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ABSTRACT Virtual power plant (VPP) interconnects distributed generation (DG) units, microgrids, and
energy storage systems (ESSs) of an electrical power system. This article presents a linear programming
cost minimization model of VPP for the design and commitments of DG, ESS, and microgrid. Using a set
of renewable energy resources, the proposed model creates a reliable, cost-effective, and environmentally
friendly distribution system. Accurately, it illustrates the schedule of the VPP to operate autonomously. The
proposed model is applied to a set of United States commercial load profiles to determine the investment
benefit of implementing DGs in the power system. Analysis of results concerning variation in energy price
illustrates feasible solutions. VPP decision-makers can select the best reasonable solution based on their
specific project budget for feature electricity generation. Moreover, results show the need for the proposed
method in VPP decision making.

INDEX TERMS Distribution system, optimization, DG, VPP.

NOTATIONS AND PARAMETERS
Notations which are used in this article are as follow:

ABBREVIATIONS
DG Distributed generation
EMS Energy management system
ESS Energy storage system
IDG Independent distributed generation
IESS Independent energy storage system
VPP Virtual power plant

NOTATIONS
CapIDGi The capacity of the ith installed

Independent DG in the power network
(kW)

CIDGi Cost of the ith installed Independent
DG in the distribution system ($/kW)

AIDG The annuity factor refers to the
corresponding capital investment of the
ith installed Independent
DG in the distribution system

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

M Annual maintenance cost (subscripts
refer to the corresponding plant) ($ /year)

CapIESSi The capacity of the ith installed
Independent ESS in the power network (kW)

CIESSi Cost of the ith installed Independent
ESS in the power network ($/kW)

AIESS The annuity factor refers to the
corresponding capital investment of the
ith installed Independent ESS in
the distribution system

CapDGi,k The capacity of the ith installed DG
in the k th microgrid (kW)

CDGi,k Cost of the ith installed DG in the k th

microgrid ($/kW)
ADG Annuity factors refer to the

corresponding capital investment of the
ith installed DG in the kth microgrid

CapESSi,k The capacity of the ith installed ESS in
the k th microgrid (kW)

CESSi,k Cost of the ith installed Independent
ESS in the kth microgrid ($/kW)
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AESS The annuity factor refers to the
corresponding capital investment of the
ith installed Independent ESS
in the kth microgrid

OutDGi,j,k The output of ith DG in the kth
microgrid at the jth period (kW)

McDGi,j,k The maintenance cost of ith DG in the
kth microgrid at the jth period ($/kWh)

Wj Weighting for period j (the reflection of
the number of days of this ‘type’
per year)

OutIDGi,j The output of ith independent DG in
the power network at the jth period
(kW)

McIDGi,j The maintenance cost of ith

independent DG in the power network
at the jth period ($/kWh)

OutESSi,j,k The output of ith ESS in the kth
microgrid at the jth period (kW)

VESSi,j,k Electricity stored in the ith unit of the
kth microgrid in period j (kWh)

McESSi,j,k The maintenance cost of ith ESS in the
kth microgrid at the jth period ($/kWh)

OutIESSi,j The output of ith independent ESS in
the power network at the jth period
(kW)

VIESSi,j Electricity stored in the ith unit in
period j (kWh)

McIESSi,j The maintenance cost of ith

independent ESS in the power network
at the jth period ($/kWh)

Ij,k Electricity imported from the k th

microgrid in period j
Pj,k Price for electricity imported from the

kth microgrid in period j
Ej,k Electricity exported to the kth

microgrid in period j
rj,k Buyback price for exported electricity

to the kth microgrid in period j
Pmicrogridk (γ ) Fixed cost for microgrid components,

as a function of the number of sites
(k) and the distance between sites (γ )

IIDGi,j Electricity imported from the ith

independent DG in period j
PIDGi,j Price for electricity imported from the

ith independent DG in period j
EIDGi,j Electricity exported to the ith

independent DG in period j
rIDGi,j Buyback price for exported electricity

to the ith independent DG in period j
PIDGi (γ ) Fixed cost for independent DG

components, as a function of the
number of sites (k) and the
distance between sites (γ )

IIESSi,j Electricity imported from the ith

independent ESS in period j
PIESSi,j Price for electricity imported from the

ith independent ESS in period j
EIESSi,j Electricity exported to the ith

independent ESS in period j
rIESSi,j Buyback price for exported electricity

to the ith independent ESS in period j
PIESSi (γ ) Fixed cost for independent ESS

components, as a function of the number of
sites (k) and the distance between sites (γ )

Vb Voltage magnitude at bus b
RIDGl,i Ramp down the limit for ith

independent DG
RIDGu,i Ramp up the limit for ith independent

DG
hESSu,i,k Maximum charge rate for ith ESS of

kth microgrid
hESSl,i,k Maximum discharge rate for ith ESS of

kth microgrid
RDGl,i,k Ramp down the limit for ith DG of kth

microgrid
RDGu,i,k Ramp up the limit for ith independent

DG
hIESSu,i Maximum charge rate for ith ESS
hIESSl,i Maximum discharge rate for ith ESS

I. INTRODUCTION
Improving distributed generation (DG) in all aspects such
as renewable technologies, financial-economic, and power
quality causes the end-users to be keen on generating power
electricity, individually. DG units independently operate with
different owners that can be implemented on-grid or off-
shore [1]. Hence, on the one hand, applying DG in microgrids
may damage the system’s regular operation. On the other
hand, it may improve power generation cost, greenhouse
gasses emission, and power quality factors such as power
loss, voltage deviation, and distribution system reliability.
A virtual power plant (VPP) is a technical, economical, and
practical structure that interconnects DG units and energy
storage systems (ESSs) within microgrids [2].

Recently, several works [3]–[6] have presented challenges
and opportunities for VPP in bidding strategies of markets
or optimal scheduling issues that the main idea of this article
(i.e., presenting an optimal practical VPP model) is inspired
by them, for instance, authors of [6] have designed a market
mechanism for virtual inertia. Sadeghian et al. [7] have pre-
sented the sizing model of ESS in a VPP contains constant
photovoltaic units, wind turbines, and loads to minimize
the cost of VPP. With this idea, the current study uses the
modified model not only for the sizing of ESS but also for
the sizing of DGs and other power generators of the power
system. Moreover, the authors of [8] have shown an energy
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management system (EMS) of VPP considering DGs, ESSs,
and controllable loads in an integrated model. The current
study expands this model for considering commercial loads.
The focus of [9] is on recognizing risk management in the
optimal operation of VPP, the optimal operation is a part of
the current study. Dulau et al. [10] have gathered themain fea-
tures of DG and VPP that contain power quality issues. This
article considerers these features, too. The authors of [11]
have reviewed all definitions, principal components, and the
primary concept of VPP and have presented two principal
VPP types: technical VPP and commercial VPP. Based on the
presented definitions in [11], this article presents commercial
VPP with considering technical aspects. Zamani et al. [12]
have shown a two-stage mathematical model for the imple-
mentation of DGs and ESSs for scheduling of a VPP with
considering uncertainties of electricity prices. This article
improves the used optimizationmodel in [12] to avoid achiev-
ing unwanted local optimum solutions and to increase the
calculation velocity of the optimization algorithm.

Besides that, microgrids as one of the subsystems in the
VPP have some dispatched units such as DG units, ESSs,
and demand-side systems. Recently, scholars have intro-
duced various methods and models for EMS of microgrids
[13]–[15]. The authors of [15] have presented an optimal
model for a local microgrid that uses a day-ahead optimiza-
tion algorithm considering a daily variation of demand and
supply. Furthermore, the authors of [16] have reviewed the
state of the art in the field of reconfiguration in microgrids.
They have highlighted the research gaps in this field of study
contain modeling of VPP and future challenges in microgrid
reconfiguration. Hence, this article presents a practical model
of VPP with connected microgrids. On the other hand, some
scholars have presented the research gaps related to opti-
mization algorithms used in the microgrids models [17]–[19].
The authors of [17] have presented a swine-influenza opti-
mization algorithm for minimization of cost in microgrid
under probabilistic and deterministic environment.Moreover,
Dawoud et al. [18] have reviewed some other optimization
techniques and algorithms for minimizing the cost function
of the microgrid. Li et al. [19] have presented a Zero-Order
Distributed Policy Optimization algorithm combination of
leveraging consensus algorithm and Zero-Order Policy Opti-
mization algorithm to learns the local controllers in a dis-
tributed fashion. The mentioned algorithms and other types
of optimization algorithms have some specific characteristics
that cause the selection of one in detriment of the others.
Although the classical mathematical algorithms in compar-
ison to heuristic algorithms (including evolutionary algo-
rithms) are more accurate, their calculation velocity is very
slow for some optimization problems such as VPP modeling.
Moreover, the differences in the heuristic algorithms such
as mentioned optimization algorithms are in the calculation
speed and the accuracy of solving the optimization problem.

Analysis of the reviewed literature shows one of the main
objective functions in microgrids is the reduction of oper-
ational costs that still needs more research to achieve this

goal [8]–[12], [20]. Additionally, the study of reviewed kinds
of the literature shows the VPP model is one of the best
concepts for increasing DG and ESS integration in the power
system but the scholars try on finding the reliable and accurate
VPP model [13]–[18], [21], [22]. Moreover, the common
intelligent control center of VPP needs a linear programming
cost minimization model of DG and storage within micro-
grids that some articles have stated the need for more research
about it [5], [8], [23]–[26]. Therefore, presenting an optimum
model of DG and storage within the microgrid for the control
center of VPP is the main target of this article that a few
studies have been conducted to present it.

This article presents a simultaneous DG, microgrid, and
ESS scheduling method for a VPP considering uncertainty
parameters, and demand response resources. Modeling of
uncertainties in operational planning for EMS makes the
scheduled results more realistic. The power system opera-
tional cost is the objective function. Wind turbines, photo-
voltaics, and batteries are considered as DG in this article,
mainly because of the recent growth in their usage. Analysis
of results shows some interesting points such as solution 1
illustrates the best participant of renewable energy resources
about %43 of the whole generation while solution 2 indicates
the minimized initial investment cost and solution 3 demon-
strates the minimized operation cost for 25 years.

Most of this article’s novelty and originality are related
to improving a linear programming cost minimization model
and a new hybrid optimization algorithm to solve it for VPP
planning. The applied strategy in the proposed optimization
algorithm for determining the optimal operation of power
generators of the VPP, and using sensitive analysis opti-
mization technique are the most critical innovative elements
of the proposed approach. The comparison of the proposed
optimization algorithm with the other optimization algo-
rithms proves the superiority of the proposed optimization
algorithm in accuracy and calculation velocity. Furthermore,
the proposed optimization algorithm may be interesting for
some scholars who need an accurate optimization algorithm
with a superb calculation velocity in solving optimization
problems related to power systems. Comparing the proposed
optimization algorithm feasible solutions with each other
proves the capability of the proposed algorithm in analyzing
and presenting the best VPP model for each special project.
The innovative contributions of this article are as follows:
• This article presents an optimal practical model
for increasing the integration of DGs, ESSs, and
microgrids.

• This article presents a new mathematical formulation
and optimization model for solving the energy manage-
ment problem of VPP.

• This article presents a new hybrid optimization
algorithm to minimize the cost objective function.

• This article compares the results of the proposed opti-
mization algorithm with the other optimization algo-
rithms as well as the results of different scenarios
obtained by the proposed optimization algorithm.
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FIGURE 1. The proposed VPP structure.

• This article presents a practical model for the reconfig-
uration of the power system.

II. SYSTEM MODELING AND PROBLEM FORMULATION
An energymanagement problem is defined in this article. The
problem is determining the feasible and optimized solutions
of a VPP contains different DGs, ESSs, loads, and microgrids
for minimizing the cost. The objective function is the min-
imization of the annual cost of generating electricity. This
article improves a linear programming cost minimization
model while uses the previous studies in this area as a basis
for the formulation of a new approach to solving this problem.
This article formulates the problem as linear programming
that is a convex optimization problem and introduces a hybrid
optimization algorithm to solve this problem. Themodels and
methods to solve this problem are gathered in this section.

A. VIRTUAL POWER PLANT MODEL
VPP is defined as a combination of DGs, ESSs, loads, and
microgrids participating in the power market as an indepen-
dent power plant for specific objective trading the generated
the electrical energy for minimizing the cost. In the power
market, the VPP can buy power for the power market and
charge the ESSs when the electricity price is low. On the other
hand, the VPP decreases power obtained from the controlled
load and discharge energy from the ESSs when the electricity
price is high in the power market. All kinds of DGs, such as
photovoltaic units, wind turbines, or diesel generators, can be
implemented in the VPP structure. EMS, the core of VPP,
duty is to coordinate the output power of generators, the load
demand, and ESS capacity [24].

Fig.1 illustrates a schematic overview of a VPP structure
that is implemented in this article. The data and power flow
connections between all components of VPP is shown in
this figure. The passive management of distribution network

which is generally found in a centralized system where
power electricity flows from large power plants, through the
transmission lines, and then the VPP structure has changed
through the distribution system to the load. When substantial
power generation occurs in the distribution system, the power
electricity flow will be changed.

The structure of the microgrid using the VPP structure is
shown in Fig.2. The power flows of all generators, load and
ESS are shown in this figure. The microgrids 1 to n that are
shown in Fig. 1 have different DGs that are connected to the
microgrid in Fig. 2. The number and kinds of DGs can be
changes in various case studies. The DGs can independently
connect to VPP or can use in the microgrids.

FIGURE 2. The proposed microgrid structure.

B. MICROGRID MODEL
A set of DGs, electrical energy storage, the grid connection
for export or import electricity, a power distribution infras-
tructure, and an energy management system are defined as a
microgrid. The main characteristic of a microgrid is operat-
ing autonomously in an ‘‘islanded’’ mode where there is no
electricity exchange with the macro-grid. Microgrid creates
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a reliable network with high efficiency and low emission of
greenhouse gas [22].

Fig. 3 shows an example of a microgrid in the real world.
This figure indicates a large hotel and a hospital in the USA,
supplied by the 1.5 MW wind turbines, the 10 MW pho-
tovoltaic units, a 1MWh generic Lithium-ion battery, and a
utility having diesel generator (2MW).

FIGURE 3. An example microgrid with real sample load data in the USA
which is simulated in HOMER software.

The microgrid model is usually simulated with
HOMER [27], DER-CAM [28], and MATLAB [29] soft-
ware. Because of the various number of design options and
uncertainty parameters, simulation, design, and analysis of
microgrid can be challenging. This article used the reliable
HOMER software developed by the US national renewable
energy laboratory (NREL).

C. STOCHASTIC AND UNCERTAINTY MODEL
Several models have presented in different studies to model
the power system uncertainties, and some methods are used
to solve them such as the Monte Carlo (MC) method, approx-
imate methods, and analytical techniques. The MCmethod is
computationally expensive, but it can handle complex, uncer-
tain variables accurately [21]. In this article, the authors have
used the MC method to solve the model of the uncertainty
of the power system. The flowchart and details of the MC
method can be found in [30], [31]. Moreover, the authors
of [32] have applied the MC method to uncertainty in mea-
surement that is the same model of the MC method that is
used in the current study. The authors of [12] have presented
the model for the uncertainties of market prices, electrical
demand, and intermittent renewable power generation that is
used in this article, as well. The procedure to use the MC
method in the grid search optimization algorithm is explained
in [33].

D. MATHEMATICAL FORMULATION
The operational schedule of DGs is optimized, usually
with the objective function of maximizing the profit or
minimizing the cost of generating electricity by differ-
ent optimization algorithms [23], [34], [35]. The objective

function which is considered in this article is the annual cost
of generating electricity. The other objective functions, such
as loss and voltage deviation [36] and the concept of multi-
objective [37], can be considered for future improvement of
this study. The objective function is defined as follows:

CAnnual

=

∑a

i=1

(
CapIDGiCIDGi

AIDG
+MIDG

)
+

∑b

i=1

(
CapIESSiCIESSi

AIESS
+MIESS

)
+

∑n

k=1

∑c

i=1
(
CapDGi,kCDGi,k

ADG
+MDG)

+

∑n

k=1

∑d

i=1

(
CapESSi,kCESSi,k

AESS
+MESS

)
+

∑n

k=1

∑c

i=1

∑t

j=1
OutDGi,j,kMcDGi,j,kWj

+

∑a

i=1

∑t

j=1
OutIDGi,jMcIDGi,jWj

+

∑n

k=1

∑d

i=1

∑t

j=1
(OutESSi,j,k − VESSi,j,k)

×McESSi,j,kWj+
∑b

i=1

∑t

j=1
(OutIESSi,j−VIESSi,j)

×McIESSi,jWj +
∑n

k=1

∑t

j=1
Ij,kPj,kWj,k

+

∑n

k=1

∑t

j=1
Ej,krj,k +

∑n

k=1
Pmicrogridk (γ )

+

∑a

i=1

∑t

j=1
IIDGi,jPIDGi,jWi,j

+

∑a

i=1

∑t

j=1
EIDGi,jrIDGi,j +

∑a

i=1
PIDGi (γ )

+

∑b

i=1

∑t

j=1
IIESSi,jPIESSi,jWi,j

+

∑b

i=1

∑t

j=1
EIESSi,jrIESSi,j +

∑b

i=1
PIESSi (γ )

(1)

The imposed constraints on the optimization process can
be listed as follows:
• Voltage restriction

The permissible limits of the power network voltage should
always be kept as follows:

Vmax ≥ |Vb| ≥ Vmin (2)

• The unit restriction for generating power more than its
capacity

OutIDGi,j − CapIDGi ≤ 0

for i = 1 to a and j = 1 to t (3)

(OutIESSi,j−VIESSi,j)−CapIESSi ≤ 0

for i = 1 to b and j = 1 to t (4)

OutDGi,j,k − CapDGi,k

for i=1 to c, j=1 to t and k=1 to n (5)

(OutESSi,j,k−VESSi,j,k)−CapESSi,k ≤ 0

for i=1 to d, j=1 to t and k=1 to n (6)
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FIGURE 4. Flowchart of the proposed optimization algorithm.

• Charge/discharge rate restrictions for each storage unit
and ramp limits for each generator

RIDGl,i ≤ OutIDGi,j+1 − OutIDGi,j ≤ RIDGu,i

for i=1 to c, j = 1 to t and k=1 to n (7)

OutESSi,j,k ≤ hESSu,i.k (8)

VESSi,j,k ≤ hESSl,i,k (9)

RDGl,i,k ≤ OutDGi,j+1,k − OutDGi,j,k ≤ RDGu,i,k

for i=1 to c, j=1 to t and k=1 to n (10)

OutIESSi,j ≤ hIESSu,i (11)

VIESSi,j ≤ hIESSl,i (12)

E. OPTIMIZATION MODEL
Many optimization algorithms such as symbiotic organisms
search algorithm (SOSA) [38], backtracking search algorithm
(BSA) [39], stud krill herd algorithm (SKHA) [40], and
honey-bee-mating-optimization algorithm (HBMOA) [41]
are proved to optimize different objective functions in the
power system. The main difference between them is their
calculation speed and accuracy to obtain the optimum point.
In this article, two optimization algorithms are combined.

The grid search algorithm is used to obtain all of the

FIGURE 5. Sample VPP to implement the proposed method in HOMER
software.

feasible system configurations by the search space. Addition-
ally, a proprietary derivative-free algorithm is used to search
for the least-costly system. The Pseudo-codes of these two
algorithms can be seen in [42] and [43]. The proven supe-
riority of the grid search algorithm in comparing the other
optimization algorithm is the capability of selecting the best
parameters for the optimization problem from the provided
list of parameter options [44]. Because of this proved superi-
ority, this article has used this part of the grid search algorithm
to obtain all of the feasible system configurations contains
DGs, ESSs, loads, and microgrids. After finding the feasible
solutions based on the imposed constraints, a derivative-free
algorithm is used to find the best feasible solution based on
the objective function. This article selects a derivative-free
algorithm because of the perfectibility of this algorithm to
solve convex optimization problems in comparison to the
other optimization algorithms [45]. This algorithm uses the
Monte Carlomethod to calculate the impact of risk and uncer-
tainty in the prediction and forecasting model that calculates
the 25 years cost of using the best solution. Someone may
ask that why after finding feasible solutions by grid search
algorithm the minimization process of the objective function
is not continued with the second part of the grid search algo-
rithm and a derivative-free algorithm is replaced! The answer
is related to the type of optimization problem. It is proven
that the derivative-free algorithm is more accurate than the
other optimization algorithms in solving convex optimization
problems [45], [46].

For applying the proposed algorithm, the following steps
have to be taken:

Step 1: input data definition: The input data are includ-
ing the standard load profile sample, the restriction of VPP
components, and the number, and the power level of all
generators.

Step 2: efficiency calculation: The efficiency of all gener-
ators at the operating points are calculated as follows:

Efficiency =
gen
fuel

(13)

gen and fuel are the amounts of generators’ electricity gener-
ation at the operating point in J (joule).
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FIGURE 6. The power profile of a small hotel in Los Angeles CA for 12 months.

Step 3: grid search algorithm: Generate feasible solutions
by using the grid search algorithm based on inputs and effi-
ciency of the generators.

Step 4: variable and constraints definition: all problem
variables and constraints described in section 2 in parts 2.4 are
defined in this step.

Step 5: objective function definition: The objective func-
tion, which is essential for the decision-maker, is defined in
this step based on equation 1.

Step 6: calculation of objective function: the defined
objective function with considering of the defined variables
and constraints is calculated by using the derivative-free
algorithm for all feasible solutions. In HOMER, the applied
minimization method is the derivative-free algorithm,
too.

Step 7: make schedule operating time of generators: the
minimum of the objective function should be calculated
for all period times based on the efficiency of generators
and load demand, which is calculated by the derivative-free

optimization algorithm. MC method determines the uncer-
tainty of the power system in this step, too.

Step 8: Check the termination criteria: the termination
criteria (i.e., the last interval of the mission) is checked to
stop the program. If the termination criteria are not satisfied,
then the algorithm repeat from step 2.

Fig. 4 shows the flowchart of the proposed optimization
algorithm. All steps of the proposed algorithm are shown in
this figure as well as the designed loops. The presented data
helps the readers to implement the proposed optimization
algorithm in different software.

III. DETAILED PROPOSED TECHNIQUE
The analysis and inputs that are used for the proposed opti-
mization approach are explained in this section.

A. ANALYSIS METHOD
The application aim of the above-developed model is to
investigate and design microgrid, DGs, and ESS dispatch to
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TABLE 1. The power profile of a hospital in Los Angeles CA for 12 months.

FIGURE 7. Comparison of cost for three solutions in 25 years.

apply VPP. Microgrids may consist of a variety of generators,
storages, and configuration, the flexible model, is considered
to change based on specific projects. Therefore, this analysis
does not represent the loss, environmental issues, and voltage
deviation of the power system. The objective function is the
cost, which should be optimized.

Physically, in this article, the VPP consists of the following
components:

• Wind turbine up to 6 kW
• Photovoltaic unit up to 557 kW
• Diesel generator up to 0.1 GW (i.e., two 1 MW and one
0.1 MW diesel generators)

• ESS (e.g., 1MWh Lead Acid battery)
• Converter
• An energy management system
• Local controller for each component
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TABLE 2. Model and size of components used in VPP.

• Distribution system
Other potential generators that could be used in VPP are

not considered in this study, even though they may result
in better power quality and environmental issues. But the
proposed model can be used for them in other projects.

Central estimates of current US generators’ capital costs,
maintenance costs, and energy prices are input to the model
and optimal size of DGs and ESSs schedule as section 3.

It is considered that the microgrid is operating in the island
mode; the wind turbines cannot contribute to meeting elec-
tricity demand. Thus, the capacity credit of wind turbines
reduces to near-zero within the microgrid.

Performing sensitivity analysis to the ‘‘central estimate’’
result by altering energy prices is the last step. Increasing the
gas price and electricity price, which are widened the spark
spread, are considered in two separate cases, and then the
stochastic proposed approach is applied to each scenario.

For furnishing tractability of the optimization problem for
the optimizer, the limitation for the number of units should
be considered for a VPP. As a case in point, in this article,
as Fig. 5 shows, a photovoltaic unit, an ESS, a wind turbine,
two diesel generators, and a microgrid, which contains a
wind turbine and a diesel generator, are considered as a VPP
to implement the proposed method. Fig. 5 shows the case
study of this article to implement the proposed optimization
algorithm. The power profile of the two found loads is shown

in Fig. 6, and Table 1. Fig. 6 displays the power profile of
a small hotel in Los Angeles California for 12 months. The
capital costs and characteristics of all units are displayed
in Table 2.

IV. SIMULATION RESULTS
In this article, an optimal practical model of VPP for increas-
ing integration of DGs, ESSs, and microgrid, which contains
modeling of uncertainties in operational planning, is pre-
sented. The objective function is cost, minimized by a hybrid
optimization algorithm.

The mentioned VPP with all components is simu-
lated in HOMER, which contained 57,173 solutions. The
51,908 solutions were feasible, and 5,265 solutions were
infeasible due to the capacity shortage constraint. Three opti-
mized solutions are more critical for some decision-makers:
• Solution 1: the solution that considered all thementioned
components participating in the generation of electricity.

• Solution 2: The solution that obtained minimized initial
cost (minimum number of the mentioned components).

• Solution 3: The solution that obtained minimized
operational cost.

The optimized results for solution one are shown in Table 3.
Analysis of this table indicates that Generator 1 has the
maximum operating cost and total cost. Still, to compare
components, the amount of generator production is needed,
as shown in Table 4.

The resource cost for renewable generators is 0 because
the wind and sunlight as resources are free. The replacement
cost for generator three and PV is considered zero because
the replacement period for them was more than 25 years (i.e.,
the period of this simulation).

A summary of used renewable generators is displayed
in Table 5 to overview the electricity generation participation
of renewable energy resources in this case study. In this table,
results are divided into three parts contain results related to
the capacity of electricity generation, type of energy genera-
tion, and peak values of the power system. Analysis of this

TABLE 3. Net present and the annual cost of solution 1.
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TABLE 4. Amount and percentage of electricity generation for solution 1.

table shows that about 43 percent of generation in the peak
time of power system is produced by renewable generators,
considering using solution 1 to generate electricity.

Results using solution 2 for generating electricity are
shown in Table 6 and Table 7. In this case study, just two
diesel generators produced electricity for the loads, and the
grid purchases of power are about 35 percent of total gen-
eration. In this case study, the initial cost is minimized to
600,000 $ for the first year.

Results using the third solution are shown in Table 8
and Table 9. This feasible solution is obtained to minimize
operating costs concerning using the maximum number of
components. The tolerance of accuracy in the calculation of
electricity generation in this study is 0.1 percentage.

The comparison of these three solutions in 25 years is
shown in Fig. 7. In this figure, the nominal cash flow is an
actual income minus cost that is anticipated in a particular
year. The costs of capital, operating, replacement salvage,
and resource in three solutions that are shown in tables 3, 6,
and 8 are used to calculate the cash flow. Analysis of this
figure shows for 25 years, the lowest initial cost belongs
to solution 2, and the quietest operation time belongs to
solution 3. These results can help the VPP decision-maker
to select the best feasible solution for the next 25 years.

To prove the capability of the proposed optimization
algorithm to achieve the best global optimization solution,
the results of the proposed optimization algorithm are com-
pared with two optimization algorithms (i.e., particle swarm
optimization (PSO) and genetic (GA) algorithms) reported
as the best algorithms to solve this specific optimization
problem [47]. Scenario 3 has been solved with the mentioned
optimization algorithms and the proposed optimization algo-
rithm with two single-objective functions that are the total
annual cost and the emission of greenhouse gases. The def-
initions of the mentioned objective functions are presented
in [48]. The comparison of the results is shown in Fig. 8.
Analysis of this figure shows the best obtained optimized
solutions in the less iteration number are obtained by the
proposed optimization algorithm that proves the superiority
of the proposed optimization algorithm in accuracy and cal-
culation velocity in achieving a global optimization solution.

TABLE 5. Renewable generators participation summary for solution 1.

TABLE 6. Net present and the annual cost of solution 2.
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TABLE 7. Amount and percentage of electricity generation for solution 2.

The total net present cost (NPC) of a system is the present
value of all the costs the system incurs over its lifetime, minus
the present value of all the revenue it earns over its lifetime.
Costs include capital costs, replacement costs, O&M costs,
fuel costs, emissions penalties, and the costs of buying power
from the grid. Revenues include salvage value and grid sales
revenue. we calculated the total NPC by summing the total
discounted cash flows in each year of the project lifetime.
The total NPC for solutions 1, 2 and 3 are $40,934,530.00,
43,833,920.00, and 40,721,800.00, respectively.

The presented results were three important ones for most
of the decision-makers (i.e., power system companies). These
results compared in 25 years. It is noted that some other
feasible solutions have existed that may be interested in a
few other decision-makers. From generalizing these findings,
everyone could expect that all these feasible solutions may be
used to reconfigure the future power system. In this regard,
the interesting point for the presented solutions is that solu-
tion 1 shows the biggest participates of renewable energy
resources about %43 of the whole generation. Furthermore,
solution 3 is the best economic solution but the first invest-
ment cost is more than the others and solution 2 shows the
minimized initial cost.

The next step of this study can improve and complete
the obtained results. This article’s results show that the pro-
posed optimization algorithm has an excellent performance
in determining the optimal operation of all generators of the
VPP. However, the No Free Lunch Theorem shows that no
one algorithm is suitable for all models. Inherently, the pro-
posed method is a single-objective unconstrained optimiza-
tion algorithm that restricts the problem formulation, which

FIGURE 8. Comparison of the results of the proposed optimization
algorithm, PSO and GA for two single objective functions: A: Annual cost
and B: emission.

is its main limitation. In this regard, the next step will be
adding a constraint-handling technique and a multi-objective
technique to the proposed optimization method.

TABLE 8. Net present and the annual cost of solution 3.
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TABLE 9. Amount and percentage of electricity generation for solution 3.

V. CONCLUSION
The operation schedule of the microgrid, DGs, and ESS for
a VPP has been presented in this article. The results obtained
considered uncertainty parameters and demand response
resources. All feasible solutions were calculated, and among
them, the most important ones for VPP decision-makers
were analyzed. Moreover, the cost flow of these solutions
was compared in 25 years. Decision-maker selects the best
feasible optimized solution among results based on require-
ments of the distribution system. The interesting point for
the presented solutions is that solution 1 shows the renew-
able output divided by the whole generation equal to %43.
Moreover, solution 3 is the best economic solution but the
first investment cost is more than the others. The next steps
of this research will include other objective functions, such
as power quality issues.
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