + bI ), (5)

M̃t = tanh(WMy ∗ yt−1 +WMx ∗ xt + bM ). (6)

M̃t can add or subtract xt and yt−1 because the tanh
function returns a value in the range [−1, 1]. Subsequently,
the modulation parameterMt is determined as follows:

Mt = It ∗ M̃t + ft ∗Mt−1. (7)

Mt−1 is a modulation parameter in a previous time stamp.
Finally, the output gate evaluates a percentage Ot that is
similar to ft and It as follows:

Ot = σ (WOy ∗ yt−1 +WOx ∗ xt + bO). (8)

The output value yt is then derived using Ot , Mt , and the
tanh function:

yt = Ot ∗ tanh(Mt ). (9)

The procedure of the LSTM model is described in
Algorithm 1.

B. THREE TRADITIONAL MACHINE LEARNING MODELS
1) CART
In the CARTmodel proposed by Breiman and Friedman [44],
a decision tree algorithm creates a series of decision rules for
data classification. The rules are set according to training data
attributes. Subsequently, the splitting nodes of the decision
tree algorithm are determined. Maximum number of split-
ting note was set as 32 during model training. When a data
attribute is numerical, the splitting nodes can be fitted using
regression functions. Next, an optimized fitting function is
applied to predict testing data.

2) GBM
The GBM combines fitting functions, loss functions, a deci-
sion tree, and gradient descent analysis [22]. The decision tree
produces initial values for the fitting function through multi-
ple regression and this process can handle numerous input
variables, similar to those considered in the study. Errors
between the observed datasets and output values are then cal-
culated using a loss function. Frequently used loss functions
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Algorithm 1 LSTM
Input:
0: xt : Input value at time t
0: yt−1 : Output value at time t − 1
0: Mt−1 :Modulation parameter at time t − 1
0: T : Time length
Output:
0: yt : Output value at time t
0: Mt :Modulation parameter at time t
0: For t = 1 to T
0: The forgetting gate:
0: ft = σ (Wfy ∗ yt−1 +Wfx ∗ xt + bf )
0: The input gate:
0: It = σ (WIy ∗ yt−1 +WIx ∗ xt + bI )
0: M̃t = tanh(WMy ∗ yt−1 +WMx ∗ xt + bM )
0: Mt = It ∗ M̃t + ft ∗Mt−1
0: The output gate:
0: Ot = σ (WOy ∗ yt−1 +WOx ∗ xt + bO)
0: yt = Ot ∗ tanh(Mt )
0: End

include square error, absolute error, and negative binomial
log-likelihood functions [45], [46]. Subsequently, gradient
descent analysis is applied to determine the fitting function
for which expected loss function value is minimized. The
aforementioned procedure is repeated to derive an optimal
fitting function. Maximum number of splitting note, learning
rate, and epoch were set as 32, 0.0875, 500 during model
training. The derived fitting function is thus applied to predict
the PM2.5 concentration.

3) SVM
An SVM is a supervised learning technique used for regres-
sion and classification [47]. An SVM model applies a kernel
function that maps data points into a high-dimensional fea-
ture space. Frequently used kernel functions includes linear
functions, nonlinear functions, polynomial functions, sig-
moid functions, and radial basis functions (RBFs). The per-
formance of SVM is associated with the selection of kernel
functions. From polynomial functions, sigmoid functions,
and RBFs, we choose RBFs as kernel functions of SVM
resulting in the best forecast performance. The RBF selection
process in this study entailed deriving a hyperplane with the
maximum distance to the nearest data points. The selected
RBF was then used to execute PM2.5 prediction.

C. FEATURE EXTRACTION
We extracted features from the EPA and CWB data for model
training. Eighty-one features were extracted for each air
quality monitoring station and its four neighboring weather
stations. Specifically, 21 features were identified for each air
quality monitoring station and 15 features were identified for
each of its four neighboring weather stations. Tables 1 and 2
list the details of the 81 features used to generate the PM2.5
prediction models.

To predict air pollution on a given day, the pollution levels
of the previous 2 days should also be considered because of
the memory effect. In addition, because the flow of traffic
strongly influences air quality, whether a given day is a
regular day, weekend, or holiday should also be considered.
An air quality monitoring station’s weather conditions were
represented by the mean of the pressure and temperature
levels measured at nearby weather stations. Features in the
training model also included the hour of the day, day of the
week, and year to learn the trend and period of the temporal
index.

On the basis of the features, we averaged the pressure,
temperature, and wind speed levels at nearby weather sta-
tions to represent the weather conditions at a nearby air
quality monitoring station. Because wind can blow from any
direction, wind was split into the four cardinal directions
for simplicity. In summary, 15 features were inferred from
each weather station (Table 2). We used one air station and
four neighboring weather stations to generate 81-dimensional
feature vectors for model learning and PM2.5 prediction.
In addition, features’ data were standardized to improve the
convergence speed and predictive performance.

IV. PREDICTIVE PERFORMANCE
Experiments were conducted to determine the predictive per-
formance of the proposed models, and R2, RMSE, NRMSE,
and MAPE served as performance metrics. R2 is a measure
of the proportion of the variance of observed values that
is predictable in a multiple regression analysis. When the
R2 value is 1, the observed values are perfectly predicted.
RMSE indicates the mean fluctuation between the observed
and predicted values. NRMSE indicates the ratio of RMSE
to mean observed values. Furthermore, NRMSE represents
the percentage of prediction errors in observed values, and
so does MAPE. Low RMSE, NRMSE, and MAPE values
indicate high predictive performance.

A. HYPERPARAMETER OPTIMIZATION
We applied decision-tree-based models (CART model and
GBM), neural-network-based (RNN and LSTM)models, and
SVM.When a neural-network-basedmodel is trained, param-
eter adjustment should be executed to identify optimal predic-
tive performance. The LSTM and RNN architectures jointly
comprise an input layer, a hidden layer, and an output layer.
The size of the input layer and that of the output layer depend
on the number of features. However, the size of the hidden
layer (N) should be adjusted according to length of the data
sample to avoid overfitting [48]. This is because the lengths of
data samples are different in different air quality monitoring
stations in Taiwan. Accordingly, we systematically varied
the N value to determine the value associated with optimal
predictive performance. Furthermore, the parameters used for
model training included initial learning rates and maximum
number of epochs, which were set as 0.005 and 250 in the
experiment.
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TABLE 1. Input features obtained from an air monitoring station.

TABLE 2. Input features from a weather station. The features from four weather stations and one air station are required for model training.

FIGURE 5. R2 versus N.

As displayed in Fig. 5, the R2 values of the RNN and LSTM
models varied with the N values. When the N value was 300,
the R2 value of the RNNmodel was less than 0.6, whereas that
of the LSTM model was higher than 0.9. Furthermore, when
the N value was higher than 300, the R2 values of the RNN
and LSTM models improves only slightly (less than 0.05).
Furthermore, training the RNN and LSTM models required
long calculation times when the N value was higher than 300.
Therefore, we set N to 300 when comparing the predictive
performance of the RNN and LSTM models.

B. COMPARISON OF MODEL PERFORMANCE
Fig. 6 illustrates the model performance comparison results.
The black, purple, red, and green empty circles represent the
predictive performance of the CART model, RNN model,

FIGURE 6. Comparison of PM2.5 predictive performance of 77 air stations
among the RNN model, GBM, SVM model, CART model, and LSTM model.

SVMmodel, and GBM, respectively, and the blue solid circle
represents the predictive performance of the LSTM model.
The R2 value of the LSTM model was 0.7-1.0, and those of
the other models were 0-1.0 (Fig. 6). Furthermore, the RMSE
of the LSTM model was 1-8, and those of the other models
were in the range of 2-18. In summary, the predictive perfor-
mance of the LSTM model was superior to that of the other
models. However, Taiwan is characterized by complex ter-
rains and meteorological conditions. Therefore, an in-depth
comparison of predictive performance for different regions
must be executed. Accordingly, we assessed predictive per-
formance with respect to R2, RMSE, NRMSE, and MAPE in
seven regions, as presented in the next subsection.
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FIGURE 7. Comparison of the R2 in the seven regions among the five
models.

FIGURE 8. Comparison of the RMSE in the seven regions among the five
models.

C. MODEL PERFORMANCE COMPARISON WITH RESPECT
TO GEOGRAPHICAL DIVERGENCE
1) R2

Fig. 7 illustrates the R2 values of the fivemodels when used to
execute predictions in the seven regions. Among the models,
the LSTM model had the highest R2 value. Thus, the LSTM
model exhibited superior predictive performance compared
with the other models. Furthermore, the R2 values of all
models, except for the LSTM model, were lowest in CT.

2) RMSE
Fig. 8 displays the RMSE values of the five models in the
seven regions. The CART model had the highest RMSE

FIGURE 9. Comparison of the NRMSE in the seven regions among the five
models.

FIGURE 10. Comparison of the MAPE in the seven regions among the five
models.

values. However, the LSTM model had the lowest RMSE
values, indicating that the difference between the observed
and predicted values was lowest for this model.

3) NRMSE AND MAPE
Figs. 9 and 10 present the NRMSE and MAPE values of the
five models in the seven regions. The LSTMmodel exhibited
the lowest NRMSE and MAPE values. This thus implies that
the percentage of prediction errors in the observed values was
lowest for this model. The aforementioned values are listed
in Table 4.
Figs. 7, 8, and 9 reveal that in the YI region, the R2, RMSE,

and NRMSE values of the models were similar, except for
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FIGURE 11. Predictive performance of the LSTM model and GBM in CT
and YCN. Specifically, Douliu station in YCN and Fengyuan station in CT
are two examples for model comparison.

FIGURE 12. Monthly variations of the mean PM2.5 concentration in YCN
area.

those of the CART model. Because the YI area had miss-
ing data for the observation period, except for December,
the length of data limits the predictive performance of the
models, especially that of the LSTM model. We discovered
that the proposed LSTM model exhibited adequate perfor-
mance in CT and KP, the most challenging regions for the
other models in terms of PM2.5 prediction.

D. EFFECTS OF SEASONS AND POLLUTION ON MODEL
PERFORMANCE
1) EFFECT OF SEASONS
In Taiwan, PM2.5 varies seasonally because the southwest-
erly monsoonal flow in summer and northeasterly mon-
soonal flow in winter strongly affect the PM2.5 concentration

FIGURE 13. Annual PM2.5 time series for Douliu station.

FIGURE 14. Difference between the observed and predicted PM2.5 time
series among five models for Douliu station in summer.

[37], [38]. Less than 80% of observed values could be accu-
rately predicted by the models, except for the LSTM model
(Fig. 7). Because the LSTM model can adequately handle
long-term correlations in time series of PM2.5, it could accu-
rately predict up to 90% of the observed values in all regions,
except for YI. In addition, the RMSE, NRMSE, and MAPE
values of the LSTMmodel were lower than those of the other
models (Figs. 8-10).

PM2.5 time series data (Fig. 11) obtained at the Douliu
station in YCNwere used for model comparison. To illustrate
the effect of seasonal variations, Fig. 12 shows the similar
monthly mean PM2.5 concentration variations for YCN area
in 2017 and 2018, respectively. Besides, Fig. 13 presents the
annual PM2.5 concentration variations for Douliu station. The
green circle indicates relatively low PM2.5 concentrations in
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FIGURE 15. Difference between the observed and predicted PM2.5 time
series among five models for Douliu station in winter.

FIGURE 16. Box plot of residuals between observed and predicted PM2.5
time series in summer and winter for Douliu station among the five
models.

summer, and the red circle indicates relatively high PM2.5
concentrations in winter. Furthermore, Figs. 14 and 15
show difference between the observed and predicted values
among five models in summer and winter, respectively.
Figs. 16(a) and 16(b) display a box plot of residuals between
observed and predicted values in summer and winter for
2 months. The LSTM model had the lowest difference
between the predicted and observed values.

FIGURE 17. Improvement of the R2 and error reduction rates of the RMSE,
NRMSE, and MAPE from the GBM to the LSTM model in the seven regions.

FIGURE 18. Box plots of absolute difference between the annual
observed and predicted PM2.5 time series for Fengyuan station among
the five models.

2) EFFECT OF POLLUTION
Air pollution has deteriorated in CT, thus becoming a major
public health concern. The EPA data indicated that CT had
the highest percentage of domestic PM2.5 emission (up to
21.46%), mainly contributed by industry, cars, and road dust
(Table 3) [49]. Despite the complex mechanisms underly-
ing this ominous pollution problem, we discovered that the
LSTM model could adequately predict PM2.5 concentrations
in this region. The LSTM model exhibited the favorable R2,
RMSE, NRMSE, and MAPE values.

The LSTM model exhibited the highest R2 in CT (Fig. 7).
The improvement I could be derived as follows: 100 ∗
(R2LSTM − R2GBM )/R2GBM . Fig. 17 illustrates improvement
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TABLE 3. Domestic PM2.5 Emission of Taiwan in 2017.

TABLE 4. Model comparison.

in the seven regions; the highest improvement in R2 was
observed between the LSTM model and GBM in CT.

Error reduction rates E with respect to RMSE, NRMSE,
and MAPE can be defined as follows: 100 ∗ |(βLSTM −
βGBM )|/βGBM , where β represents RMSE, NRMSE,
or MAPE. Significant error reduction rates were also
observed between the LSTM model and GBM (Fig. 17).

Consider, for example, model performance for the
Fengyuan station in CT (Fig. 11). Box plots of the absolute
difference between the observed and predicted values for a
year are provided in Fig. 18. The lowest difference between
the predicted and observed valueswas observed for the LSTM
model.

On the basis of preceding results, we can conclude that
the effects of seasonal variations and pollution on the LSTM
model are low, which improves predictive performance.

V. CONCLUSION
This study proposes two dynamic models, namly RNN
and LSTM models, for predicting PM2.5 concentrations
at individual air quality monitoring stations in Taiwan.
The study investigated the divergence between predicted
values and measured values in seven regional air quality

monitoring regions. In Taiwan, the predictive performance
of the LSTM model significantly outperformed the three
traditional machine learning models. By the visualizations
and the box plots of predictive performance in summer
and winter, the LSTM model was robust in minimizing the
residuals between the observed and predicted values under
conditions of seasonal variations in PM2.5 time series.

In 2017, the PM2.5 emission percentage was largest in
CT, which renders PM2.5 prediction difficult. Nevertheless,
regarding predictive performance in CT, the R2, RMSE,
NRMSE, and MAPE of the LSTM model were superior to
those of the other traditional machine learning models by
41.93%, 43.98%, 43.59%, and 45.45% on average, respec-
tively. In summary, the effects of seasons and pollution on
predictive performance in Taiwan were apparently reduced
by the LSTM model.
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