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ABSTRACT In order to solve the problem of the strict condition of traditional saturation function,
a new generalized saturation function was proposed and applied in nonlinear PID (Proportion-Integration-
Differentiation) control laws, which consisted of linear D+ nonlinear PI and linear PD+ nonlinear PI. The
new generalized saturation function has powerful reaction near the equilibrium point, and has the capability
to make the control converge to the equilibrium point swiftly. The global asymptotic stability condition
of nonlinear PID control laws were derived by employing Lyapunov’s method and LaSalle’s invariance
principle. In order to improve the accuracy of nonlinear PID control laws, time integration of the absolute
value of position tracking error and time integration of the absolute value of torque error were chosen as the
objective functions. Global asymptotic stability conditions and rated driving torque of each motor were set
as the constraint conditions. Nonlinear PID controller parameters were tuned by employing multi-objective
genetic algorithm, non-dominated sorted genetic algorithm-II (NSGA-II). Compared with the optimization
results of nonlinear PID with traditional saturation function, the accuracy of position tracking using the
proposed method was improved by nearly one order of magnitude. The new generalized saturation functions
with minimum time integration of position tracking error were selected to study the robustness of the
nonlinear PID controller in modeling uncertainty, input torque disturbance, and noise. The position tracking
accuracy of the proposed method compared to those of the traditional PID controller and nonlinear PID
controller with traditional saturation function was improved by nearly two orders of magnitude and one
order of magnitude, respectively. The introduced saturation function significantly improves position tracking
accuracy and robustness of the nonlinear PID controller.

INDEX TERMS Nonlinear PID, saturation function, global asymptotic stability, robust.

I. INTRODUCTION
In recent years, many complex control strategies have been
proposed in the literature. However, PID control is still
widely employed in actual robot control because of its sim-
ple structure, small amount of calculation, and good real-
time performance [1]. Classical linear PID controllers do
not demonstrate global stability. Enhanced versions of PID
controllers, by applying nonlinear saturation function, have
been put forward to ensure global stability. Alvarez-Ramirez
proved the semi-global stability of saturated linear PID when
there were adequate large proportional, enough small inte-
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gral, and torque bounds larger than gravitational torques [2],
[3]. Ortega proposed a semi-globally stable output-feedback
PI2D regulator, where the main contribution was to avoid the
need for gravity forces information via the inclusion of two
integral terms around the position error, and the filtered posi-
tion [4]. In addition, Liu introduced a semi-globally stable
PD-I(PD) regulator [5]. Nonlinear saturation functions were
not in the above semi-globally stable PID controllers. PD
control law along with a class of nonlinear integral actions,
proposed by Kelly, was globally asymptotically stable [6].
Gorez introduced PID-like control to achieve global asymp-
totic stability (GAS) of the desired steady state configuration
of mechanical system with actuator constraints [7]. Glob-
ally stabilizing PID-type control scheme with a generalized
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saturating structure and constrained inputs was proposed by
Mendoza et al. [8], [9]. Santibanez proposed a saturated
nonlinear PID control for industrial robot manipulators by
taking the natural saturation problem into consideration [10].
Furthermore, Zavalario proposed a natural saturated exten-
sion of PD with desired gravity compensation control law
and constrained input that was globally asymptotically sta-
ble [11], [12]. Then, an output-feedback PID with multiple
saturating structures and constrained inputs guaranteed the
global stability [13]. Salinas put forward a family of locally
asymptotically stable nonlinear PID control law, where sta-
bility conditions were independent of the saturation levels
of actuators [14]. In addition, Yarza introduced a nonlinear
PID controller with bounded torques using a single saturation
function that was globally asymptotically stable [15]. Liu
proposed a set of globally stable output-feedback N-PID con-
trol laws that were dealing with the position control problem
of designing asymptotically stable proportional plus integral
regulators with only position feedback [16]. A saturated PID
control was raised to address the global asymptotic regulation
of robot under input constraints, both with and without veloc-
ity measurement by Su [17]. In order to ensure the stability
of the PID control laws, there are nonlinear saturation terms.
However, definition of the saturation function is strict. In this
study, a new generalized saturation functionwith smaller con-
straints is proposed, and can be used to prove the stability of
nonlinear PID control law. At the same time, the generalized
saturation function is useful in improving the precision of the
PID control law.

PID parameters tuning affects the accuracy of PID control
law. Killingsworth proposed extremum seeking for tuning
PID controllers by minimizing a cost function characteriz-
ing the desired behavior of the closed-loop system; how-
ever, extremum seeking required initial values [18]. Duan
put forward the ant colony algorithm to tune nonlinear PID
parameters [19]. Li raised a robust PID tuning method based
on nonlinear optimization with specified gain and phase
margins [20]. A multi-crossover genetic approach for tun-
ing multivariable PID controllers was proposed by Chang
[21]. Multi-objective PID parameters tuning for a flexible
AC transmission system (FACTS)-based damping stabilizer
using NSGA-II was raised by Panda [22]. A tuning method
based on fruit fly optimization algorithm was proposed to
optimize PID controller parameters by Han et al. [23]. Also,
Sun proposed a PID parameters tuning strategy based on
dynamic stiffness for the radial active magnetic bearing [24].
Further, Khodja used particle swarm optimization to tune
PID attitude stabilization of a quadrotor [25]. Leva raised the
explicit model-based real PID tuning for efficient load dis-
turbance rejection [26]. A mean for PID tuning based on the
neutrosophic similarity measure was introduced by Can and
Ozguven [27]. Interactive tool for frequency domain tuning
of PID controllers was put forward by Garrido et al. [28]. A
practical interactive PID tuning method for mechanical sys-
tems using parameter chart was proposed by Kang et al. [29].
In summary, the intelligent optimization algorithms were

utilized to tuning PID parameters. However, GAS constraints
are not taken into account in PID parameter tuning. In this
research work, under the constraint of GAS and rated driving
torque of each motor, the time integration of the absolute
value of position tracking error and time integration of the
absolute value of input torque error are chosen as the objective
functions and NSGA-II is employed to realize the tuning of
global asymptotic stable PID parameters.

The report is organized as follows: Section II introduces
preliminaries. Section III solves stability analysis of nonlin-
ear PID control. Parameters tuning of nonlinear PID control
laws are presented in Section IV. Section V. discusses the
robustness analysis of nonlinear PID. Finally, Section VI
concludes the paper.

II. PRELIMINARIES
A. DEFINITION OF A NEW SATURATION FUNCTION
Definition 1 [30] Given positive constants L and M, with
L<M, a function σ (x; L, M): R→R: x 7→ σ (x; L, M) is said
to be a linear saturation function if σ (x; L, M) is continuously
non-monotone decreasing and satisfies (1). σ (x; L, M) is said
to be a simple linear saturation function if σ (x; L, M) satisfies
(2).

(1) xσ (x) > 0 when x 6= 0;

(2) σ (x) = x when |x| ≤ L;

(3) |σ (x)| ≤ M when x ∈ R (1)

(1) xσ (x) > 0 when x 6= 0;

(2) σ (x) = x when |x| ≤ L;

(3) |σ (x)| = M when |x| ≥ M (2)

Definition 2 [6]: Given positive constants α and β, with
0< α ≤1, f(x)=[f (x1)f (x2). ..f (xn)]T, when x ∈Rn, a function
f(x) : R→R: x 7→ f(x) is said to be a saturation function if f (x)
is a continuously differentiable function and satisfies:

(1) |x| ≥ |f (x)| ≥ α |x| , ∀x ∈ R : |x| < β;

(2) β ≥ |f (x)| ≥ αβ, ∀x ∈ R : |x| ≥ β;

(3) 1 ≥
(
df (x)

/
dx
)
≥ 0 (3)

Definition 3 [12]: Given positive constant F, a function
δ(x): R→R: x 7→ δ(x) is said to be a bounded generalized
saturation function if δ(x) is a continuous monotone increas-
ing function and satisfies:

(1) xδ (x) > 0 when x 6= 0, x ∈ R;

(2) |δ (x)| ≤ F when x ∈ R (4)

The definition 1, 2, and 3 can be summarized as: Given
positive constant M1, a function δ1(x) : R→R: x 7→ δ1(x)
is said to be a generalized saturation function if δ1(x) is a
continuously differentiable function and satisfies:

(1) xδ1 (x) > 0 when x 6= 0, x ∈ R;

(2) |δ1 (x)| ≤ M1 when x ∈ R (5)

02(x) (x ∈Rn) denotes the set of all continuously differen-
tiable functions: 02(x)=[δ1(x1)δ1(x2) · · · δ1(xn)]T.
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FIGURE 1. The difference between the generalized saturation y = 02(x)
and the new generalized saturation y = 01(x).

The above saturation function definition conditions are
more rigorous. A new generation of saturation function is
given as follows:
Definition 4: Given a positive constant M1, a function

δ2(x): R→R: x 7→ δ2(x) is said to be a new generalized
saturation function if δ2(x) is a bound functionwith only point
ξ , δ2 (ξ ) = 0 and satisfies:

(1) xδ2 (x) > 0 when x 6= 0, x ∈ R;

(2) |δ2 (x)| ≤ M1 when x ∈ R (6)

01(x) (x ∈ Rn) denotes the set of all functions: 01(x) =
[δ2(x1)δ2(x2) · · · δ2(xn)]T.
The definition 4 of the generalized saturation function

consists of definitions 1, 2, and 3 of saturation functions.
Definitions 1, 2, and 3 of saturation functions are special
forms of definition 4 when the coefficient of sign function
is zero. The functions y = 01(x) and y = 02(x) are shown
in Figure 1. The relationship between y = 01(x) and y
= 02(x) can be expressed as 01(x) = 02(x + µsign(x)).
Compared with definitions 1, 2, and 3 of saturation function,
the new definition of saturation function has a strong reaction
near the equilibrium point and the error can converge to the
equilibrium point faster, under the PID control law.

B. PROBLEM FORMULATION
The dynamic system of an n-link rigid robot manipulator
system [31] can be written as

M(q)q̈+ C(q, q̇)q̇+ Dq̇+ g(q) = τ (7)

where q, q̇, q̈ ∈ Rn is n×1 vector of joint displacements,
velocity, and acceleration, τ ∈Rn is n×1 vector of applied
joint torques,M(q) is n×n symmetric positive inertia matrix,
C(q, q̇) is the n×n matrix of centripetal and coriolis torques,
D is the n× n positive define diagonal friction matrix, g(q) is
n×1 vector of gravitational torques.
Property 1: The inertia matrixM(q) is a symmetric positive

definite matrix.
Property 2: q̇T

[
0.5Ṁ (q)− C(q, q̇)

]
q̇ = 0, for all q, q̇ ∈

Rn and Ṁ (q) = C (q, q̇)+ C (q, q̇)T.
Property 3: There exists a positive constant kC1 such that
‖C (q, x) y‖ ≤ kC1 ‖x‖ ‖y‖ ∀q, x, y ∈ Rn.
In order to facilitate subsequent proof, the integrals of y
= 01(x) and y= 02(x) are studied. When x ∈ [0,1qi], 01(x)

FIGURE 2. The new generalized saturated function y = 01(x).

FIGURE 3. The saturated function y = 02(x).

≥ ηix, ηi ∈(0, 01(x)/1qi), ηi is chosen to ensure that 01(x)
≥ ηix as shown in Figure 2. Integrating y = 01(x) provides:

n∑
i=1

∫ 1qi

0
01(x)dx ≥

n∑
i=1

∫ 1qi

0
ηixdx =

n∑
i=1

0.5ηi (1qi)2

= 0.51qTη1q (8)

Function y= 02(x) is shown in Figure 3, when x ∈ [rj rj+1]
j=1, 2, . . . , r0 = 0, αj(x-rj) ≤ 02(x)≤ βj(x−rj), [01qi]= [0
r2]∪ [r2 r3]∪[r3r4]∪ [r4r5] . . . [rj1qi]. Integrating y= 02(x)
gives:
n∑
i=1

∫ 1qi

0
02 (x)dx =

n∑
i=1

(∫ r2

0
02 (x)+

∫ r3

r2
02 (x)

+

∫ r4

r3
02 (x)+ · · · +

∫ 1qi

rj
02 (x)

)
dx

≥

n∑
i=1

(∫ r2

0
α1x +

∫ r3

r2
α2 (x − r2)

+

∫ r4

r3
α3 (x − r3)+ · · ·

+

∫ 1qi

rj
αj
(
x − rj

))
dx

=

n∑
i=1

(
0.5α1r22 + 0.5α2 (r3 − r2)2

+0.5α3 (r4 − r3)2 + · · ·

+0.5αj
(
1qi − rj

)2)
≥

n∑
i=1

0.5αj
(
1qi − rj

)2 (9)
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where, rii is the corresponding x value of the minimum of y
= 02(x), αi = min(02(rii))/(rii − ri), x ∈[ri∞).
As shown in Figure 3, when x ∈[02(x)/βj+ rj,02(x)/βj+1+

rj+1], j = 1,2,. . . , r0 = 0, αj(x − rj) ≤ 02(x)≤ βj(x − rj),
yields:

0T2 (1q)M (q)02 (1q)

≤

n∑
i=1

02 (1qi) λmax ‖M(q)‖02 (1qi)

≤

n∑
i=1

(
1qi−rj

)
λmax

(
βj
)
λmax ‖M(q)‖ λmax

(
βj
) (
1qi−rj

)
(10)

As shown in Figure 3, 1q̇ = q̇d − q̇ = −q̇, yields:

−
(
0̇2 (1q)1q̇

)TM(q)q̇= 0̇T2 (1q) q̇
TM(q)q̇

≤ q̇Tλmax
(
γj
)
λmax ‖M(q)‖ q̇ (11)

where λmax(γj) is the maximum derivative of y = 02(x).
As 02 (1q) ≤ M1, ‖02 (1q)‖ ≤

√
nM1 can be deduced,

yields:

−0T2 (1q)C(q, q̇)q̇ ≤
√
nM1CM ‖q̇‖2 (12)

where M1 is the maximum of the saturated function y =
02(x). CM is a positive constant.

III. STABILITY ANALYSIS OF NONLINEAR PID CONTROL
A. STABILITY ANALYSIS OF LINEAR D + NONLINEAR PI
The control law can be written as

τ = KP01(1q)+ KD1q̇+ K I

t∫
0

02(1q(σ ))dσ (13)

where KP, KD, and KI are suitable positive definite diagonal
n×n matrices, q = qd − q is the position errors vector.
The following vector is introduced as follows:

z (t) =

t∫
0

02(1q (σ ))dσ − K−1I g(qd) (14)

where g(qd) is the desired gravity torque vector.
By substituting (13) and (14) into the robot dynamics (7),

we obtain

M(q)q̈+ C(q, q̇)q̇+ Dq̇+ g(q)−g(qd)

−KP01 (1q)− K I z− KD1q̇ = 0 (15)

The state-space formulation of the equation (15) can be
expressed as

d
dt

1qq̇
z



=


−q̇

M(q)−1
(
g(qd)− g(q)+ KP01 (1q)
+K I z− KDq̇− C(q, q̇)q̇− Dq̇

)
02 (1q)

 (16)

The equation (16) is an autonomous nonlinear differential
equation. The vector

[
1qT q̇T zT

]
is the equilibrium point of

equation (16) if

d
dt

1qq̇
z

 = 0 (17)

Based on (16) and (17), q̇ = 0, 02 (1q) = 0. Base on
the definition of 02(x), q=0 can be obtained. Based on the
equations q̇ = 0, 1q = 0, and Equation (18) can be obtained
as follow:

g(qd)− g(q)+ KP01 (1q)+ K Iz

−KDq̇− C(q, q̇)q̇− Dq̇ = 0 (18)

z = 0 can be obtained. The equilibrium point is[
1qT q̇T zT

]T
= 0.

Theorem For the nonlinear robot system defined by (7),
the state feedback NPDNI controller as defined (13) is
adopted, there exist enough small positive constants a, and the
KP, KD, and KI are appropriately selected and the inequalities
(19)∼(22) are satisfied, the closed-loop system is globally
asymptotically stable, i. e. lim

t→∞
1q = 0.

λmin
(
αj
)
(KD + D)

≥ 2λmax
(
βj
)
λmax ‖M(q)‖ λmax

(
βj
)
I (19)

U(q)− U(qd)+1q
T g
(
qd
)
+

1
2
1qT (KPη − K I)1q

≥ a ‖1q‖2 (20)

0T2 (1q) (g(qd)− g(q)+ Kp01 (1q)− K I1q)

≥ a ‖02 (1q)‖2 (21)

KD + D ≥ λmax
(
γj
)
λmax ‖M(q)‖ I +

√
nM1CMI (22)

Proof: The Lyapunov function candidate is proposed as
follows:

V =
1
2
q̇TM (q) q̇− 0T

2 (1q)M (q) q̇+ U (q)−U
(
qd
)

+1qT g
(
qd
)
−

1
2
1qTK I1q+

n∑
i=1

∫ 1qi

0
01 (x)KPidxi

+

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dxi

+
1
2
(z+1q)T K I (z+1q) (23)

where KPi, KDi and Di are the ith diagonal element of KP, KD
and D.

Based on (9), the following inequalities equation can be
obtained as follows:
n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx

≥

n∑
i=1

0.5αj
(
1qi − rj

)2
(KDi + Di) (24)

where αj satisfies 0 < αj ≤ 02
(
1qj

)/
1qj.
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Based on (8), the following inequalities equation can be
obtained as follows:
n∑
i=1

∫ 1qi

0
01 (x)KPidxi −

1
2
1qTK I1q

≥

n∑
i=1

∫ 1qi

0
KPiηixdx

−
1
2
1qTK I1q =

1
2

n∑
i=1

1qiKPiηi1qi −
1
2
1qTK I1q

=
1
2
1qT (KPη − K I)1q (25)

where η satisfies 0 < ηi ≤ 01 (1qi)
/
1qi.

Based on (10) and (24), the following inequalities can be
obtained as follows:

1
4
q̇TM (q) q̇− 0T2 (1q)M (q) q̇

+

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx

=

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx−0T2 (1q)M(q)02 (1q)

+
1
4
(q̇− 202 (1q))T M(q) (q̇− 202 (1q))

≥

n∑
i=1

(
1qi − rj

) ( 0.5λmin
(
αj
)
(KDi + Di)

−λmax
(
βj
)
λmax ‖M(q)‖ λmax

(
βj
) )

×
(
1qi − rj

)
(26)

By substituting inequalities (25) and (26) into (23), when[
1qT q̇T zT

]T
6= 0, we get

V =
1
4
q̇TM(q)q̇+

(
U(q)− U(qd)+1q

T g
(
qd
)

+

n∑
i=1

∫ 1qi

0
01 (x)KPidxi −

1
2
1qTK I1q

)

+

(
1
4
q̇TM(q)q̇+ 0T2 (1q)M(q)q̇

×

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx

)

+
1
2
(z+1q)T K I (z+1q) ≥ a ‖02 (1q)‖2

+
1
2
(z+1q)T K I (z+1q)

+

n∑
i=1

(
1qi − rj

) (
0.5λmin

(
αj
)
(KDi + Di)

−
(
λmax

(
βj
)
λmax ‖M(q)‖ λmax

(
βj
)) (
1qi − rj

))
> 0

(27)

Therefore, the Lyapunov function defined by (23) is the
positive definite, when

[
1qT q̇T zT

]
→∞, V →∞.

The time derivative of (23) along the closed-loop system
(15) results in

V̇ =
1
2
q̇T Ṁ(q)q̇+ q̇TM(q)q̈−

(
0̇2 (1q)1q̇

)T M(q)q̇

+ q̇T g(q)− 0T2 (1q)M(q)q̈+1q̇T g
(
qd
)

+1q̇TKP01 (1q)− 0T2 (1q) Ṁ(q)q̇
+1q̇T (KD + D)02 (1q)−1q̇TK I1q
+ (ż+1q̇)T K I (z+1q) (28)

By substituting (14) and (15) into (28), we obtain

V̇ = −q̇T (D+ KD) q̇−
(
0̇2 (1q)1q̇

)T M(q)q̇
−0T2 (1q)C(q, q̇)q̇− 0

T
2 (1q)

(
g(qd)− g(q)

+ KP01 (1q)− K I1q) (29)

By substituting (11) and (12) into (29), we obtain

V̇ ≤ −q̇T
[
KD + D− λmax

(
γj
)
λmax ‖M(q)‖ I

−
√
nM1CMI

]
q̇− a ‖02 (1q)‖2 (30)

Based on inequality (21) and (22), a>0, the conclusion that
V̇ ≤ 0 can be obtained. In fact V̇ = 0 means 1q = 0 and
q̇ = 0. Based LaSalle’s invariance principle, it is easy to know
that (1q = 0, q̇ = 0) is the global asymptotic equilibrium
position.

B. STABILITY ANALYSIS OF LINEAR PD + NONLINEAR PI
The control law can be written as

τ = KP01 (1q)+ KD1q̇+

t∫
0

[K IP02 (1q (σ ))

+K ID1q̇ (σ )]dσ (31)

where KP, KD, KIP, and KID are suitable positive definite
diagonal n×n matrices.

The following vector is introduced as follows:

z (t) = 1q+

t∫
0

02 (1q (σ )) dσ − K−1IP g
(
qd
)

(32)

By substituting (31) and (32) into the robot dynamics (7),
we obtain

M(q)q̈+ C(q, q̇)q̇+ Dq̇+ g(q)−g(qd)− KP01 (1q)

− (K ID − K IP)1q− K IPz− KD1q̇ = 0 (33)

The state-space formulation of the equation (33) can be
expressed as

d
dt

1qq̇
z



=


−q̇

M(q)−1
(
g(qd )−g(q)+ KP01 (1q)+ K Iz−KDq̇
+ (K ID − K IP)1q− C(q, q̇)q̇− Dq̇

)
−q̇+ 02 (1q)


(34)
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The equation (34) is an autonomous nonlinear differential
equation. The vector

[
1qT q̇T zT

]
is the equilibrium point of

equation (34) if

d
dt

1qq̇
z

 = 0 (35)

Based on (34) and (35), q̇ = 0, 02 (1q)− q̇ = 0. Base on
the definition of 02(x), q = 0 can be obtained. Based on the
equations q̇ = 0, 1q = 0, and Equation (36) can be obtained
as follow:

g(qd )− g(q)+ KP01 (1q)+ K I z− KDq̇

+ (K ID − K IP)1q− C(q, q̇)q̇− Dq̇ = 0 (36)

z = 0 can be obtained. The equilibrium point is[
1qT q̇T zT

]T
= 0.

Theorem For the nonlinear robot system defined by (7),
the state feedback NPPDNI controller as defined (31) is
adopted, there exist enough small positive constants a, and
the KP, KD, KIP, and KID are appropriately selected and the
inequalities (37)∼(40) are satisfied, the closed-loop system is
globally asymptotically stable, i. e. lim

t→∞
1q = 0.

λmin
(
αj
)
(KD + D)

≥ 2λmax
(
βj
)
λmax ‖M(q)‖ λmax

(
βj
)
I (37)

U(q)− U(qd)+
1
2
1qT (KPη + K ID − K IP)1q

+1qTg
(
qd
)
≥ a ‖1q‖2 (38)

02 (1q)T
(
g(qd)− g(q)+ KP01(1q)

)
+02 (1q)T (K ID − K IP)1q ≥ a ‖02(1q)‖2 (39)

KD + D

≥ λmax
(
γj
)
λmax ‖M(q)‖ I +

√
nM1CMI (40)

Proof: The Lyapunov function candidate is proposed as
follows:

V =
1
2
q̇TM (q) q̇− 02 (1q)TM (q) q̇+ U (q)−U

(
qd
)

+1qT g
(
qd
)
+

1
2
zTK IPz+

1
2
1qT (K ID − K IP)1q

+

n∑
i=1

∫ 1qi

0
01 (x)KPidx

+

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx (41)

where KPi, KDi and Di are the ith diagonal element of KP, KD
and D.
Based on (9), the following inequalities equation can be

obtained as follows:
n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx

≥

n∑
i=1

0.5αj
(
1qi − rj

)2
(KDi + Di) (42)

where αi satisfies 0 < αj ≤ 01
(
1qj

)/
1qj.

Based on (10) and (42), the following inequalities can be
obtained as follows:
1
4
q̇TM (q) q̇− 0T2 (1q)M (q) q̇

+

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx

=

n∑
i=1

∫ 1qi

0
02 (x) (KDi + Di)dx −0T2 (1q)M(q)02 (1q)

+
1
4
(q̇− 202 (1q))T M(q)

(
q̇− 20T2 (1q)

)
≥

n∑
i=1

(
1qi − rj

) (
0.5λmin

(
αj
)
(KDi + Di)

) (
1qi − rj

)
−

n∑
i=1

(
1qi − rj

) (
λmax

(
βj
)
λmax ‖M(q)‖ λmax

(
βj
))

×
(
1qi − rj

)
(43)

By substituting inequalities (42) and (43) into (41), when[
1qT q̇T zT

]T
6= 0, we get

V ≥ −
n∑
i=1

(
1qi − rj

) (
λmax

(
βj
)
λmax ‖M(q)‖ λmax

(
βj
))

×
(
1qi − rj

))
+

1
2
zTK IPz+

(
U(q)− U(qd)

+1qT g
(
qd
)
+

1
2
1qT (KPη + K ID − K IP)1q

)
+

n∑
i=1

(
1qi − rj

)
(0.5λmin (αi) (KDi + Di))

(
1qi − rj

)
+

1
4
q̇TM(q)q̇

≥

n∑
i=1

(
1qi − rj

) (
0.5λmin

(
αj
)
(KDi + Di)

(
1qi − rj

))
−

n∑
i=1

(
1qi − rj

) (
λmax

(
βj
)
λmax ‖M(q)‖ λmax

(
βj
))

×
(
1qi − rj

)
+
1
4
q̇TM(q)q̇+

1
2
zTK IPz+ a ‖02(1q)‖2 > 0 (44)

Therefore, the Lyapunov function defined by (41) is the
positive definite. When

[
1qT q̇T zT

]
→∞, V →∞.

The time derivative of (41) along the closed-loop system
(33) results in

V̇ =
1
2
q̇TṀ (q) q̇+ q̇TM (q) q̈−

(
0̇2 (1q)1q̇

)T M (q) q̇

−0T
2 (1q) Ṁ (q) q̇− 0T (1q)M (q) q̈+ q̇T g (q)

−1q̇T g
(
qd
)
.+ q̇T(K ID − K IP)1q+1q̇T (K ID

+ D)02 (1q)+ żTK IPz+1q̇TK IP01 (1q) (45)

By substituting (32) and (33) into (45), we obtain

V̇ = −q̇T (D+ KD) q̇−
(
0̇2 (1q)1q̇

)T M(q)q̇
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FIGURE 4. The 3D model of robot arm.

−0T2 (1q)C(q, q̇)q̇− 0
T
2 (1q)

(
g(qd)− g(q)

)
−0T2 (1q) (KP01(1q)+ (K ID − K IP)1q) (46)

By substituting (11) and (12) into (46), we obtain

V̇ ≤ −q̇T
[
KD + D− λmax

(
γj
)
λmax ‖M(q)‖ I

−
√
nM1CMI

]
q̇− a ‖02 (1q)‖2 (47)

Based on inequality(39) and (40), a>0, the conclusion that
V̇ ≤ 0 can be obtained. In fact V̇ = 0 means 1q = 0 and
q̇ = 0. Based LaSalle’s invariance principle, it is easy to know
that (1q = 0, q̇ = 0) is the global asymptotic equilibrium
position.

IV. PARAMETERS TUNING OF NONLINEAR PID
The robot arm [32] used in the simulation is shown in Fig-
ure 4, which has three degrees of freedom (DOF) with two
rotational DOFs and one translational DOF. The dynamics of
the robot arm can be expressed by(7).

The simulation results are employed to verify the correct-
ness of the dynamic equation [33]. The first simulation was
conducted based on (7) and an M-file was developed in Mat-
lab software package. The second simulation was carried out
using the Sim-Mechanics toolbox of Matlab. The trajectory
planning used in the simulation is expressed by (48). Two
simulation results are shown in Figure 5 (a) and 5 (b). The
comparison between two simulation results are demonstrated
in Figure 5 (c). As it can be seen, the difference between the
two results is less than 0.003. Therefore, correctness of the
dynamic model is verified.

θ1 = 0.4πsin(0.4π t), θ2 = −1.4sin(0.4π − t0.5π − )1.4,

d = 0.075sin(0.4π t− 0.5π )+ 0.075 (48)

PID control is the most widely applied in engineering.
The PID parameter tuning is the main key issue. The multi-
objective optimization based on NSGA-II is applied in this
paper. The integration of the absolute value of error (IAE)
between the desired and actual trajectory, and IAE between
the desired and actual drive torque are chosen as the optimal
objective functions as shown in (49). Taking the small mass of
the third translational joint of the robot arm and simplifying
calculation into consideration, the three DOFs of robot arm is
simplified to two DOFs, the third joint is set the most extreme

case, that is, the output torque of the second joint is the largest.

f1 =
2∑
i=1

∫ T

0
|1qi(t)|dt f2 =

2∑
i=1

∫ T

0
|1ui(t)|dt (49)

where qi(t) is the error between the desired and actual trajec-
tory, µi(t) is the error between the desired and actual drive
torque.

The simulation trajectory [34] is defined by a quintic poly-
nomial shown in (50). When t = 2s, θd1 =1rad, θd2 = 2rad,
ωd1 = ωd2 = 0rad/s. When t = 4s, θd1 = 0.5rad, θd2 = 4rad,
ωd1 = ωd2 = 0rad/s.

θd, j (t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 j = 1, 2

(50)

Based on the definition of the general saturation function
02(x), the corresponding general saturation functions of (51)
(02(x)) are expressed by (52) (01(x)).

y1(x) = k1 tanh(x) y2(x) =


k2 when x ≥ a1
k2x others
−k2 when x ≤ −a1

y3(x) =

{
1− e−

x/εx ≥ 0

−1+ e
x/εx < 0

y4(x) =


k4 when x ≥ 0.5π
k4 sin(x) others
−k4 when x ≤ −0.5π

(51)

y11(x) = k1 tanh(x + sign(x)δ11),

y22(x) =


k2 when x ≥ a1 − δ22
k2 (x + sign(x)δ22) others
−k2 when x ≤ −a1 + δ22

y33(x) =

1− e−
(x + sign(x)δ4)/ε x ≥ 0

−1+ e
x + sign(x)δ4/ε x < 0

y44(x) =


k4 when x ≥ 0.5π − δ33
k4 sin(x + sign(x)δ33) others
−k4 when x ≤ −0.5π + δ33

(52)

In order to evaluate the role of the proposed general satura-
tion function (01(x)) in nonlinear PID control, the parameters
tuning of nonlinear PID with common saturation function
depicted by (51), and nonlinear PID with the proposed gen-
eral saturation function defined by (52) are achieved, respec-
tively. Firstly, the overall optimization results are compared in
the tuning results, that is, the control performances (f1 and f2)
are affected by the two different saturation functions. Second,
the compromise results are chosen for comparison. The defi-
nition of the compromise solution is shown in Figure 6 [35].
The compromise solution is the point of minimum distance
from the optimized solution to the utopia solution.
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FIGURE 5. The simulation results of remote center motion mechanism dynamic.

FIGURE 6. The definition of Utopia, Pareto, compromise Pareto front and
feasible solution.

A. PARAMETERS TUNING OF LINEAR D + NONLINEAR PI
There are two constraints: GAS conditions are expressed by
(19) ∼ (22) and the drive torques are less than motor rated
output torques that the first and second joints are 0.18Nm and
0.05Nm.

The parameters tuning of nonlinear PID with saturation
function defined by (51) and (52) are achieved by the NSGA-
II. The eight groups of Pareto solutions are shown in Figure 7.
By comparing (a) and (b), (c) and (d), (e) and (f), (g) and
(h), it can be concluded that the trajectory tracking accu-
racy and the torque output accuracy of the NPDNI control
law with the saturation functions defined by (52) have been
improved. The Utopia solutions of NPDNI control law with
saturation defined by (51) and (52) after optimization are
shown in Table 1. It can be concluded that the control effect
of the NPDNI control law with saturation function defined
by (52) is better than that of the NPDNI control law with
saturation function defined by (51). The errors between the
desired output torque and actual output torque with saturation
function defined by (52) are less than that with saturation
function defined by(51). Compared with the trajectory track-
ing accuracy with saturation function defined by (51), the
trajectory tracking accuracy with saturation function defined
by (52) is improved by nearly an order of magnitude. In order
to study the robustness of the NPDNI control law, four groups
of compromise solutions shown in TABLE 2 are compared.
Taking the importance of the trajectory tracking in practical
application, a group (y11) with high trajectory accuracy is
selected to study its robustness.

B. PARAMETERS TUNING OF LINEAR PD + NONLINEAR PI
There are two constraints: GAS conditions are expressed by
(37) ∼ (40) and the drive torques are less than motor rated

FIGURE 7. The optimized result of the NPDNI control law.

output torques that the first and second joints are 0.18Nm and
0.05Nm.

The parameters tuning of nonlinear PID with saturation
function defined by (51) and (52) are achieved by the
NSGA-II. The eight groups of Pareto solutions are shown
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TABLE 1. The Utopia points of NPDNI control law with saturation defined
by (51) and (52) after optimization.

TABLE 2. The compromise points of NPDNI control law with saturation
defined by (51) and (52) after optimization.

TABLE 3. The Utopia points of NPPDNI control law with saturation
defined by (51) and (52) after optimization.

in Figure 8. By comparing (a) and (b), (c) and (d), (e)
and (f), (g) and (h), it can be concluded that the trajectory
tracking accuracy and the torque output accuracy of the
NPPDNI control law with the saturation functions defined by
(52) have been improved. The Utopia solutions of NPPDNI
control law with saturation defined by (51) and (52) after
optimization are shown in Table 3 It can be concluded that
the control effect of the NPPDNI control law with saturation
function defined by (52) is better than that of the NPPDNI
control law with saturation function defined by (51). The
errors between the desired output torque and actual output
torque with saturation function defined by (52) are less than
that with saturation function defined by (51). Compared
with the trajectory tracking accuracy with saturation func-
tion defined by (51), the trajectory tracking accuracy with
saturation function defined by (52) is improved by nearly an
order of magnitude. In order to study the robustness of the
NPPDNI control law, four groups of compromise solutions
shown in TABLE 4 are compared. Taking the importance
of the trajectory tracking in practical application, a group
(y44) with high trajectory accuracy is selected to study its
robustness.

FIGURE 8. The optimized result of the NPPDNI control law.

TABLE 4. The compromise points of NPPDNI control law with saturation
defined by (51) and (52) after optimization.

V. ROBUSTNESS ANALYSIS OF NONLINEAR PID
In order to compare the robustness of the traditional PID
control law, nonlinear PID control law with saturation func-
tions defined by (51), and nonlinear PID control law with
saturation function defined by (52), the effects of the model
uncertainty, input torque disturbance and noise on the integra-
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FIGURE 9. The simulation diagram.

tion of the absolute value of the trajectory tracking errors and
torque output errors are studied. The simulation schematic
diagram is shown in Figure 9.

The model uncertainty is set as: the mass of link 1 and
link 2 increases by 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, and 50%, respectively, and the mass of
link1 and link 2 increase by 5%, 10%, 15%, 20%, 25%,
30%, 35%, 40%, 45%, and 50% at the same time. The
input disturbance torque is set as: the joint 1 and joint 2 are
disturbed by 2.5sin(50t), 5sin(50t), 7.5sin(50t), 10sin(50t),
12.5sin(50t), 15sin(50t), 17.5sin(50t), 20sin(50t), 22.5sin
(50t), and 25sin(50t) Nm, respectively, and the joint 1 and
joint 2 are disturbed by 2.5sin(50t), 5sin(50t), 7.5sin(50t),
10sin(50t), 12.5sin(50t), 15sin(50t), 17.5sin(50t), 20sin (50t),
22.5sin(50t), and 25sin(50t) Nm at the same time. The noise
interference is set as: the joint 1 and joint 2 are disturbed by
75dB, 77.5dB, 80dB, 82.5dB, 85dB, 87.5dB, 90dB, 92.5dB,
95dB, 97.5dB and 100dB, respectively, and the joint 1 and
joint 2 are disturbed by 75dB, 77.5dB, 80 dB, 82.5dB, 85dB,
87.5dB, 90dB, 92.5dB, 95dB, 97.5dB and 100 dB at the same
time.

A. ROBUSTNESS ANALYSIS OF LINEAR D + NONLINEAR PI
As shown in Figure 10 (a), IAE between the desired and
actual trajectory of the joint 1 (IAE1) shows an increasing
trend as the mass of link 1 increases, IAE between the desired
and actual trajectory of the joint 2 (IAE2) is not affected by the
increase in the mass of link 1, because there is no link 1 mass

FIGURE 10. Variation in IAE for mass change of the model.

term in the drive torque model of joint 2, IAE2 is not affected.
As shown in Figure 10 (b), IAE1 shows an increasing trend
as the mass of link 2 increases, because there is link 2 mass
term in the drive torquemodel of joint 1, IAE2 increases as the
mass of link 2 increases. As shown in Figure 10 (c), the IAE1
and IAE2 shown an increasing trend as the mass of link
1 and link 2 increase. Compared with Figure 10 (a) and (b),
the IAE1 and IAE2 are themaximum in Figure 10 (c), because
themasses of link 1 and link 2 increase simultaneously, which
results in a greater impact on the output torque, the trajectory
tracking accuracy is reduced. As shown in Figure 10 (a),
(b), and (c), the IEA1 and IAE2 of the traditional PID and
nonlinear PID with the saturation functions y1 are larger
than them of the nonlinear PID with the saturation functions
y11. Because the nonlinear PID control with the saturation
functions y11 has a strong feedback effect on the error and
can quickly compensate the error.
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FIGURE 11. Performance analysis of control law when the masses of link
1 and 2 increase by 50% simultaneously.

As shown in Figure 13 (a), IAE1 increases as the input
disturbance torque of the joint 1 increases. As shown in Fig-
ure 13. (b), IAE2 increases as the input disturbance torque

FIGURE 12. The standard deviation of the trajectory tracking error and
output torque error.

FIGURE 13. Variation in IAE for input disturbance torque.

of the joint 2 increases. As shown in Figure 13. (c), IAE1
and IAE2 increase as the input disturbance torque of the
joint 1 and joint 2 increase simultaneously. Compared with
Figure 13 (a) and (b), the IAE1 and IAE2 are the maxi-
mum, because the input disturbance torque of the joint 1 and
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joint 2 increase simultaneously, which results in a greater
impact on the output torque, the trajectory tracking accuracy
is reduced. As shown in Figure 13 (a), (b), and (c), the IEA1
and IAE2 of the nonlinear PID with the saturation functions
y11 are less than them of the traditional PID and nonlinear PID
with the saturation functions y1. Because the nonlinear PID
control with the saturation functions y11 has a strong feedback
effect on the error and can quickly compensate the error.

The trajectory tracking errors and the output torque errors
are shown in Figure 11, when the masses of link 1 and link
2 increase by 50% simultaneously. The trajectory tracking
errors and the output torque errors of the joint 1 and joint
2 controlled by the nonlinear PID with the saturation function
y11 is less than them of the joint 1 and joint 2 controlled by
the nonlinear PID with the saturation function y11 and the
traditional PID, respectively. It indicates that the nonlinear
PID with the saturation y11 is the most robust to the model
uncertainty.

The standard deviation reflects data fluctuation. The
smaller the standard deviation is, the smaller the fluctua-
tion of input and motion of the system is, and the system
is relatively stable. The standard deviation of the trajectory
tracking error and output torque error is shown in Figure 12,
the standard deviation of the trajectory tracking error and
output torque error of the nonlinear PID with the saturation
function y11 is the smallest. It indicates that the nonlinear PID
with the saturation function y11 has high robust to the model
uncertainty.

As shown in Figure 13 (a), IAE1 increases as the input
disturbance torque of the joint 1 increases. As shown in Fig-
ure 13. (b), IAE2 increases as the input disturbance torque
of the joint 2 increases. As shown in Figure 13. (c), IAE1
and IAE2 increase as the input disturbance torque of the
joint 1 and joint 2 increase simultaneously. Compared with
Figure 13 (a) and (b), the IAE1 and IAE2 are the maxi-
mum, because the input disturbance torque of the joint 1 and
joint 2 increase simultaneously, which results in a greater
impact on the output torque, the trajectory tracking accuracy
is reduced. As shown in Figure 13 (a), (b), and (c), the IEA1
and IAE2 of the nonlinear PID with the saturation functions
y11 are less than them of the traditional PID and nonlinear PID
with the saturation functions y1. Because the nonlinear PID
control with the saturation functions y11 has a strong feedback
effect on the error and can quickly compensate the error.

The trajectory tracking errors and the output torque errors
are shown in Figure 14, when the input disturbance torque
of the joint 1 and 2 is 25sin(50t) N·m simultaneously. The
trajectory tracking errors and the output torque errors of the
joint 1 and joint 2 controlled by the nonlinear PID with the
saturation function y11 is less than them of the joint 1 and joint
2 controlled by the nonlinear PID with the saturation function
y1 and the traditional PID, respectively.

The standard deviation of the trajectory tracking error and
output torque error is shown in Figure 15, the standard devi-
ation of the trajectory tracking error and output torque error
of the nonlinear PID with the saturation function y11 is the

FIGURE 14. Performance analysis of control law when the input
disturbance torque of the joint 1 and 2 is 25sin(50t) Nm.

smallest. It indicates that the nonlinear PID with the satu-
ration function y11 has high robust to the input disturbance
torque.
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FIGURE 15. The standard deviation of the trajectory tracking error and
output torque error.

FIGURE 16. Variation in IAE for SNR change.

As shown in Figure 16 (a), IAE1 decreases as the input
noise disturbance of the joint 1 reduces (It means signal noise

ratio (SNR) increases). As shown in Figure 16 (b), IAE2
decreases as the input noise disturbance of the joint 2 reduces.
As shown in Figure 16 (c), IAE1 and IAE2 decrease as the
input noise disturbance of the joint 1 and joint 2 reduces
simultaneously. Compared with Figure 16 (a) and (b), the
IAE1 and IAE2 are the maximum, because the input noise
disturbance of the joint 1 and joint 2 increase simultaneously,
which results in a greater impact on the output torque, the tra-
jectory tracking accuracy is reduced. As shown in Figure 16
(a), (b), and (c), the IEA1 and IAE2 of the nonlinear PID with
the saturation functions y11 are less than them of the tradi-
tional PID and nonlinear PID with the saturation functions
y1. Because the nonlinear PID control with the saturation
functions y11 has strong feedback effect on the error and can
quickly compensate the error.

The trajectory tracking errors and the output torque errors
are shown in Figure 17, when the input noise disturbance of
the joint 1 and 2 is 75dB simultaneously. The trajectory track-
ing errors and the output torque errors of the joint 1 and joint
2 controlled by the nonlinear PID with the saturation function
y11 is less than them of the joint 1 and joint 2 controlled
by the nonlinear PID with the saturation function y1 and the
traditional PID, respectively. It indicates that the nonlinear
PID with the saturation y11 is the most robust to the noise
disturbance.

The standard deviation of the trajectory tracking error and
output torque error is shown in Figure 18, the standard devi-
ation of the trajectory tracking error and output torque error
of the nonlinear PID with the saturation function y11 is the
smallest. It indicates that the nonlinear PID with the satura-
tion function y11 has high robust to the noise disturbance.

B. ROBUSTNESS ANALYSIS OF LINEAR PD + NONLINEAR
PI
As shown in Figure 19 (a), IAE between the desired and
actual trajectory of the joint 1 (IAE1) shows an increasing
trend as the mass of link 1 increases, IAE between the desired
and actual trajectory of the joint 2 (IAE2) is not affected by the
increase in the mass of link 1, because there is no link 1 mass
term in the drive torque model of link 2, IAE2 is not affected.
As shown in Figure 19 (b), IAE1 shows an increasing trend
as the mass of link 2 increases, because there is link 2 mass
term in the drive torque model of link 1, IAE2 increases as the
mass of link 2 increases. As shown in Figure 19 (c), the IAE1
and IAE2 shown an increasing trend as the mass of link 1 and
link 2. Compared with Figure 19 (a) and (b), the IAE1 and
IAE2 are the maximum, because the masses of link 1 and
link 2 increase simultaneously, which results in a greater
impact on the output torque, the trajectory tracking accuracy
is reduced. As shown in Figure 19 (a), (b), and (c), the IEA1
and IEA2 of the traditional PID and nonlinear PID with the
saturation functions y4 are larger than them of the nonlinear
PID with the saturation functions y44. Because the nonlinear
PID control with the saturation functions y44 has a strong
feedback effect on the error and can quickly compensate the
error.

VOLUME 8, 2020 210525



G. Niu, C. Qu: Global Asymptotic Nonlinear PID Control With a New Generalized Saturation Function

FIGURE 17. Performance analysis of control law when the SNR of the
joint 1 and joint 2 is 75dB.

The trajectory tracking errors and the output torque errors
are shown in Figure 20, when the masses of link 1 and link
2 increases by 50% simultaneously. The trajectory tracking

FIGURE 18. The standard deviation of the trajectory tracking error and
output torque error.

FIGURE 19. Variation in IAE for mass change of the model.

errors and the output torque errors of the joint 1 and joint
2 controlled by the nonlinear PID with the saturation function
y44 is less than them of the joint 1 and joint 2 controlled
by the nonlinear PID with the saturation function y4 and the
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FIGURE 20. Performance analysis of control law when the masses of link
1 and 2 increase by 50% simultanously.

traditional PID, respectively. It indicates that the nonlinear
PID with the saturation y44 is the most robust to the model
uncertainty.

FIGURE 21. The standard deviation of the trajectory tracking error and
output torque error.

The standard deviation of the trajectory tracking error and
output torque error is shown in Figure 21, the standard devi-
ation of the trajectory tracking error and output torque error
of the nonlinear PID with the saturation function y44 is the
smallest. It indicates that the nonlinear PID with the satura-
tion function y44 has high robust to the noise disturbance.
As shown in Figure 22. (a), IAE1 increases as the input

disturbance torque of the joint 1 increases. As shown in Fig-
ure 22. (b), IAE2 increases as the input disturbance torque
of the joint 2 increases. As shown in Figure 22. (c), IAE1
and IAE2 increase as the input disturbance torque of the
joint 1 and joint 2 increase simultaneously. Compared with
Figure 22 (a) and (b), the IAE1 and IAE2 are the maxi-
mum, because the input disturbance torque of the joint 1 and
joint 2 increase simultaneously, which results in a greater
impact on the output torque, the trajectory tracking accuracy
is reduced. As shown in Figure 22 (a), (b), and (c), the IAE1
and IAE2 of the nonlinear PID with the saturation functions
y44 are less than them of the traditional PID and nonlinear PID
with the saturation functions y4. Because the nonlinear PID
control with the saturation functions y44 has a strong feedback
effect on the error and can quickly compensate the error.

The trajectory tracking errors and the output torque errors
are shown in Figure 23, when the input disturbance torque
of the joint 1 and 2 is 25sin(50t) N·m simultaneously. The
trajectory tracking errors and the output torque errors of the
joint 1 and joint 2 controlled by the nonlinear PID with the
saturation function y44 are less than them of the joint 1 and
joint 2 controlled by the nonlinear PID with the saturation
function y4 and the traditional PID, respectively. It indicates
that the nonlinear PID with the saturation y44 is the most
robust to the input disturbance torque.

The standard deviation of the trajectory tracking error
and output torque error is shown in Figure 24, the standard
deviation of the trajectory tracking error and output torque
error of the nonlinear PID with the saturation function y44
is the smallest. It indicates that the nonlinear PID with the
saturation y44 has high robust to the input disturbance torque.

As shown in Figure 25 (a), IAE1 decreases as the input
noise disturbance of the joint 1 reduces (It means signal
noise ratio (SNR) increases). As shown in Figure 25 (b),
IAE2 decreases as the input noise disturbance of the joint
2 reduces. As shown in Figure 25 (c), IAE1 and IAE2
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FIGURE 22. Variation in IAE for input disturbance torque.

decrease as the input noise disturbance of the joint 1 and
joint 2 reduces simultaneously. Compared with Figure 25 (a)
and (b), the IAE1 and IAE2 are the maximum, because the
input noise disturbance of the joint 1 and joint 2 increase
simultaneously, which results in a greater impact on the
output torque, the trajectory tracking accuracy is reduced.
As shown in Figure 25 (a), (b), and (c), the IAE1 and IAE2
of the nonlinear PID with the saturation functions y44 are less
than them of the traditional PID and nonlinear PID with the
saturation functions y4. Because the nonlinear PID control
with the saturation functions y44 has a strong feedback effect
on the error and can quickly compensate the error.

The trajectory tracking errors and the output torque errors
are shown in Figure 26, when the input noise disturbance of
the joint 1 and 2 is 75dB simultaneously. The trajectory track-

FIGURE 23. Performance analysis of control law when the input
disturbance torque of the joint 1 and 2 is 25sin(50t) Nm.

ing errors and the output torque errors of the joint 1 and joint
2 controlled by the nonlinear PID with the saturation function
y44 is less than them of the joint 1 and joint 2 controlled
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FIGURE 24. The standard deviation of the trajectory tracking error and
output torque error.

FIGURE 25. Variation in IAE for SNR change.

by the nonlinear PID with the saturation function y4 and the
traditional PID, respectively. It indicates that the nonlinear
PID with the saturation y44 is the most robust to the noise
disturbance.

FIGURE 26. Performance analysis of control law when the SNR of the
joint 1 and joint 2 is 75dB.

The standard deviation of the trajectory tracking error and
output torque error is shown in Figure 27, the standard devi-
ation of the trajectory tracking error and output torque error
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FIGURE 27. The standard deviation of the trajectory tracking error and
output torque error.

of the nonlinear PID with the saturation function y44 is the
smallest. It indicates that the nonlinear PID with the satura-
tion function y44 has high robust to the noise disturbance.
Based on the above analysis, linear D + nonlinear PI

with the new generalized saturation function and linear PD
+ nolinear PI with the new generalized saturation function
have higher robust to themodel uncertainty, input disturbance
torque and noise disturbance than the traditional PID, linear
D + nonlinear PI with the common saturation function and
linear PD + nolinear PI the common saturation function.
Because the new generalized saturation function has a strong
feedback effect on the error and can quickly compensate the
error.

VI. CONCLUSION
First, a new generalized saturation function was proposed,
which had strong reaction near the equilibrium point and can
make the control converge to the equilibrium point quickly.
Second, the proposed generalized saturation function was
applied in linear D + nonlinear PI control law and in linear
PD + nonlinear PI control law, the corresponding GAS con-
ditions of the above two control laws were proved using Lya-
punov’s method and LaSalle’s invariance principle. Third, the
parameters tuning models of the above two control laws with
the proposed saturation function and the common saturation
function were built, the time integration of the absolute value
of position tracking error and time integration of the absolute
value of input torque error were chosen as the objective
functions, the GAS conditions and the rate driving torque
of each motor are regarded as the constraint conditions. The
control laws with the proposed saturation function had high
position tracking accuracy and torque output to prove the
excellent characteristics of the proposed saturation function.
Last, Robustness to the model uncertainty, input disturbance
torque and noise disturbance of the tradition PID control
law, the above two control laws with the common saturation
functions, and the above two control laws with the proposed
saturation functions was studied, the results shown that con-
trol laws with the proposed saturation functions had high
robustness.
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