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ABSTRACT Spring operation mechanism is widely used in high voltage circuit breakers, and its reliability
is related to the ability of the circuit breaker breaking fault current. During the life cycle of spring operating
mechanism, stress relaxation, metal fatigue, and any other mechanical defects are easily occurring. And the
mechanical performance of the circuit breaker will be influenced by the above defects. Therefore, identifying
and predicting the mechanical conditions of the spring operation mechanism can improve the reliability of
the circuit breaker. In the present paper, the 252 kV circuit breakers are used as test objects. Firstly, the spring
stress relaxation test, the life-cycle test, and the failure simulated test of 252 kV circuit breakers are carried
out. Secondly, a multi-body dynamics simulation model of the experimental prototype is established. Thirdly,
support vector machine, random forest, and deep neural network are used in the condition identification of
the circuit breaker to compare their performances. Then, the prediction model of spring in stress relaxation
test is built, however, the model is not suitable for the life-cycle test of repeat close-open operation. Finally,

the remaining useful life prediction model is proposed by using Wiener Process.

INDEX TERMS Spring operation mechanism, circuit breaker, random forest, Wiener process.

I. INTRODUCTION

High voltage circuit breakers with spring operating mecha-
nisms are widely used in the power grid. The mechanical
condition of the breaker is related to whether it can inter-
rupt fault current, which is important for the protection in
the power system. Consequently, the mechanical condition
identification of circuit breaker has become a hot topic for
many years.

A. PREVIOUS WORK

1) FAULT DIAGNOSE OF CIRCUIT BREAKER

In the diagnose of the circuit breaker, contact displace-

ment [1], electromagnet coil current [2], and vibration char-

acteristics [3]-[5] are widely used as diagnosis parameters.
Contact displacement could effectively reveal the condition

of the operating mechanism. Ali Asghar Razi-Kazemi et al.

hold the view that any changes in time or speed is most likely

an indication of a damaged spring, over travel is an indication
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of a failure in damper, and any changes in rising time of
contact displacement is most likely caused by a failure in coils
of the operating mechanism [6].

The closing and opening electromagnet irons play impor-
tant and critical roles in the operating mechanism, and the
movement process of the iron core could be described by
the coil current [7]. Then, the signals can be extracted based
on a deep belief network [8], a real-time diagnosis algo-
rithm [9], or a fuzzy-probabilistic-based condition assess-
ment algorithm [10] to assess the CB operation performance.
The algorithms are adopted to assist in the construction of a
high-quality fault diagnosis model.

The vibration signal has the characteristics of highly non-
linear, non-stationary, and corrupted by heavy garbage noise,
which makes it very difficult to precisely extract effective
features for machinery fault diagnosis. To address this issue,
many methods have been proposed. For example, an energy
entropy of Hilbert marginal spectrum based on vibrational
mode decomposition is presented to analyze it [11]; another
research introduced a non-linear feature mapping in the
wavelet package time-frequency energy rate feature space
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based on random forest binary coding to extend the feature
width [12]. In addition, two layers of independent one-class
support vector machines are adopted to distinguish normal or
fault conditions with known or unknown fault types respec-
tively. On this basis, a support vector machine is used to
recognize the specific fault type [13].

Besides, more and more multi-parameters (including con-
tact displacement, current, and vibration) monitoring systems
were proposed [3]. Fatemeh Nasri Rudsari et al. diagnosed
the faults based on coil current and contact displacement
through a modified support vector machine [14].

2) FAILURE ANALYSIS OF SPRING MECHANISM

The mechanism components endure hundreds of repeated
stress owing to the repetitiveness of close-open operation.
As a result, some parts and components are prone to fail
during cycling repeated stress. For the 35kV-252kV high
voltage circuit breaker, the spring mechanism is one of the
most common operating mechanisms.

According to the international surveys on circuit-breaker
reliability, the failure of the operating mechanism is much
higher than other subassemblies in breakers [15]. Conse-
quently, fatigue failure of circuit breaker energy storage
spring has drawn a series of attentions [16], [17]. Surface
decarburization has been proved to influence the service per-
formance of spring steel directly. The decarburized layer was
significantly modified by turning into a strengthened layer
with gradient microstructure after surface spinning strength-
ening treatment, which effectively extended the bending
fatigue life of spring steel [18]. Darko et al. proposed that
the continuous contact between the coils formed corrosion
pits that served as crack initiation points leading to the final
fracture [19]. In another paper, a high-speed camera has been
used to capture the deformation of the operating mechanism
spring [20].

The reliability of circuit breakers is critical to ensure the
safe operation of the power system. In order to investigate
the reliability of high voltage SF¢ circuit breakers, a statis-
tical approach is applied, which can estimate the remaining
lifetime and the failure rate of circuit breakers based on
the failure data [21]. T.M. Lindquist et al. proposed the use
of the conditional failure intensity to quantify the effect of
maintenance for breakers [22]. In the maintenance plan of
circuit breakers, the effects of the failures on the cost of the
expected unused energy should be considered [23].

B. CONTRIBUTIONS
The primary contributions of our study can be summarized as
follows:

1) The stress relaxation and fatigue tests are carried out
to compare the influences on the mechanical performances
of the circuit breaker. At present, there is no research on the
mechanical life prediction of the spring operating mechanism
of the high-voltage circuit breaker, and there is no corre-
sponding mathematical model. In the present paper, to obtain
the mechanical characteristic curves of the circuit breaker
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under normal and spring fatigue conditions, the fatigue life
test is carried out. The spring operating mechanism is expen-
sive and is not suitable for large sample tests, so the RUL
model can only depend on the degradation data of a single
sample. Based on the degradation data of the spring mecha-
nism that is obtained from the fatigue life test, the RUL model
of the spring operating mechanism based on the Wiener
process is established.

2) In the traditional failure simulation method of spring
operating mechanism, the normal state does not contain the
aging and wear of the spring operating mechanism, and the
adjusting of the spring compression is used to simulate
the fatigue failure. However, there is a difference between
the above simulated methods and the real conditions of the
spring operating mechanism on the mechanical properties.
Therefore, in the present paper, the normal state is randomly
selected from the life-cycle test which contains the aging
and wear of the spring operating mechanism, and a fatigued
spring is used to simulated the fatigue failure.

3) For the diagnosis of the spring operation mechanism,
not any researches aimed at using the random forest algo-
rithm to realize high-voltage circuit breaker fault diagnosis
through contact displacement signals. Compared with the
vibration and coil current, the installation method of the
contact displacement sensor has less influence on the circuit
breaker, and the displacement signal is more repeatability.
Therefore, the contact displacement is used to construct the
feature matrix. Then, the performances of SVM, RF, and
DNN in the condition identifying of the circuit breaker are
compared.

C. WORK ORGANIZATION

The remainder of the presented paper is organized as follows:
Section II introduces the stress relaxation test of the spring,
the fault simulation test, and the life-cycle circuit breaker
tests. In section III, a dynamic simulation model of the cir-
cuit breaker is built. Then, SVM, RF, and DNN are used to
identify the failures in section IV. Finally, the life prediction
model of the spring operation mechanism is established.

Il. EXPERIMENTS

According to previous studies, the failure of spring was sim-
ulated by adjusting the compression of closing and opening
spring. The above method is easy to implement, but the
fatigue failure is caused by the decrease of stiffness rather
than the change of compression. Therefore, the fatigue spring
will be installed in the present paper.

Two LW30-252 breakers with spring operating mechanism
are used, and the mechanical parameters can be seen in
TABLE 1. The average closing and opening speed is defined
as the speed of 80% of the travel of the moving contact in
the middle, while removing both 10% of the front and back
of the total travel of the moving contact. Breaker I is used
to simulating the faults, and breaker II is used to carry the
mechanical life-cycle test of closing and opening spring. The
experiments are shown as follows.
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TABLE 1. The parameters of the test circuit breakers.

Parameter Value Unit
Average closing speed 4.4+0.6 m/s
Average opening speed 8.4+0.6 m/s

Closing time 90=+15 ms
Opening time 3047 ms

A. STRESS RELAXATION TEST

Stress relaxation occurs in the energy storage stage of the
spring. According to the mechanical mechanism of the circuit
breaker, the closing force is provided by both closing and
opening spring, and the opening force is only provided by
opening spring.

To study the stress relaxation mechanism, the stress relax-
ation test of the spring is carried out. Firstly, the free height
of the compression coil spring is defined as Hy, when the
initial load Py is added, the height of the spring is changed
to H. Then, the height of the coil spring is fixed to H by
bolts and nuts. After that, the spring is taken out from the
fixing condition, and the load P, when the height reaches H
is measured. The above operation is repeated every certain
time, and the load value of P; in each test is recorded.

The tests have been carried out for 36 months with the
same kind of spring, which is made of 60Si2CrVA. The spring
experienced the hot-winding process, the high-pressure treat-
ment, and the electrophoretic paint in the production.

In simple tension experiments, the relationship between
strain and stress of spring submits Hook’s law within the limit
of proportionality, and the law can be described as,

F=k-(H—Hpy) (1)

where F is the spring force, k is the stiffness coefficient.

The relationship between stress and time in the test can
be seen in FIGURE. 1. The results mean that the stiffness
coefficient of the spring will drop quickly in the first 6 months
(which can be seen in Stage I), then the downward trend
slowed down (which can be seen in Stage II).
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FIGURE 1. The relationship between stress and time in the stress
relaxation.

B. LIFE-CYCLE TEST
Metal fatigue of the spring occurs after multiple breaking
actions. Therefore, the life-cycle test is carried out to simulate
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metal fatigue defects. Due to the trend in the stress relaxation
test, the life-cycle test is carried out in 6 months after the
circuit breaker had been installed. In the life-cycle test, the
circuit breaker experiences 7,000 breaking times without cur-
rent carried, and the contact displacement has been measured
concurrently.

The opening speed of movable contact is an important
parameter for the circuit breaker, as soon as the contact speeds
of breaker II in the life-cycle test are not meeting the required
values of average speed in TABLE 1, then the mechanical
life is regarded as the end. During the life-cycle test, the
closing, and opening speed are calculated, which can be seen
in FIGURE.2. The dots curve is the minimum required value
of opening speed, the stability and the breaking capacity
will be extremely harmed if the speed lower than the dots
curve.
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FIGURE 2. The speed curves in life-cycle test.

The results from the life-cycle test show that with the
increase of life cycles, the opening speed decrease, while,
the closing speed increase in turn. More specifically, the clos-
ing speed always within the normal range, but the opening
speed is lower than the rated value at 6,000 times, which
means that the breaker I can’t meet the mechanical require-
ments, and the spring can be considered as fatigue.
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C. SIMULATED FAILURE TEST

1) FATIGUE FAILURE

The spring used in breaker II has endured thousands of
impact, then it is removed and installed on breaker I to
simulate the failure.

2) LEAK OF OIL BUFFER FAILURE

The oil buffer, as the name suggests, it acts as a buffer
during the action of the circuit breaker. The purpose of the
experiment is to simulate the failure caused by the aging and
failure of oil buffer. Under the long-term operations, the oil
will volatilize and leak. Therefore, the oil is pumped from the
oil buffer in the experiment for simulating the fault.

3) COMPOUND FAILURES

Based on the single failure which has been simulated in the
experiments, then multiple failures are discussed in the paper
by combing with the single failures to form the compound
failures.

4) SUMMARY OF THE STATES

Following the above methods, the states of the breaker con-
sidered in the present paper can be seen in Table 2, and the
contact displacement curves can be seen in FIGURE.3. The
normal condition is randomly selected from 1 to 1,000 times
in the life-cycle test.

TABLE 2. Summary of the states considered in this study.

Sample number

Description of states ..
for training

Category label

Normal state Class 1 200
Closing spring fatigue Class 2 50
Opening spring fatigue Class 3 50

Leak of oil buffer Class 4 50

Both clos.mg an.d opening Class 5 50
spring fatigue

Closing spring fatigue as Class 6 50

well as leak of oil buffer

The relationship between speed and spring force can be
described as,

dav, 1
E:ﬁ—/l(F,,+Wg—F,—Fb—Ff) )
dv, 1
E:M(Fc_wg_Fr_Fb_Ff_Fo) (3)

where v, is the opening speed, v, is the closing speed, M is
equivalent motion mass, F, is the opening spring force,
F_ is the closing spring force, Wy is the gravity force, F, is the
reaction force of arc extinguishing chamber, F}, is the buffer
force, Fy is the friction force.

In Class 2, the decrease of closing force decrease the
closing speed, which is caused by fatigue of the closing
spring; in Class 3, the fatigue of opening spring decrease
the opening spring force, thus increase the closing speed;
in Class 4, the leak of oil buffer decrease the buffer force,
and increase the closing speed; in Class 5, both the opening
and closing spring force decrease; in Class 6, the fatigue of
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FIGURE 3. The travel versus time under different conditions.
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FIGURE 4. Dynamic simulation model of circuit breaker by ADAMS.

closing spring decrease the closing spring force, the leak of
oil buffer decrease the buffer force at the same time.

Ill. DYNAMIC SIMULATION MODEL BY ADAMS

A. THE ESTABLISHING METHOD OF DYNAMIC MODEL

In this section, a three-dimensional model of the high-voltage
circuit breaker is built. Then, the model is imported into
ADAMS, a multi-body dynamic analysis software. Some
constraints are added to the model, such as fixed pair, rotating
pair, and sliding pair. Meanwhile, the stiffness coefficient
and the damping coefficient are added to the spring, and the
contact force parameters are set to components that may be
contacted.

The simulation model can be seen in FIGURE.4, and the
parameters of the spring which are used in the simulation can
be seen in TABLE 3. After the simulation, the contact dis-
placement of the normal condition can be seen in FIGURE.S.
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TABLE 3. The parameters of the spring.

Parameters Closing spring ~ Opening spring
Material 60Si2CrVA 60Si2CrVA
Initial height (mm) 615 592
Stiffness coefficient (N/mm) 204.96 155.79
Height at closing point (mm) 471 344
Height at opening point (mm) 373 464
_ 250
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FIGURE 5. Comparison between simulation and experiment of closing
period.

B. SPRING FATIGUE SIMULATION

It can be obtained from the fault simulation that the failure
of the spring will influence the mechanical performance of
the high voltage circuit breaker. According to the principle
of the spring operating mechanism of the high-voltage cir-
cuit breaker, the mechanical characteristics in the closing
period are affected by the opening spring and the closing
spring. However, the mechanical characteristics in the open-
ing period are only affected by the opening spring. When the
opening spring is fatigued, its stiffness coefficient declines,
and the pre-pressure reduces, resulting in a decrease in the
opening speed.

During the life-cycle test of repeat close-open operation,
the stiffness of the spring is hard to measure. However, based
on the above (2) and (3), the coefficient can be calculated
and verified by the multi-body dynamics simulation. In the
simulation, the values of W, F,, Fp, Fy are considered as
constants, and the results are shown in FIGURE.6.

IV. CONDITION IDENTIFICATION OF CIRCUIT BREAKER
The operating mechanism including closing and opening
spring, oil buffer, insulated tension pole, transmission mech-
anism, and many other machine parts. If one of them fails,
the mechanical condition may be harmed. Therefore, identi-
fying the hidden defects in advance will help to improve the
reliability of the circuit breaker.

Many machine learning classifiers have been proposed
in the diagnosis of the breaker, such as the support vec-
tor machine, depth learning network, and so on. Recently,
Random Forest is adopted in the condition identifying due
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FIGURE 6. The relationship between spring stiffness and life cycle under
life-cycle test.

to its great efficiency. However, there is no research on the
comparison of the above methods in the mechanical condition
identifying of the circuit breaker with the contact displace-
ment. Therefore, support vector machine (SVM), random
forest (RF), and deep neural network (DNN) are used in
the condition identification of the circuit breaker to compare
their performances. In the machine learning performance
evaluation, confusion matrix, precision, recall rate, and
F-measure are commonly used to describe the accuracy of the
identification.

The precision, recall rate, and F-measure can be described
as [24],

. P
Precision = —— @
TP + FP
TP
Recall = —— ®)
TP + FN
2TP
F-measure = ———— (6)
2TP + FP+ FN

where TP is the number of true positives, FP is the number

of false positives, and FN is the number of false negatives.
For the circuit breaker, the states and samples are shown

in Table 2. 450 sets of data are selected to train the model.
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Meanwhile, the same conditions are simulated on another
circuit breaker, and 225 sets of data are used to verify the
correctness and efficiency of the algorithms.

A. CONDITION IDENTIFICATION BY SVM

SVM is a binary classification model. Its basic model is the
linear classifier with the largest interval defined in the feature
space. However, with the help of kernel function, SVM can
be used as a nonlinear classifier. To improve the classification
accuracy, the radial basis kernel function is selected as the
kernel function. Then, the optimal values of the penalty factor
(C = 100) and the parameter of the radial basis kernel func-
tion (y = 0.01) are obtained by the 4-fold cross-validation
grid search method.

It can be seen from Fig. 3 that the various curves have
no difference before 25ms and after 125ms, so only the
25~125ms part is considered. The contact displacement of
every 0.1ms is considered as one of the features. Besides,
closing time, closing speed, and average speed together con-
stitute the feature matrix. Therefore, the number of features
is 1003.

The diagnosis results of SVM can be seen in FIGURE.7.
Based on the confusion matrix, 5 sets of the testing data
are not correctly identified. The precision, recall rate, and
F-measure for different status are compared, only the preci-
sion of Status 3 is lower than 90%.

B. CONDITION IDENTIFICATION BY RF

RF can be used to process high-dimensional and large-
capacity data. Besides, the advantages of RF are: (1) not
easy to over-fitting; (2) strong generalization performance;
(3) suitable for small sample; (4) strong robust [25].

As the numbers of classifiers and features play important
roles in RF, the values should be defined before the train-
ing process. The determination of the number of classifiers
requires the following steps: first, the data set is divided into
5 mutually exclusive subsets of similar size and consistent
data distribution by cross-validation; second, one of the sub-
sets is selected as the test set, and the other 4 subsets are
considered as the training set, and then the verification test is
performed; third, 5 times of the verification tests are looped
to ensure that each subset can be used as a test set; based on
the above method, cross-validation scored the highest when
the number of classifiers is selected as 60. Meanwhile, the
features in RF are the same as those used in SVM.

The diagnosis results of RF can be seen in FIGURE.8.
Based on the confusion matrix, 3 sets of the testing data
are not correctly identified. The precision, recall rate, and
F-measure of each status are higher than 96%.

C. CONDITION IDENTIFICATION BY DNN

DNN is a deep learning algorithm based on neural net-
works and can be used as an unsupervised classifier. By the
location of different layers in the DNN, the neural network
layers can be divided into the input layer, the hidden layer,
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FIGURE 7. Diagnosis results of SVM.

and the output layer. And, as the number of hidden layers
of the network increases, the calculation process becomes
more complicated. In other words, the more hidden layers,
the longer the training times. The number of hidden layers is
set to 5 after balancing the number of layers and the training
time in the manuscript.

In the training process of DNN, the unsupervised learning
process rate and the supervised learning rate are both set to 1,
and the activation function is selected the Sigmoid function.
The dimension of DNN features cannot be too many, so only
closing time, maximum speed, closing speed, average speed,
and overtravel are selected as the features.

The diagnosis results of DNN can be seen in FIGURE.9.
Based on the confusion matrix, 20 sets of the testing data
are not correctly identified. The precision, recall rate, and
F-measure of Status 2 are all lower than 84%.
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FIGURE 8. Diagnosis results of RF.

D. COMPARISON OF THE PERFORMANCE

The performances of the SVM, RF, and DNN in the con-
dition identifying of the circuit breaker are compared, and
the comparison results can be seen in TABLE 4. Combined
with the precision, the recall rate, and the F-measure of each
status, the inference can be drawn: the training time of RF is
much smaller than SVM and DNN; the identification time of
DNN is much longer than SVM and DNN; RF has the highest
identifying accuracy. Generally, RF has the best diagnostic
performance in the present paper.

TABLE 4. The comparison of different algorithms.

Algorithm SVM RF DNN
Features dimension 1003 1003 5

Training time (s) 20.85 0.28 38.62

Identifying time (s) 0.007 0.008 2.35
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V. LIFE PREDICTION

When the spring operation mechanism works, stress relax-
ation and fatigue are the most common failure modes, which
will decrease the mechanical performances of the spring. As a
result, the remaining useful life prediction of the spring is a
valuable research issue. In the present section, the life models
of spring under stress relaxation tests and life-cycle tests are
established.

A. LIFE MODEL OF STRESS RELAXATION

The stress relaxation of spring can be described by a logarith-
mic equation,

AP = (A + Blntg) Py 7)

where AP is the increment of spring force, Py is the ini-
tial spring force, A and B are dimensionless coefficients,
tg 1s time.
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According to the above formula, the experimental data
curve from FIGURE. 1 is subjected to regression processing,
and the constants A and B in the second stage can be deter-
mined to be 0.0304 and 0.0154 respectively.

Based on the fitting model, the stress relaxation prediction
model of the spring can be established. The spring used in the
stress relaxation test is the same as the closing spring in the
circuit breaker. Therefore, the influence of stress relaxation
on closing speed can be calculated by the dynamic simulation
model, which can be seen in FIGURE. 10.

Closing speed (m/s)

R e L NASLISSLIML I s s st
0123456728 91011121314151617181920
Time (year)

FIGURE 10. The relationship between closing speed and stress relaxation
time.

The results indicate that the closing speed will lower than
the rated closing speed after 1 year. From the results, the stress
relaxation of the closing spring has a greater impact on the
closing speed. However, the above defect only occurs in the
energy-storing stage of the closing spring, and the stage lasts
for a short time during the life cycle of the circuit breaker.
As for the fatigue test, the speed drops fast after 5,500 times.
Therefore, the traditional stress relaxation formula is not
suitable for the circuit breaker under thousands of close-open
operation tests, and a remaining useful life (RUL) model of
the breaker is proposed based on the Wiener process.

B. LIFE MODEL AT LIFE-CYCLE TEST
Since Wiener Process can describe a non-monotonic perfor-
mance degradation process, it has been widely used in the
prediction of remaining useful life (RUL) [26], [27], such as
lithium battery [28], turbofan engine [29], cutting tool [30],
and brushless DC motor [31]. The predicted of RUL is more
accurate by using the historical degradation information to
estimate model parameters. The reason is that the degradation
model established by using the prior information maintains
the integrity of product degradation information, and the
degradation trajectory of the same batch of products is similar
under the same test conditions.

If a random process {X(¢), t > 0} satisfies the following
three conditions:

1) X@0)=0;

2) X(t)is a smooth independent incremental process;

3) whent > 0, X(s + 1) — X(s) ~ N(0, o%1).
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Then {X(¢), t > 0} is named as the Wiener process, and it
can be described as,

x(t) = nt + o B(t) ®)

where 7 is the drift coefficient reflecting individual degra-
dation rate, ¢ is time, o is the diffusion coefficient, B(¢) is
standard Brownian motion.

The opening speed is more worthy of attention compared
with closing speed, because once the circuit breaker cannot
extinguish the electric arc and fails to break the fault current
when the opening speed is not fast enough, which will lead
to a large scale blackout and make great economic losses.
Furthermore, the opening speed is influenced by opening
spring, and the closing speed is influenced by both closing
and opening spring, that is, the influence parameters of open-
ing speed are less than that of closing speed.

Moreover, unlike traditional methods, the present paper
defines the number of remaining operations as the index of
the RUL, instead of the remaining time.

Based on the above, the degradation values of opening
speed are used to predict the RUL of the circuit breaker by
the Wiener Process. The degradation can be calculated as,

Av =vy — 1y O]

where v is the initial value of speed, v; is the speed at ¢ time,
Av is the degradation value.

Based on the least squares estimation of n and o, the
prediction model is established. The fitting curve can be seen
in FIGURE. 11, while, the fitting parameters can be seen
in TABLE 5.

— Sample points A
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1.0 7

Ay (m/s)

0.6 L
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,«"WMM
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0.4 7

0 1000 2000 3000 4000 5000 6000 7000

Life cycle

FIGURE 11. Life prediction of the operation mechanism.

TABLE 5. The fitting parameters of wiener process.

Parameter n o R?
Value 1.95%10* 3.51*10° 0.95

From the Wiener fitting results, the opening speed can be
accurately predicted by the prediction model, and then the
prediction of RUL of the circuit breaker is realized. Compared
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with the stress relaxation predicting model, the results indi-
cate that stress relaxation has little influence on the break-
ing capacity of the breaker compared with metal fatigue.
Therefore, only metal fatigue is considered in the mechanical
condition identification. What’s more, the normal state also
takes into account the wear and degradation of the spring
mechanism.

To verify the accuracy of the RUL model, an additional
10 sets of degradation data are obtained from the same circuit
breaker and used to predict the opening speed. Then the
comparative results between the actual measured values and
the predicted values can be seen in TABLE 6.

TABLE 6. Comparative results between measured and predicted values.

Error between

Life Predicted values ~ Measured values predicted and
cycle (m/s) (m/s) measured value
%)
1000 8.7015 8.7858 0.96
1500 8.3040 8.7008 4.56
2000 8.5065 8.6596 1.77
2500 8.4090 8.5472 1.62
3000 8.3115 8.4591 1.74
3500 8.2140 8.3688 1.85
4000 8.1165 8.3998 3.37
4500 8.0190 8.3813 4.32
5000 7.9215 8.1774 3.13
5500 7.8240 8.1526 4.03

The errors between predicted and measured values are all
less than 5%, as a result, the RUL of the spring operating
mechanism can be accurate described by Wiener Process.

VI. DISCUSSIONS

The analysis of most previous works indicates the contact
displacement, the coil current, and the vibration characteris-
tics are mostly used in the diagnosis of the circuit breaker.
However, some installation methods of the vibration sensors
may damage the mechanical structure, and the installation
positions will affect the diagnosis results. Due to the diver-
sity of operating mechanisms, the installation positions of
vibration sensors of different types of circuit breakers are
quite different. The coil current can reflect circuit faults
such as coil voltage, which is inconsistent with the types of
fault simulated in the present paper. The contact displace-
ment signal is obtained from the displacement sensor that
is installed on the insulated pull rod. Compared with the
vibration signal, the contact displacement signal has the great
advantages of being less affected by the installation position
of the circuit breaker, the fixing method of the sensor, and
the load voltage level. Therefore, the contact displacement
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is used to construct a feature matrix in the diagnosis
and to predict the remaining breaking times of the circuit
breaker.

In the stress relaxation test, the stiffness coefficient drops
fast in the first 6 months, then descends very slowly. By fitting
the relaxation model, the minimum rated opening speed is
hardly reached even in long-term operation. However, the sit-
uation in the life-cycle test is different. With the increase of
operation times, the opening speeds drop fast, especially after
6,000 times. Therefore, in the operation of the circuit breaker,
it is important to consider the influence of the number of
breaking times on the mechanical performance of the spring
operation mechanism.

VII. CONCLUSION

By spring stress relaxation test, life-cycle test, failure sim-
ulated test, and combined with the simulation model, the
methods of identification and prediction of the spring oper-
ation mechanism are discussed in the present paper. The
conclusions are as follows:

1) In the spring stress relaxation test, the stiffness coef-
ficient of the spring will drop quickly in the first
6 months, then the downward trend slowed down.

2) The normal state, closing spring fatigue, opening spring
fatigue, leak of oil buffer, and compound failures are
all identified by SVM, RF, and DNN. The comparison
results show that the conditions of the circuit breaker
are identified by RF in the shortest time and most
accurately.

3) In the frequent operation of the circuit breaker, the fit-
ting curve from the stress relaxation test is not suitable,
and the RUL of the spring operation mechanism can be
accurately predicted by the Wiener process.

4) Comparing the metal fatigue life and stress relaxation
life of the spring operating mechanism, the results
indicate that the breaking times should be paid more
attention than the operation time.

REFERENCES

[1] W.H.Niu, G. S. Liang, H. J. Yuan, and B. S. Li, “A fault diagnosis method
of high voltage circuit breaker based on moving contact motion trajectory
and ELM,” Math. Problems Eng., vol. 2016, p. 10, Jan. 2016.

[2] B. Stephen, S. M. Strachan, S. D. J. Mcarthur, J. R. Mcdonald, and
K. Hamilton, “Design of trip current monitoring system for circuit breaker
condition assessment,” IET Gener., Transmiss. Distrib., vol. 1, no. 1,
pp- 89-95, Jan. 2007.

[3] T. Ji, L. Yi, W. Tang, M. Shi, Q. Wu, “Multi-mapping fault diagnosis
of high voltage circuit breaker based on mathematical morphology and
wavelet entropy,” CSEE J. Power Energy Syst., vol. 5, no. 1, pp. 130-138,
2019.

[4] S. L. Ma, M. X. Chen, J. W. Wu, Y. H. Wang, B. W. Jia, and Y. Jiang,
“Intelligent fault diagnosis of HVCB with feature space optimization-
based random forest,” Sensors, vol. 18, no. 4, p. 20, Apr. 2018.

[5] S. Wan, L. Dou, C. Li, P. Wu, and R. Liu, “Study on on-line detection of
characteristic parameters in high voltage circuit breaker opening process
based on vibration signal,” Electr. Power Compon. Syst., vol. 46, no. 18,
pp. 1969-1978, Nov. 2018.

[6] A. A. Razi-Kazemi, K. Niayesh, and R. Nilchi, “A probabilistic model-
aided failure prediction approach for spring-type operating mechanism of
high-voltage circuit breakers,” IEEE Trans. Power Del., vol. 34, no. 4,
pp. 1280-1290, Aug. 2019.

VOLUME 8, 2020



Y. Liu et al.: Mechanical Condition Identification and Prediction

IEEE Access

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

T. Li, Q. Zhou, L. Liu, S. Lin, and Z. Mou, “High-voltage circuit breaker
fault diagnosis model based on coil current and KNN,” in Proc. Syst.
Health Manage. Conf. (PHM-Chongging), Chongqing, China, Oct. 2018,
pp. 405-409.

Y. Pan, F. Mei, H. Miao, J. Zheng, K. Zhu, and H. Sha, “An approach
for HVCB mechanical fault diagnosis based on a deep belief network
and a transfer learning strategy,” J. Electr. Eng. Technol., vol. 14, no. 1,
pp. 407419, Jan. 2019.

S. S. Biswas, A. K. Srivastava, and D. Whitehead, “A real-time data-
driven algorithm for health diagnosis and prognosis of a circuit breaker
trip assembly,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3822-3831,
Jun. 2015.

A. A. Razi-Kazemi, “Circuit breaker condition assessment through a
fuzzy-probabilistic analysis of actuating coil’s current,” IET Gener., Trans-
miss. Distrib., vol. 10, no. 1, pp. 48-56, Jan. 2016.

Q. Yang, J. Ruan, Z. Zhuang, D. Huang, and Z. Qiu, “A new vibration
analysis approach for detecting mechanical anomalies on power circuit
breakers,” IEEE Access, vol. 7, pp. 14070-14080, 2019.

S.Ma, M. Chen, J. Wu, Y. Wang, B. Jia, and Y. Jiang, ‘“High-voltage circuit
breaker fault diagnosis using a hybrid feature transformation approach
based on random forest and stacked autoencoder,” IEEE Trans. Ind. Elec-
tron., vol. 66, no. 12, pp. 9777-9788, Dec. 2019.

N. T. Huang, H. J. Chen, G. W. Cai, L. H. Fang, and Y. Q. Wang, “Mechan-
ical fault diagnosis of high voltage circuit breakers based on variational
mode decomposition and multi-layer classifier,” Sensors, vol. 16, no. 11,
p. 19, Nov. 2016.

F. N. Rudsari, A. A. Razi-Kazemi, and M. A. Shoorehdeli, ‘Fault analysis
of high-voltage circuit breakers based on coil current and contact travel
waveforms through modified SVM classifier,” IEEE Trans. Power Del.,
vol. 34, no. 4, pp. 1608-1618, Aug. 2019.

A. Janssen, D. Makareinis, and C.-E. Solver, “International surveys on
circuit-breaker reliability data for substation and system studies,” IEEE
Trans. Power Del., vol. 29, no. 2, pp. 808-814, Apr. 2014.

C.Feng, Y. Xie, J. Wang, D. Li, W. Chen, W. Li, and K. Ouyang, “Study on
typical metal fatigue failure of circuit breaker operating mechanism unit,”
IOP Conf., Mater. Sci. Eng., vol. 392, Aug. 2018, Art. no. 022026.

M. Fangang, W. Shijing, H. Jicai, X. Yang, J. Junfeng, L. Qiaoquan, and
S. Cunling, “Simulation and stability analysis of spring operating mecha-
nism with clearance for high voltage circuit breakers,” in Proc. China Int.
Conf. Electr. Distrib. (CICED), Xi’an, China, Aug. 2016, pp. 1-5.

C. X. Ren, D. Q. Q. Wang, Q. Wang, Y. S. Guo, Z. J. Zhang, C. W. Shao,
H.J. Yang, and Z. F. Zhang, “Enhanced bending fatigue resistance of a
50CrMnMoVND spring steel with decarburized layer by surface spinning
strengthening,” Int. J. Fatigue, vol. 124, pp. 277-287, Jul. 2019.

D. Pastorcic, G. Vukelic, and Z. Bozic, “Coil spring failure and fatigue
analysis,” Eng. Failure Anal., vol. 99, pp. 310-318, May 2019.

H. Huang, F. Wang, Y. Lu, X. Xia, and Y. Su, “A new test method of circuit
breaker spring telescopic characteristics based image processing,” in Proc.
E3S Web Conf., vol. 38, 2018, p. 04022.

A.R. R. Matavalam and A. K. Bharati, “Reliability assessment of indus-
trial circuit breakers with design enhancements,” in Proc. IEEE Int.
Conf. Probabilistic Methods Appl. Power Syst. (PMAPS), Boise, ID, USA,
Jun. 2018, pp. 1-6.

T. M. Lindquist, L. Bertling, and R. Eriksson, “Circuit breaker failure data
and reliability modelling,” IET Gener., Transmiss. Distrib., vol. 2, no. 6,
pp. 813-820, Nov. 2008.

M. Abbasghorbani and H. R. Mashhadi, ““Circuit breakers maintenance
planning for composite power systems,” IET Gener., Transmiss. Distrib.,
vol. 7, no. 10, pp. 1135-1143, Oct. 2013.

H. Shao, H. Jiang, H. Zhang, W. Duan, T. Liang, and S. Wu, “Rolling
bearing fault feature learning using improved convolutional deep belief
network with compressed sensing,” Mech. Syst. Signal Process., vol. 100,
pp. 743-765, Feb. 2018.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

X. Wang, C. Hu, X. Si, Z. Pang, and Z. Ren, “An adaptive remaining
useful life estimation approach for newly developed system based on
nonlinear degradation model,” IEEE Access, vol. 7, pp. 82162-82173,
2019.

Y. Lyu, Y. Zhang, K. Chen, C. Chen, and X. Zeng, “Optimal
multi-objective burn-in policy based on time-transformed Wiener
degradation process,” [EEE Access, vol. 7, pp.73529-73539,
2019.

VOLUME 8, 2020

(28]

[29]

(30]

(31]

Z. Zhang, D. X. Shen, Z. Peng, Y. Guan, H. M. Yuan, and L. F. Wu,
“Lithium-ion batteries remaining useful life prediction method consid-
ering recovery phenomenon,” Int. J. Electrochem. Sci., vol. 14, no. 8,
pp. 7149-7165, Aug. 2019.

N. Li, Y. Lei, T. Yan, N. Li, and T. Han, “A wiener-process-model-
based method for remaining useful life prediction considering unit-to-unit
variability,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2092-2101,
Mar. 2019.

H. Sun, D. Cao, Z. Zhao, and X. Kang, ““A hybrid approach to cutting tool
remaining useful life prediction based on the Wiener process,” IEEE Trans.
Rel., vol. 67, no. 3, pp. 1294-1303, Sep. 2018.

Q. Yuan, J. Ye, and X. Li, “Multistage temperature degradation modeling
for BLDC motor based on Wiener process,” J. Beijing Univ. Aeronaut.
Astronaut., vol. 44, no. 7, pp. 1514-1519, Jul. 2018.

YAKUI LIU was born in Shandong, China, in 1990.
He received the B.S. degree from Linyi University,
Shandong, China, in 2013, and the M.S. degree
from the Qilu University of Technology, Shan-
dong, China, in 2016. He is currently pursuing
the Ph.D. degree with the State Key Laboratory of
Electrical Insulation and Power Equipment, Xi’an
Jiaotong University, Xi’an, China.

His current research interests include electrical
contact theory and intelligent electrical apparatus.

GUOGANG ZHANG (Member, IEEE) was born
in Shaanxi, China, in 1976. He received the Ph.D.
degrees from Xi’an Jiaotong University, Xi’an,
i China, in 2004. He is currently a Professor with
— the State Key Laboratory of Electrical Insulation
and Power Equipment, Xi’an Jiaotong University.

His current research interests include theory and

application of intelligent electrical apparatus, elec-

x tric arc plasma and electrical contact theory, and
power equipment for renewable energy. He is a

Committee Member of the Low Voltage Electrical Apparatus Committee of
the China Electrotechnical Society.

CHENCHEN ZHAO was born in Shaanxi, China,
in 1998. She received the bachelor’s degree from
the Xi’an University of Technology, Xi’an, China,
in 2019. She is currently pursuing the master’s
degree with the State Key Laboratory of Electrical
Insulation and Power Equipment, Xi’an Jiaotong
University. Her current research field is the theory
and application of smart appliances.

SHENG LEI was born in Shaanxi, China, in 1996.
He received the bachelor’s degree from the Xi’an
University of Technology, Xi’an, China, in 2019.
He is currently pursuing the master’s degree with
the State Key Laboratory of Electrical Insulation
and Power Equipment, Xi’an Jiaotong University.
His research field is intelligent electrical fault
diagnosis.

210337



IEEE Access

Y. Liu et al.: Mechanical Condition Identification and Prediction

210338

HAO QIN was born in Shaanxi, China, in 1994,
He received the bachelor’s degree from Xi’an Jiao-
tong University, in 2017, where he is currently
a graduate student with the State Key Labora-
tory of Electrical Insulation and Power Equipment.
His current research field is the theory and appli-
cation of smart appliances.

JINGGANG YANG (Member, IEEE) was born in
Shaanxi, China, in 1984. He received the M.S.
degree from Xi’an Jiaotong University, Xi’an,
China, in 2009.

He is currently with the Jiangsu Electric Power
Company Research Institute, State Grid Corpo-
ration of China. His current research interests
include electrical contact theory and intelligent
electrical apparatus.

VOLUME 8, 2020



