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ABSTRACT Inverse system method is effective for controlling permanent magnet synchronous motor
(PMSM). A novel support vector regression(SVR) inverse system method is proposed to realize decoupling
control of PMSM in the article. Firstly, kernel space feature of the inverse model is optimized by using the
prior information provided by the mathematical model of analytical inverse system to build two accurate
SVR inverse models, which can solve the unreasonable kernel space feature when conventional SVR
algorithm is employed to model PMSM inverse system. Then, the inverse system composing of two inverse
models is cascaded with the original system to decouple PMSM system into two pseudo-linear subsystems.
Finally, PID controller is employed to form a closed-loop control system. The simulation and experiment
results show that the proposed method improves the generalization ability of inverse model and achieves
high-performance control of PMSM.

INDEX TERMS Inverse system, permanent magnet synchronous motor, support vector regression.

I. INTRODUCTION
Permanent magnet synchronous motor (PMSM) has been
widely used in electric vehicles, robots, compressors and
other automation equipments because of its high power den-
sity, high efficiency, simple structure and good reliability
[1]–[3]. PMSM, a strong nonlinear system, is multi-variable
and strongly coupled. Additionally, its parameters are vari-
able and its load disturbances are unavoidable. Thus, it is
very difficult for classical decoupling control schemes such as
field-oriented control (FOC) and direct torque control (DTC)
to realize high-performance control of PMSM [4]–[6].

Inverse system, an inversion of the controlled original
system, is an effective method for the linearization and
decoupling control of nonlinear systems [7]. Cascading the
inversion with the original system, the nonlinear and coupled
system is decoupled into a pseudo-linear system, which
is controlled by linear control strategy. The application of
inverse system requires two preconditions: one is that the
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original system can be represented by an accurate or approx-
imate mathematical model, and the other is that it can be
proved to be reversible.

PMSM is a complex nonlinear system. However, if some
unimportant factors are ignored, an approximate mathemati-
cal model can represent it and the original system based on the
model is reversible. There are two main methods for PMSM
inverse systemmodeling: one is the analytical inverse method
[8], [9], and the other is based onmachine learning algorithms
(MLAs) [7], [10]–[12].

Analytical inverse system model, a mathematical model
based on inverse system theory and derived from the orig-
inal PMSM system, cascades the original system to build
a new pseudo-linear system, which is a fast way to set up
a composite system. However, the mathematical model of
PMSM is an ideal model with some unimportant factors
such as the hysteresis in the iron core, eddy current and
core magnetic saturation ignored. Moreover, stator induc-
tance, resistance and other parameters are considered to be
accurately measured and stable in any different operation
condition. Therefore, the mathematical model can not fully
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represent the actual motor and the analytical inverse model
derived from it is also inaccurate.

The inverse system based on MLAs uses intelligent algo-
rithms to build the inverse model. The training data including
the factors such as hysteresis in the iron core, eddy current
and core magnetic saturation ignored used in the process
comes from the sampling of the original PMSM system,
which is regarded as a black-box. Therefore, the dependence
on the accurate mathematical model of PMSM is overcome.
Liu et al. [10] used (Support VectorMachine)SVM to replace
Neural Network to construct a PMSM inverse system and
trained the SVM inverse model offline. The input features
of SVM models were all normalized in order to avoid the
dimension disaster. He and Wang et al. [11] developed an
online LS-SVM (modified algorithm of the standard SVM)
to construct an inverse model for pseudo-linear system. In lit-
erature [12], the BP neural network was employed to obtain
the inversion of the bearingless PMSM system.

The inverse system based on MLAs overcomes the defect
of analytical inverse system.However, it sets a higher demand
for the inverse models. An extended closed-loop controller
can be added to ensure the motor’s normal operation although
PMSM mathematical model of the analytical inverse sys-
tem is not quite accurate, while the inverse model based on
MLAs will probably affect its normal operation because of
under-fitting and over-fitting that are caused by unreasonable
training process of the model. Therefore, the generalization
ability of inverse model is the key to the success of inverse
system method.

SVR, an effective kernel-based algorithm for modeling
nonlinear system [13]–[15], can balance the fitting abil-
ity of training sample data and the generalization abil-
ity of inverse models. Compared with the empirical risk
minimization methods such as artificial neural network
and least squares algorithm, SVR modeling based on
the principle of structural risk minimization is not con-
strained by sample quantity and quality, thus avoiding local
minimization [16]–[18].

This article proposes a SVR inverse system method
for PMSM control based on kernel space feature. Firstly,
the influence of input features of inverse model on the
kernel space feature is analyzed and the values of feature
weights are given according to the mathematical model of
the original PMSM system. Then, two SVR inverse mod-
els are built to compose an inverse system. Finally, a new
pseudo-linear system built by cascading the inverse system
and the original system is combined with two extended
PID controllers to realize high-performance closed-loop
control.

The contribution of this article mainly includes two
aspects. Firstly, as a PMSM inversemodel is built by adopting
SVR algorithm, a reasonable kernel space is constructed and
the generalization ability of PMSM inverse model is also
improved. Secondly, two PMSM inverse system methods
based on mathematical model and on MLAs respectively

are combined. The mathematical model of analytical inverse
system provides important information for SVR modeling,
which makes the feature of target kernel space clearer. It is
of positive significance to use the model’s prior information
in SVR modeling for the transformation of kernel function
and the construction of kernel space.

This article is organized as follows: In Section 2 ‘‘Pre-
liminaries’’, analytical inverse system of PMSM and mod-
eling of nonlinear system using SVR are briefly described.
In Section 3 ‘‘Decoupling Control of PMSM with SVR
Inverse SystemMethod’’, the necessity of the feature weight-
ing of inverse model is analyzed in theory, and then the
realization of decoupling control of PMSM with feature
weighting SVR inverse systemmethod is introduced in detail.
Simulation results and discussion are shown in Section 4
‘‘Simulation and Experiment Results’’. In Section 5 ‘‘Con-
clusions’’, we come to a conclusion.

II. PRELIMINARIES
A. ANALYTIC INVERSE SYSTEM OF PMSM
PMSMs are classified into two typical types: surface-
mounted PMSM and interior PMSM [19]. This article takes
surface-mounted PMSM as the research object. The mathe-
matical model for the original PMSM system based on the
d − q axis can be expressed as

did
dt
=

1
L
ud −

R
L
id + iqωr

diq
dt
=

1
L
uq −

R
L
iq − idωr −

ψf

L
ωr

dωr
dt
=

3P2nψf
2J

iq −
PnTL
J

(1)

where ud and uq are the stator voltage of d-axis and q-axis
respectively, id and iq are the stator current of d-axis and
q-axis respectively. R is the stator resistance, L = Ld =
Lq in which Ld and Lq are the inductance of d-axis and
q-axis respectively, ωr is the rotor electrical speed, ψf is
the permanent magnet flux, Pn is the number of pole pairs,
J is the moment of inertia of the rotor, and TL is the load
torque.

The original system of this article is built based on FOC
in which the rotor electrical speed ωr and stator current
of d-axis id are decoupled. Therefore, u = [u1, u2]T =
[ud , uq]T and y = [y1, y2]T = [id , ωr ]T are chosen as the
input and output variables of the original system. According
to Eq.(1), id , iq and ωr are chosen as state variables x =
[x1, x2, x3]T = [id , iq, ωr ]T . Based on the theory of inverse
system and Interactor, output y1 and output y2 are differenti-
ated until the results obviously contain input u1 and input u2
respectively.

y′1 =
1
L
u1 −

R
L
x1 + x2x3

y′′2 =
3P2nϕf
2J

(
1
L
u2 −

R
L
x2 − x1x3 −

ψf

L
x3

) (2)
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FIGURE 1. Diagram of pseudo-linear system based on analytical inverse system.

The inverse system will be cascaded with the original
system. Therefore, the output of the inverse system is u =
[u1, u2]T = [ud , uq]T , which is the input of the original
system. y′1 and y′′2 are chosen as the input v = [v1, v2]T =
[y′1, y

′′

2]
T
= [i′d , ω

′′
r ]
T . Consequently, the analytical inverse

system derived from the mathematical model of PMSM can
be expressed asu1 = Lv1 + Rx1 − Lx2x3

u2 =
2JL
3p2nψf

v2 + Rx2 + Lx1x3 + ψf x3
(3)

Eq.(3) can be rewritten as
u1 = Lv1 + Rx1 −

2JLx3
3p2nψf

(
x ′3 +

pnTL
J

)
u2 =

2JL
3p2nψf

v2+
2JR
3p2nψf

(
x ′3+

pnTL
J

)
+Lx1x3+ψf x3

(4)

Eq.(4) is equivalent to Eq.(5).
ud = Li′d + Rid −

2JLωr
3p2nψf

(
ω′r +

pnTL
J

)
uq =

2JLω′′r
3p2nψf

+
2JRω′r
3p2nψf

+ ψf ωr + Lidωr +
2RTL
3pnψf

(5)

A new pseudo-linear system can be obtained by cascading
the analytical inverse system with the original system. It is
shown in Figure 1.

B. MODELING OF NONLINEAR SYSTEM BY USING SVR
The training dataset is given as T = {(xi, yi), i = 1, . . . l},
where xi ∈ Rn is the i-th input sample containing n features
and yi ∈ R is the output. The model function determined by
SVR method is expressed as follows:

f (x) =< w, φ (x) > +b (6)

wherew ∈ Rn is a weight vector of hyperplane,φ (x)maps the
samples of input features to a high-dimensional kernel space,
and b is a bias term.
The model function Eq.(6) can be further developed as

follows:

f (x) =
l∑
i=1

(
ᾱ∗i − ᾱi

)
K (xi, x)+ b̄ (7)

where K is the kernel matrix. K can be expressed as follows
when Gaussian kernel is selected.

K (xi, xj) = exp

(
−γ

(
n∑

k=1

(
xik − xjk

)2)) (8)

III. DECOUPLING CONTROL OF PMSM WITH SVR
INVERSE SYSTEM METHOD
A. MODELING OF INVERSE SYSTEM USING SVR
The training set of inverse model Ud is given as Td =
{(xdj , y

d
j ), j = 1, . . . l}, where xdj = [id (j) , i′d (j), ωr (j),

ω′r (j), TL (j)]
T is the j-th input sample containing five fea-

tures and ydj = ud (j) is the j-th output sample. The training
set of inverse model Uq is given as Tq = {(x

q
j , y

q
j ), j =

1, . . . l}, where xqj =
[
ωr (j) , ω′r (j) , ω

′′
r (j) , id (j) , TL (j)

]T
is the input sample containing five features and yqj = uq (j) is
the output sample. The training samples id , ωr ,TL , ud , uq are
sampled from the closed-loop control system of PMSMbased
on the analytical inversion, and i′d , ω

′
r , ω
′′
r are calculated by

using the five-point numerical differential method.
The inverse model Uq is used as an example to analyze the

influence of input features on kernel space feature as follows.
It won’t hurt to assume that TL = 0.

uq =
2JLω′′r
3p2nψf

+
2JRω′r
3p2nψf

+ ψf ωr + Lidωr (9)

Let’s assume R = 0.958�, L = Ld = Lq = 8.35 ×
10−4H, J = 8.35× 10−3kg ·m2,Pn = 4, ψf = 0.1827Wb,
Eq.(9) can be rewritten as

uq = (5.7129e - 7)ω′′r + (6.5545e - 04)ω′r + 0.1827ωr
+ (8.3500e - 04)idωr (10)

The similarity between xqi and xqj in kernel space can be
obtained by calculating the distance djk between the maps of
two samples in kernel space.

djk

=

∥∥∥φ (xqj )− φ (xqk )∥∥∥2
=

〈
φ
(
xqj
)
− φ

(
xqk
)
, φ
(
xqj
)
− φ

(
xqk
)〉

=

〈
φ
(
xqj
)
, φ
(
xqj
)〉
− 2

〈
φ
(
xqj
)
, φ
(
xqk
)〉
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+
〈
φ
(
xqk
)
, φ
(
xqk
)〉

= K
(
xqj , x

q
j

)
− 2K

(
xqj , x

q
k

)
+ K

(
xqk , x

q
k

)
= 2− 2 exp

(
−γ

∥∥∥xqj − xqk∥∥∥2)
= 2−2 exp

(
−γ

(
(ωr (j)−ωr (k))2+

(
ω′r (j)−ω

′
r (k)

)2
+
(
ω′′r (j)−ω

′′
r (k)

)2
+(id (j)−id (k))2

))
(11)

In steady operation condition, uq is mainly determined by
ωr because ω′r , ω

′′
r and id are all tend to zero. The approxi-

mations of uq and djk can be expressed as{
uq ≈ 0.1827ωr
djk ≈ 2− 2 exp

(
−γ (ωr (j)− ωr (k))2

) (12)

It can be seen from Eq.(12) that the rotor electrical speed
ωr has the greatest influence on the output of inverse model
Uq and the similarity of samples in kernel space.

In transient operation condition, the value of ω′′r may be
107 level, the value of ω′r may be 104 level, and the value of
ωr may be 103 level. According to Eq.(10), the coefficients
of input features ω′′r and ω

′
r are 5.7129e - 7 and 6.5545e - 04

respectively; the third item and fourth can be combined and
written as (0.1827+ (8.3500e - 04)id ) ωr , so the coefficient
of ωr can be approximately taken as 0.1827 and id has slight
effect on the output uq. For the similarity of samples in kernel
space, input feature ω′′r has the greatest influence on the
similarity of kernel space because of its great advantage in
magnitude. Therefore, the approximation of uq and djk in
transient operation conditions can be expressed as{
uq≈ (5.7129e - 7)ω′′r +(6.5545e- 04)ω

′
r+0.1827ωr

djk≈2− 2 exp
(
−γ

(
ω′′r (j)− ω

′′
r (k)

)2) (13)

It can be seen from Eq. (13) that the contribution of input
features to the construction of kernel space does not match
their contribution to output uq. Therefore, it is unreasonable
to use the raw data of input features to construct the kernel
space of inverse model. Similarly, feature normalization also
can not solve it.

Feature weighting can make the contribution of input fea-
tures to the construction of kernel space match their contri-
bution to the output.The conventional SVR model Eq.(6) can
be further developed to feature weighting SVR(FW-SVR) as
follows:

f (x) =
l∑
i=1

(
ᾱ∗i − ᾱi

)
K$ (xi, x)+ b̄ (14)

where K$ is the weighted kernel matrix and K$ can be
expressed as

K$ (xi, xj) = exp

(
−γ

(
n∑

k=1

(
$k

(
xik − xjk

))2)) (15)

where$k is the weight value of k-th input feature.

After the feature weights $ q
=
[
$

q
1 ,$

q
2 ,$

q
3 ,$

q
4

]T are
introduced into the calculation of kernel elements, djk can be
expressed as follows:

djk = 2−2 exp

−γ


(
$

q
1 (ωr (j)− ωr (k))

)2
+
(
$

q
2

(
ω′r (j)− ω′r (k)

))2
+
(
$

q
3

(
ω′′r (j)− ω′′r (k)

))2
+
(
$

q
4 (id (j)− id (k))

)2


(16)

The feature weights can be adjusted to a reasonable value
so that the influence of input features on sample similarity in
kernel space matches with that on output uq, which makes the
kernel space feature of SVR inverse model more reasonable.

Therefore, the inverse model Uq based on FW-SVR can be
expressed as

fq (x) =
l∑
j=1

(
ᾱ∗qj − ᾱqj

)
Kq$

(
xqj , x

)
+ bq (17)

Similarly, the inverse model Ud based on FW-SVR can be
expressed as

fd (x) =
l∑
j=1

(
ᾱ∗dj − ᾱdj

)
Kd$

(
xdj , x

)
+ bd (18)

According to the coefficients of each item in Eq.(4) and
considering the operation condition of PMSM, the value of
$ d and$ q are given as follows:

$ d
=
[
$ d

1 ,$
d
2 ,$

d
3 ,$

d
4 ,$

d
5

]T
=

[
R,L,−

2JLξ1
3p2nψf

,−
2JLξ2
3p2nψf

,−
2Lξ2
3pnψf

]T
$ q
=
[
$

q
1 ,$

q
2 ,$

q
3 ,$

q
4 ,$

q
5

]T
=

[
ψf ,

2JR
3p2nψf

,
2JL
3p2nψf

,Lξ3,
2R

3pnψf

]T (19)

where ξ1, ξ2 and ξ3 are empirical parameters which are spec-
ified on operation conditions of PMSM in analytical inverse
system.

B. CONTROL SYSTEM OF PMSM BASED ON FW-SVR
INVERSE SYSTEM METHOD
As the size of sample is limited, the training sample can not
contain all operation conditions and the PMSM parameters
will change under the influence of various factors. Therefore,
the open-loop pseudo-linear system by cascading the inverse
system with the original system can not achieve high perfor-
mance. In this article, PID controller is used to overcome the
disturbances from both internal and external. The diagram of
PID control system is shown in Figure 2.

C. STEPS OF INVERSE SYSTEM METHOD BASED
ON FW-SVR
1. Design a sampling system for training dataset. The
pseudo-linear system shown in Figure 1 is combined with
PID controller to form a closed-loop control system and the
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FIGURE 2. Control diagram of the PMSM based on FW-SVR inverse system method.

parameters of PID are adjusted to make the analytical inverse
control system run normally.

2. Obtain the training samples. id , ωr ,TL , ud , uq are sam-
pled and i′d , ω

′
r , ω
′′
r are calculated by five-point numerical

differentiation method to form training sets Td and Tq.
3. Select the optimal combination of feature weights,

which are based on operation conditions and PMSM
parameters.

4. Build a inverse system based on FW-SVR. Select
parameters (C, γ, ε) for model Ud and Uq and train two
FW-SVR inverse models by utilizing the obtained optimal
model parameters.

5.Design a control system. When the inverse system cas-
cades with the original system, the PMSM system is decou-
pled into two pseudo-linear subsystems. The control system
shown in Figure 2 is established.
6.Adjust the PID controller parameters in Figure 2 to real-

ize high-performance closed-loop control of PMSM.

IV. SIMULATION AND EXPERIMENT RESULTS
Comparative simulation between the proposed FW-SVR and
the traditional SVR is carried out to prove the feasibility of the
FW-SVR inverse system.Root mean square error (RMSE) is
employed to evaluate the feasibility of FW-SVR.

RMSE =

√√√√1
l

l∑
i=1

[ui − f (xi)]2 (20)

where ui is the output sample and f (xi) is its predicted value.
The smaller the value of RMSE, the better the generalization
ability of the model.

The datasets T1 and T2 generated under different excitation
signals are sampled for convenient comparision.The training
set of the two models are both composing of 501 samples
taken at equal intervals from T1. For modelUd and modelUq,

the training set is Td and Tq respectively.The input featureωr ,
ω′r , ω

′′
r ,id , i

′
d in Td and Tq is shown in Figure 3. The output

ud in Td and the output uq in Tq are shown in Figure 4.

A. KERNEL SPACE FEATURE
The kernel matrix can fully reflect the similarity between
samples in kernel space. The inverse model Uq is taken as
an example and the kernel parameter γ is set to 1 × 10−10

for convenient observation. The influence of input features
such as ω′′r , ω

′
r , ωr , id on kernel space similarity is shown

in Figure 5.
As can be seen from Figure 5, Figure 5(a) and Figure 5(b)

are the closest, indicating that the kernel space similarity is
mainly affected by input feature ω′′r unreasonably. First of all,
although the amplitude of input feature ω′′r is large, it doesn’t
contribute a lot to the output of the model. When working
on the output, ω′′r is multiplied by the coefficient 2JL/3p2nψf
which is a small value of 5.7129e-07 in this article. On the
contrary, although the amplitude of ωr is smaller than that of
ω′′r , its contribution is larger than that of ω

′′
r after it multiplies

the coefficient
(
ψf + Lid

)
= (0.1827+ (8.35e− 4) id ) ≈

0.1827. Therefore, kernel space feature represented by the
similarity of samples are unreasonable when the contribution
of input features to the output is not considered and raw data
or normalized data is used for model training.

B. GENERALIZATION ABILITY OF FW-SVR INVERSE
MODEL
There are two kinds of model test sets: one comes from the
same sample set as the training set does, and the other from
different sample set. For model Ud , the test sets are Sd1 from
T1 and Sd2 from T2. For model Uq, the test sets are Sq1 from
T1 and Sq2 from T2.

In this article, ξ1, ξ2 and ξ3 are set to 1e-4, 1e-3 and
1e-3 respectively when both the Eq. (4) and the operation
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FIGURE 3. The input features of sample set T1: id , i ′d , ωr and ω′r are the input features of inverse model Ud ; ωr , ω′r , ω′′r and id are the
input features of inverse model Uq.

conditions of analytical inverse system are taken into account.
The values of$ d and$ q are given as follows:{
$ d
= [0.958,8.35e-4,-0.0057, - 5.7129e-4, - 0.7617]T

$ q
= [0.1827, 6.5545e -4, 5.7129e -7, 0.835, 0.8739]T

(21)

The difference of the model generalization ability under
different feature weights is shown by an example about
modelUq to verify the necessity of feature weighting. Firstly,
the weight $ q

1 and weight $ q
4 of the first input feature ωr

and the fourth input feature id are selected to be analyzed.
Then,$ q

1 and$ q
4 are multiplied by the specified coefficients

212692 VOLUME 8, 2020



M. Xie, L. Xie: Decoupling Control of PMSM With SVR Inverse System Method

FIGURE 4. The output features of sample set T1: ud is the output feature of inverse model Ud ; uq is the output feature of inverse model Uq.

FIGURE 5. Five 2D heat-maps of kernel matrices: (a) kernel matrix generated by all five input features; (b) kernel matrix
generated by input feature ω′′r ; (c) kernel matrix generated by input feature ω′r ; (d) kernel matrix generated by input feature ωr ;
(e) kernel matrix generated by input feature id .

to form a new $ q for training the model. Finally, RMSE is
obtained after the model is tested with test set Sq2. The coeffi-
cients of $ q

1 are from set
{
2−9, 2−8, 2−7, · · ·, 27

}
and those

of $ q
4 are from set

{
2−10, 2−9, 2−8, · · ·, 210

}
.Therefore,

357 RMSEs for each possible combination of $ q
1 and $ q

4
are obtained. The model performance is shown as Figure 6
accordingly.

As can be seen from Figure 6, the generalization ability of
inversemodelUq is obviously affected by the feature weights.
For feature $ q

1 , the generalization ability is very poor when
its coefficient is less than 2−5 or greater than 25. For feature
$

q
4 , the generalization ability is very poorwhen its coefficient

is greater than 26 while RMSE does not increase significantly
when the coefficient gradually decreases to 2−10. The feature
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FIGURE 6. Model generalization ability of different weights combination
of $q

3 and $q
4 .

1 of model Uq is ωr which has an important contribution
to output according to Eq. 5. Therefore, the influence of
input features on the sample similarity in kernel space will
not match with that on output uq, which makes the kernel
space feature of inverse model Uq is not reasonable until
$

q
1 is adjusted to a reasonable value. Feature 4 is id which

corresponds to Lωr id of the fourth term of Uq. Even if ωr
is the maximum value in training sample, id has slight effect
on output. Therefore, RMSE does not increase greatly with
the decrease of the coefficient of $ q

4 . In addition, it can
be seen from Figure 6 that the selection range of fea-
ture weights is large, and the generalization ability of the
inverse model Uq can be guaranteed as long as it is within a
reasonable range.

The proposed FW-SVR is compared with feature normal-
ization SVR(FN-SVR) and raw dataset SVR(RD-SVR) to
observe the generalization difference of Ud and Uq.
Firstly, test sets Sd1 and Sq1 from the same sampling dataset

T1 as training sets Td and Tq are used to test Ud and Uq
models respectively. The predicted output of the models is
shown in Figure 7.

Then, training dataset and test dataset are taken from differ-
ent sample sets. For model Ud , training dataset is Td and test
dataset Sd2; for model Uq, training dataset Tq and test dataset
Sq2.The predicted output of the model is shown in Figure 8.
RMSEs of the test set Sd1, Sd2, Sq1 and Sq2 in Figure 7 and

Figure 8 are given in Table 1.
As can be seen from Table 1, the performance of FW-SVR

is the best; that of RD-SVR is the worst on all test sets; that of
FN-SVR is goodwhen the training set and test set are from the
same sampling dataset, but it becomes worse for test samples
from the new sampling dataset. For example, in Ud model,
RMSE is 0.0160 when test set is Sd1, but it is 1.5394 when
test set is Sd2. In Uq model, when the test set is Sq1 and Sq2,
RMSE is 0.1012 and 8.1999 respectively.

20 different test datasets are used to testUd andUq in order
to further verify the performance of FW-SVR and FN-SVRon
different test sets. The mean values and standard deviations
of RMSEs are given in Table 2.

TABLE 1. Performance comparison of SVR modeling of test set Sd1, Sd2,
Sq1 and Sq2.

TABLE 2. Performance comparison of SVR modeling for 20 different test
sets.

Finally, the Wilcoxon signed rank test [20] at the 0.05 sig-
nificance level is implemented to further explain the indica-
tions in Table 2. The test results are presented in Table 3.

TABLE 3. Wilcoxon signed rank test for the prediction results.

It can be seen from Table 2-3 that there is statistically
significant difference between FW-SVR and FN-SVR and the
performance of FW-SVR is better than that of FN-SVR inUd
and Uq test.

C. DECOUPLING CONTROL OF PMSM
In order to verify the effectiveness of the proposed FW-SVR
inverse systemmethod, analytical inverse systemmethod and
FN-SVR inverse method are compared with it.

As the analytical inverse method greatly depends on motor
parameters, two sets of parameters are used to test themethod.
One is the correct parameters which is completely consis-
tent with that in the original system, which can verify the
effectiveness of the inverse system theory in PMSM con-
trol; the other that is not completely consistent with the
parameters of the original system is used to observe the
influence of inaccurate parameter measurement or parame-
ter change during motor operation on control performance,
which can explain the necessity of using SVR algorithm that
is independent of parameters. The FW-SVR inverse system
method and FN-SVR inverse system method are based on
the structure of Figure 2. The initial reference speed is set
to 400 rpm, rising to 800 rpm at 0.3 s and decreasing to
600 rpm at 0.6 s.
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FIGURE 7. The predicted output for test set Td and Tq: (a) The ud predicted output for test set Sd1; (b) The uq
predicted output for test set Sq1.

FIGURE 8. The predicted output for test set Td and Tq: (a) The ud predicted output for test set Sd2; (b) The uq
predicted output for test set Sq2.

1) SIMULATION RESULTS
The parameters of the motor are R = 0.958�, L = Ld =
Lq = 8.35 × 10−4H, J = 8.35 × 10−3kg · m2,Pn = 4,

ψf = 0.1827Wb. The initial load is 5 Nm, increasing to
7 Nm at 0.8 s. The fast response of speed and the influence
of sudden change of load on speed stability are taken as the
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FIGURE 9. Simulated speed response of analytical inverse method: (a) the
parameters set R = 0.958� , L = 8.35× 10−4H, J = 8.35× 10−3kg ·m2,
Pn = 4 , ψf = 0.1827Wb in the analytical inverse system are completely
consistent with that in the original system; (b) the parameters in the
analytical inverse system are not completely consistent with that in the
original system. The motor parameters in the analytical inverse system
are R = 0.958� , L = 8.35× 10−4H, J = 8.35× 10−3kg ·m2, Pn = 4 and
ψf = 0.1827Wb; the parameters in the original system are R = 1.437� ,
L = 7.52× 10−4H, J = 8.35× 10−3kg ·m2, Pn = 4 and ψf = 0.1462Wb.

evaluation indexes of decoupling control performance. The
control performance is shown in Figure 9-11.
It can be seen from Figure 9-11 that FW-SVR inverse

system method proposed in this article achieves the best
control performance. As shown in Figure 9(a), when the
motor parameters are completely consistent with the actual
parameters, the analytical inverse system method achieves
the same control performance as the FW-SVR inverse system
method. However, in Figure 9(b), when motor parameters
used in analytical inverse system are different from the actual
ones, its performance is shown as follows: the overshoot is
78.5 rpm when the motor starts, it is 72.6 when the speed
increases from 400 rpm to 800 rpm and it is 35.6 when
the speed decreases from 800 rpm to 600 rpm; the speed
decreases from 600 rpm to 586.2 rpm when the load jumps
from 5Nm to 7 Nm and it returns to a steady state 0.06 second
later. In general, the inverse system method is feasible in

FIGURE 10. Simulated speed response of FN-SVR inverse method.

FIGURE 11. Simulated speed response of the proposed FW-SVR inverse
method.

FIGURE 12. Experiment platform.

PMSM control on condition that the inverse model is accurate
enough to ensure the decoupling control performance after
overcoming the dependence on parameters.

As shown in Figure 10, although FN-SVR does not rely on
motor parameters, its decoupling control performance is not
good because the model is not accurate enough. As shown

212696 VOLUME 8, 2020



M. Xie, L. Xie: Decoupling Control of PMSM With SVR Inverse System Method

FIGURE 13. Experiment results. (a) Speed response of analytical inverse
method: the parameters set R = 0.900�, J = 6.30× 10−4kg ·m2, L =
Ld = Lq = 6.25× 10−4H,Pn = 4, ψf = 0.01585Wb; (b) Speed response
of FN-SVR inverse method; (c) Speed response of the proposed FW-SVR
inverse method.

in Figure 11, the maximum overshoot is 11.5 rpm and the
motor speed only decreases 3.7 rpm when the load is dis-
turbed. As the FW-SVR inverse system method does not only
overcome the dependence onmotor parameters, but also build
an accurate inverse model by optimizing the kernel space
features, its decoupling control performance is the best.

2) EXPERIMENT RESULTS
The experiments which are based on YXSPACE-10 rapid
controller prototyping are performed for further verification.
The experiment platform is designed as Figure 12.

The parameters of the motor are R = 0.900�, L = Ld =
Lq = 6.25 × 10−4H , Pn = 4, J = 6.30 × 10−4kg · m2 and
ψf = 0.01585Wb. The load is 0.2Nm. The fast response
of the speed is taken as the evaluation indexes of control
performance. The control performance is shown in Figure 13.
It can be seen from Figure 13 that the speed response

of FW-SVR inverse system method proposed in this article
achieves the best performance. In Figure 13(a), the perfor-
mance of analytical inverse system method is shown as fol-
lows: the overshoot is 86.4 rpm when the motor starts, it is
74.2 when the speed increases from 400 rpm to 800 rpm and
it is 43.9 when the speed decreases from 800 rpm to 600 rpm.
As shown in Figure 13(b), the performance of FN-SVR
inverse system method is similar to that of analytical inverse
system method. As shown in Figure 13(c), the maximum
overshoot is 27.5 rpm.

V. CONCLUSION
In this article, a novel FW-SVR inverse system method is
proposed for decoupling control of PMSM. The contribu-
tion of input features to the construction of kernel space
is estimated based on the mathematical model of analytical
inverse system. Therefore, the feature weights of FW-SVR
can be adjusted to a reasonable value which makes the kernel
space feature of SVR inverse model more reasonable.The
comparative simulation and experiment results demonstrate
that: (1) The generalization ability of SVR inverse model
is obviously affected by the feature weights while it can
be improved by FW-SVR; (2) The FW-SVR inverse system
method is feasible in decoupling control of PMSM because it
does not only overcome the dependence onmotor parameters,
but also build an accurate inverse model.
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