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ABSTRACT Applying the automation in covering the areas entirely eases manual jobs in various domestic
fields such as site investigation, search, rescue, security, cleaning, and maintenance. A self-reconfigurable
robot with adjustable dimensions is a viable answer to improve the coverage percentage for predefined map
areas. However, the shape-shifting of this robot class also adds to the complexity of locomotion components
and the need for an optimal complete coverage strategy for this new type of robot. The typical complete
coverage route, including the least times of shape-shifting, the shortest navigation route, and the minimum
travel time, is presented in the article. By splitting themap into the sub-areas similar to the self-reconfigurable
robot’s available shapes, the robot can design the ideal tileset and optimal navigation strategies to cover the
workspace. To this end, we propose a Complete Tileset Energy-Aware Coverage Path Planning (CTPP)
framework for a tiling self-reconfigurable robot named hRombo with four rhombus-shaped modules. The
robot can reconfigure its base structure into seven distinct forms by activating the servo motors to drive the
three robot hinges connecting robot modules. The problem of optimal path planning assisting the proposed
hRombo robot to clear optimally all predefined tiles within the arbitrary workspace is considered a classic
Travel Salesman Problem (TSP), and this TSP is solved by the reinforcement learning (RL) approach. The
RL’s reward function and action space are based on robot kinematic and the required energies, including
transformation, translation, and orientation actions, tomove the robot inside theworkspace. The CTPP for the
hRombo robot is validated with conventional complete coverage methods in simulation and real workspace
conditions. The results showed that the CTPP is suitable for producing Pareto plans that enable robots to
navigate from source to target in different workspaces with the least consumed energy and time among
considered methods.

INDEX TERMS Reconfigurable robot, tiling robotic, reinforcement learning, complete coverage planning,
energy path planning.

I. INTRODUCTION
Autonomous systems have been developing for both home
and industrial appliances as their consumer demandwitnesses
a huge increase during recent years. The routine cleaning and
maintenance duties consume significant time and effort by

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

manual operators. Tiling technology plays significant role
in automation approach in various areas, including clean-
ing [1], maintenance [2], construction [3], [4] inspection in
both indoor and outdoor spaces [5], [6]. The tiling robots
are available in different forms in the market, such as oval,
square, symmetrical shapes, and asymmetrical shapes, but
their fixed morphological form constrains each of them prac-
tically. Reconfigured tiling robots [7]–[9] can cover more
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segments of any workspace that contrasts with a fixed mor-
phological robot. This is due to their ability to change their
form, which can be achieved staggeringly by tiling robots.
In general, the ability to transform into different shapes allows
them to select forms that suit their current inclusion needs.
One such robot to clean up the predefined workspace is the
polyform based reconfigurable robots, including hTetro [9]
hTrihex [10], hTetrakix [11]. Robots can transform into
seven diverse tetromino shapes using four squares with dif-
ferential drive locomotion mechanism. This gives the robot
stage the ability to move in tricky situations and around
obstacles.

However, the need for thoughtful researches such as path
planning for a reconfigurable robot is rapidly arousing. Typi-
cally, conventional path planning focus on finding the feasible
solution in consideration of the shortest distance to navigate
the fixed form robot from source to destination. Besides,
the complete coverage path planning methods are also mostly
proposed for conventional fixed robots and extend the idea of
traditional path planning. The works of [12], [13] use sensor
fusion and peception network to enhance the complete are
coverage task in the sense of human robot interaction. In the
tiling robot cases, the complete coverage while avoiding the
obstacle needs to be considered. The fundamental problem of
reconfigured tiling robots is to create the optimal set from the
available shapes and navigation strategies to cover the entire
area. This includes arranging adequate and fully encompass-
ing territory coverage while maintaining a strategic distance
from any existing obstacles.

Specifically, the hRombo self-reconfigurable tiling robot
proposed in this article with the shape-shifting to seven
shapes provides the possible idea to tile the pre-setup rombo
based area. Because of the complexity of shape-shifting
robots, smooth locomotion among available configurations is
challenging, and complete coverage with multiple configura-
tions is evenmore challenging and interesting. Sine the recon-
figurable robot has a number of degree of freedoms and the
additional constraints due to the base footprint size, the con-
ventional complete coverage approaches no longer appropri-
ate to derive the idea solutions. Therefore, robust or revised
complete coverage approaches need to be implemented for
the proposed reconfigurable robots considering the possible
morphologies and the available locomotion.

Conventional complete coverage path planning techniques
can be comprehensively aggregated depending on the decom-
position techniques used to simplify the workspace [14].
A decomposition technique involves splitting the prede-
fined map into smaller partitions, likewise referring to
submap or cellular. The exemplary technique consists of
isolating space with basic fixed shapes such as grid=based
motiong planning [15] and infinite morphologies [16]. Other
techniques can slip the map equally based on each sub-region
complexity, such as the isolated method used in Morse [17]
work. A number of different methods combine the use of
graph theory [18], and high-order observers-based LQ con-
trol scheme [19]. The other common and popular methods

are the standard grid-based probability assignment proposed
by Moravec and Elfes [20] and Choset [21]. This method
gives each considered cell the probability scheme to indicate
how the obstacle occupies this cell. The higher the proba-
bility value, the higher change the exiting of obstacles in
the considered cell. Several calculations can be used to seg-
ment a situation using matrix technology, combining vitality
mindfulness calculations, neural network-based system [22],
across trees [23], and energy based optimization [24]. The
use of lattice-based attenuation drastically reduces the mul-
tifaceted nature required until the computation is decided.
However, these map simplifying methods are applied for
fixed morphological robots.

The usual technique for tiling robot-based complete cover-
age inside the grid-basedmap consists of two phases. Initially,
a tile showing the shapes needed to occupy space was created
using the polyomino [25] hypothesis with some lemmas.
After that, the tiling robot will move to each defined tile
location within the selected cell and change its morphol-
ogy to an appropriate form. This method can ensure that
the workspaces can be paved entirely with a tiling robot.
A preeminent method demonstrates how to sort this problem
using the cells produced as Travelsaleman Problem (TSP).
This derives the lowest cost (generally proficient) under the
guise of all reference points to ensure the greatest inclu-
sion. Resolving this TSP is an impractical NP-hard prob-
lem in a specified time. The conventional method can apply
the evolutionary-based optimization such as genetic algo-
rithm [26] and ant colony optimization [27] to derive the
solution for this TSP in a reasonable time. As such, these
methods depend on the tiling hypothesis, which is firmly
bound by destinations and cannot be adjusted to any self-
assertion condition. Besides, improving the evolutionary-
based TSP arrangement requires many computational cycles
to distinguish an ideal solution and can be adversely affected
by local minimums during optimization.

RL has been applied in various fields to get the opti-
mal solution automatically. Changxi et al. [28] has pro-
posed using learning aids to guide self-sufficiency facilities.
Kenzo et al. [29] used DDPG-assisted learning calculations
to design the motion of bipedal robots in football coordinates.
Farad et al. [30] has created a way to master proficiency in
difficult conditions through the Enterunder Pundit Fortress
learning model. A model prepared using Q-Find a way to
produce the route from point A to point B in a grid-based
partitioned map has been proposed in Aleksandr et al. [31],
Amit et al. [32] and Soong et al. [33]. David et.al. extends
this method to multiple robot agents [34]. Yuan et al. [35]
used the RNN GRU system to directly design an optimal
path from source to the goal while avoiding obstacles in
frame-based conditions. Lakshmanan et al. [36] discussed
using Q-Learning to arrange modern tilling robotics. In all
cases, these works focus on the overage-oriented demarca-
tion of guidelines from the source to destination and do not
directly propose a complete coverage situation of reconfig-
urable tiling robots.
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This article proposes a CTPP deep learning model using an
RL technique for the hRombo, which can determine the opti-
mal energy-aware navigation solution. The proposed com-
plete path planning framework consists of the three phases
for considered reconfigurable tiling hRomborobot. Basing on
the kinematic design of the proposed robot platform, RL’s
reward function evaluates the cost of navigation based on
individual transformation, translation, and orientation actions
of the robot. The outcome of proposed trained RL mod-
els creates effective navigation strategies by limiting the
number of form changes while amplifying solitary shapes
in the considered workspace. This model is also flexible
with challenging conditions of obstacle settings. There are
threefold as the contributions of this article: (1) We pro-
posed a complete tileset coverage CTPP approach developed
for rhombus shape-based reconfigurable tiling robots.(2) We
build the RL reward function based on the Travel Salesman
Problem, which depends on the platform’s real actions within
any defined workspace.(3) CTPP is proposed to be tested
on a real robot platform and proves energy and travel time
effectiveness.

The article is composed as follows. HRombo’s design is
presented in Part 2. The proposed robot description on the
cross-sectional workspace is divided into each item in part 3.
In part 4, the CTPP technique is proposed with the hRombo
robot representation, according to the tiling theory. The pro-
posed system’s optimal CTPP is approved in Section 5. The
final section, along with potential future work, is investigated
in the Final Section VII

II. THE HROMBO ROBOT DESCRIPTION
The hRombo platform has four rhombus-shaped blocks
linked by three hinges, as shown in Fig. 1. The hinge is
a planar revolute joint. Upon rotation of the blocks about
the hinges, the platform is capable of forming seven forms,
as shown in Fig. 2. The sidewalls of the platform are modular
and fabricated with 3D printing using PLAmaterial. The base
of each block is an acrylic sheet which is manufactured using
a laser cutting machine. Each hinge is an active joint, driven
by a Herkulex servo motor. The platform follows the four-
wheel independent steering drive principle for locomotion.
Each block has a separate locomotion unit, as in Fig. 1. The
servo motor can change each wheel’s heading angle within 0
to 2π rad around the center shaft. Figure 3 describes the
electronic block diagram of the hRombo platform. Each loco-
motion unit of the platform consists of a standard steerable
wheel connected to a geared DC motor with a gear ratio
of 250:1, voltage rating of 7.4V, operation torque of 1.37 Nm,
and an operation speed 60 rpm and an attached Herkulex
servo motor also steers each wheel. A 14.4v Lion battery with
proper regulators is themain power unit. The platformweighs
approximately 2.5 Kg.

For mapping and indoor localization, an Ultra Wide Band
UWB infrastructure is used. This system provides real-time
two-dimensional data (x,y) about the global position during
the platform’s navigation. Each wheel is connected to a wheel

FIGURE 1. hRombo platform showing the electronic components.

FIGURE 2. Different forms of the hRombo platform.

FIGURE 3. Electronic layout of hRombo.

encoder that provides the platform’s position in the robot
frame (local location) after starting navigation. An inertial
measuring unit (IMU) is used to monitor the heading angle.
The x, y positions from UWB, wheel encoders, and heading
data from the IMU are fused by extended Kalman Filter to
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FIGURE 4. Representation of hRombo with shapeshifting within a workspace.

overcome the noise then get a reliable robot location. The
robot operating system (ROS) is the main communication
infrastructure of the proposed platform. The main processing
unit is ComputeStick V5 from Intel, generating the trajectory
and transmitting commands of desired form, desired travel
distance, and heading to the wheel and the servomotors. The
motion controller monitors the steering angle of the wheel
and hinged joint during navigation, depending upon the head-
ing angle and the form. The controller synchronizes all the
four motors during locomotion.

III. REPRESENTATION OF HROMBO PLATFORM IN THE
RHOMBUS-BASED WORKING ENVIRONMENT
The pre-built working environment is divided into regulated
rhombus-based-grids the same as robot block shape. The
robot inside this workspace is defined as four-dimensional
waypoint W (x, y,T , ϕh) consisting of the center of grav-
ity (COG) of each robot x, y, tile name T among robot
shapes, and heading of robot ϕh. Modules and COGs for
hRombo forms are shown in Figure 4. Considering this figure,
the operation of deriving the robot from the I form to the D
form then to the L form around the active hinges ID edge
of h1, h2, h3 is accomplished by the required angle rotations
of robot blocks. The hRombo location of block b denoted
as {xwb , y

w
b , ϕ

w
b }, where b is within four modules of hRombo

(b ∈ {B1,B2,B3,B4}) can be derived from robot location
and shape inside the workspace. The mass of each module
is assigned among m1,m2,m3,m4. Given robot form within
seven available from, the four-block location base on the
robot heading within the workspace is shown in Figure 5.

Basing on these descriptions, the corresponding robot
actions such as transformation, translation, and orienta-
tion can be modelled mathematically to move the robot’s
shape between any points within the workplace. Specifically,
the robot’s route direction to visit all reference points is
partitioned into different sets of two reference points. For
routing all the n waypoint, the route’s pair is characterized
as p(W s

k ,W
g
k ), where k represents the pair order and s is the

source reference point and g is a destination point of pair

FIGURE 5. hRombo block location respecting to heading.

number k . The reference point will have k = 1 and the last
waypoint will have k = n − 1. For a trajacory including n
points, the set of n− 1 linking pairs of two points is formed,
and the possible pairs is � = n(n− 1))/2.

IV. ENERGY-AWARE COMPLETE AREA COVERAGE
FRAMEWORK FOR HROMBO ROBOT
A. RHOMBUS TILE-BASED COMPLETE AREA
COVERAGE PLANNING
The hRombo platform follows tiling based path planning
during floor cleaning. Due to the complex and irregular
shape of the platform, as shown in Figure 6, we propose
isohedral based tiling theory. In isohedral tiling, a single
form of hRombo is fitted to itself repeatedly in a number of
same or different orientations. This tiling method is of two
types, i.e., (a) Firstly, the tiled workspace consists of only one
form in the same orientation connected with translation sym-
metry. (b) secondly, the tiled workspace consists of a number
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FIGURE 6. Rhombus based-tilsets to cover the workspace.

of different rotated or reflected forms connected together. The
hRombo platform tiles the pre-described environment with
any of its seven forms. The rhombus-based tilesets with the
robot forms are sampled as Figure 6. The isohedral tiling
concept of the hRombo platform is described in qualitative
forms, as described below.

A tetra rhombo of ‘I’and ‘D’ forms can be arrangedwithout
any rotation and tiled to form a closed (no internal void))
and regular workspace with smooth boundary, as shown in
Figure 6(a) and (b).

A tetra rhombo of ‘Z’ and ‘S’ forms can be arranged
without any rotation and tiled to form a closed (no internal
void) and regular workspace with a rough boundary, as shown
in Figure 6(c) and (d).

A tetra rhombo of ‘L’ form with in-pivot rotations can be
tiled to form various workspace, as shown in Figure 6(e)-(h).

• When the ‘L’ form is combined with another ‘L’ form
with 180-degree rotation, it can form both closed and
open workspace with a smooth boundary, as shown
in Figure 6(e)-(f).

• When the ‘L’ form is combined with another ‘L’ form
with 180-degree rotation, it can form a closed workspace
with a rough boundary, as shown Figure 6(g)-(h).

A tetra rhombo of ‘J’ form can be tiled to another ‘J’ form
with 180-degree rotation to form a closed workspace with a
rough boundary, as shown in Figure 6(i).

B. OPTIMAL COMPLETE RHOMBUS-BASED
TILESET COVERAGE
The block diagram of the CTPP framework, as in Figure 7,
combines three stages: workspace preparation, planning,
and platform execution. To find the tileset after defining
the shapes and workspace dimension, The rollback calcu-
lation [37] is applied. Specifically, an arbitrary shape is
placed randomly inside the predefined workspace. If the
rollback circles cannot arrange the following cells, the past
cell’s different possibilities will be tried. The process is cir-
cled until the robot shapes completely fill the predefined
workspace. In order to complete the navigation inside the
workspace, The hRombo platform tiles the workspace by
loading the planned tilesets from consecutive predefined ref-
erence points, as described in Figure 8. Then hRombo per-
forms three separate required actions, including changing the
structure into an ideal target point called waypoint, doing
linear moving directly from the COM of the reference source

FIGURE 7. CTPP framework for hRombo robot.

FIGURE 8. Three opeations of hRombo when navigate from source W s
k to

goal W d
k .

waypoint W s to the COM of the reference destination point
W d , and doing the heading correction to compensate the
heading offset between robot current heading and desired
heading at the destination. For a detailed definition of each
action, Rotation θk of each robot module to change between
the seven potential shapes is shown in Table 1. The required
tuning magnitudes in radial of each robot block between
source and target shapes can be lm =

∑
(l1 + l2) where l1

equals to the length from hinge to block COM and l2 equals
to the length from hinge to the next block COM. These values
are presented in Table 2. The required orientation correction
of the robot title is defined by the offset between the robot
heading at the goal waypoint ϕgh and the source waypoint ϕ

s
h.

Given the predefined map, as depicted in Figure 8, the robot
stores the required orders into a robot database to perform
three actions sequentially to fulfill the CTPP.

V. RL BASED CTPP
A. ENERGY BASED REWARD FUNCTION
The sequence of actions among shape-shifting, linear move-
ment, and heading correction while clearing the waypoint is
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TABLE 1. Rotation Angle θk of Robot Blocks When Shapeshifting.

TABLE 2. Tuning Modul of Robot Blocks When Shapeshfiing.

shown in Figure 8. The required energies to accomplish these
actions are calculated by multiplying the actuators rotation
distance, including servo motors at the hinges and DCmotors
at the locomotion units with the corresponding robot module
mass. The energies for linear movement, shapeshifting, and
heading correction are described in Equations (1), (2), and
(3), respectively. The costweight as shown in eqnarray (4)
is the summation of all component energies to carry the
platform mass within the required distance between pair k
of source waypoint W s

k (x, y,T , ϕh) and the goal waypoint
W g
k (x, y,T , ϕh).

Etranl(W s
k ,W

g
k ) =

B4∑
b=B1

mb
√
(xgb − x

s
b)

2 + (ygb − y
s
b)

2 (1)

Etranf (W s
k ,W

g
k ) =

B4∑
b=B1

mbθblm (2)

Eori(W s
k ,W

g
k ) =

B4∑
b=B1

mb|ϕ
g
h − ϕ

s
h|lm (3)

E(W s
k ,W

g
k ) = Etranl(W s

k ,W
g
k )+ Etranf (W

s
k ,W

g
k )

+Eori(W s
k ,W

g
k ) (4)

We derived the cost function based on the robot kinematic
design and the operation within the rombo tileset gener-
ated by the tiling theory. Note that the cost function of the
paper [38] used the 2D Euclidean Distance between two
locations inside the workspace. Specifically, given an input

tileset as the state space of the RL framework, we find the
waypoints permutation, i.e., a trajectory π , that visits each
waypoint once (except the starting waypoint) and has the
minimum total energy. We propose the cost of a trajectory
noted by a permutation π as:

L(π |S) = E(W s
n ,W

g
1 )+

n−1∑
k=1

E(W s
k ,W

g
k ), (5)

where input state tileset consists of nwaypoints S = {Wk}
n
k=1

and each Wk store locations and robot shape in the defined
workspace. The energy cost function in Equation 5 is used as
our total expected return R(π |S) = L(π |S) (which we seek to
minimize). In the case of TSP, we are dealing with an episodic
task, where the termination of episode depends on the number
of waypoints in the input state tileset. Discount rate has been
set to one tomake the return objective takes the future rewards
into account more strongly.

The algorithm depends on waypoint locations provided
by the localization system of hRombo to yield an optimal
navigation trajectory. The robot clears the workspace with
the objective function of minimizing the overall trajectory
energy-cost as the non-deterministic polynomial-time hard-
ness problem of TSP. To handle the complexity of TSP
with a large number of points, a non-deterministic approach
has been proposed to derive the Pareto-optima solution.
In this work, we solve the four blocks of rhombus-based
tileset sequencing by using the neural networks with RL.
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FIGURE 9. RL complete path planning for hRombo tiling robot.

A customized recurrent neural network that takes a set of
robot locations as the predefined tileset waypoints is uti-
lized to predict a distribution over various waypoint permu-
tations. By defining energy-aware based reward function as
Equation 5, the parameters of the recurrent neural network
are optimized by the RL approach. The intelligent heuristics
(or distribution over waypoint permutations) for the classic
TSP can be achieved by training Neural Networks using RL
with less engineering and no labeling efforts.

B. NEURAL NETWORK ARCHITECTURE FOR TSP
The RL network following the actor-critic architecture [39] to
learn optimal heuristic TSP trajectories (or distribution over
waypoint permutations) is shown in Figure 9.
Following [38], our proposed neural network architecture

also applies the chain rule technique to factorize the proba-
bility of trajectory π in Equation 5 as:

p(π |S) =
n∏

k=1

p(π (k) | π (< k), S), (6)

Furthermore, each component on the right side of
Equation (6) is processed consecutively by the softmax mod-
ules. Similar to [38], we use a method called pointer net-
work [40] as our actor policy model, which consists of
two recurrent neural network (RNN) modules, encoders, and
decoders, each includes Long Short Term Memory (LSTM)
cells [41]. The input states with the order of one waypoint at a
time is examined by the encoder network. This network con-
verts it into a series of latent memory states {enck}nk=1 where
enck ∈ Rd . The input to the encoder network at timestep k is
a d-dimensional embedding of 4D waypoints Wk , obtained
via a linear transformation of Wk , shared across all input
steps. The decoder network is also in charge of maintaining
its Latent memory states {deck}nk=1 where deck ∈ Rd , and
utilizes the pointing mechanism to generate a distribution
over the upcoming waypoints (or chooses the discrete actions
one step at a time) to yield the optimal trajectory length.
Once the subsequent waypoint is determined, it is sent as
an input to the next decoding step. For the choice of action
space, since we are using the pointer network with a softmax
output layer, the network predicts a probability distribution,
utilizing the discrete set of actions, which points back to the
input state sequence. The first decoding step input, (denoted
by 〈x〉 in Figure 10) which is reproduced from [40] is a
d-dimensional vector interpreted as a trainable parameter of
our neural network.

FIGURE 10. A pointer network architecture introduced by [40] .

C. OPTIMIZATION WITH RL
Solving NP-hard problems such as TSP and its variations by
supervised learning is undesirable since the model accuracy
depends on supervised labels of the dataset, and getting them
is the burden works and infeasible. On the contrary, RL offers
a proper and feasible paradigm for training neural networks,
where an RL agent explores different trajectories and charac-
terize the corresponding rewards. Hence, we propose using
the Proximal Policy Optimization (PPO) algorithm [42], a
new family of policy gradient methods for RL, to optimize
our pointer network parameters. PPO performs comparably
in small size TSP or better in larger size TSP than state
of the art approaches like TRPO [43], DDPG [44] , while
being much simpler to implement and tune. . The algorithm
actively builds on Trust Region Policy Optimization (TRPO)
and applies the critical concepts of TRPO like importance
sampling, which improves the sample efficiency, as well as
an alternative and simple method called Clipped Surrogate
Objective function for stabilizing updates during the opti-
mization step.

By utilizing the reward function described in Equation 5
as the training objective, i.e., given an tileset S, the expected
trajectory length as Equation 7, we optimize the parameters
θ of the policy pointer network.

J (θ |S) = Eπ∼pθ (.|S)R(π |S) (7)

Then we formulate the policy gradient of the objective by
utilizing the PPO’s clipped surrogate function as Equation 8,
which controls stable updates during the optimization step.

∇θJCLIP(θ |S) = Êπ∼pθ (.|S)
[
min

(
Ât∇θ rt (θ ),

Ât∇θclip(rt (θ ), 1− ε, 1+ ε)
)]

(8)

where the expectation Êt [· · · ] denotes the empirical average
over a finite batch of samples, rt (θ ) =

πθ (At |St )
πθold (At |St )

denotes
the probability ratio between current policy πθ and old policy
πθold , Ât = R(π |S) − B(S) is an estimator of the advantage
function at timestep t , whereB(S) being the baseline indepen-
dence on the policy π and estimates the expected trajectory
length to reduce the variance of the gradients. Epsilon is a
hyperparameter, say, ε = 0.2 and the probability ratio rt (θ )
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FIGURE 11. Flowchart of autonomous area coverage by hRombo.

is clipped between interval [1− ε, 1+ ε], by increasing rt (θ )
at most 20% no matter how good the new policy is.

The proposed baseline B(S), which is the estimated tra-
jectory length value, is obtained from an auxiliary network,
called a critic and parameterized by θv. The critic network is a
many-to-one RNN architecture with LSTMs, where the value
estimate or the baseline is predicted based on the final state
input. The critic network parameters θv are trained in batches
B using the stochastic gradient descent on a mean squared
error objective between its predictions B(S) and the reward
trajectory length R(π |S):

J (θv) =
1
B

B∑
i=1

(B(Sk )− R(πk |Sk ))2 (9)

D. AUTONOMOUS CTPP IMPLEMENTATION BY HROMBO
After CTPP got the required reference points and shapes,
the autonomous navigation is triggered to let the hRombo
began to cover the entire workspace, as shown in Figure 11.
The autonomous framework relies on the open-source Robot
Operating System [45]. During the programmed development
process, the robot will continuously promote its current plan
by focusing on reference-based on perception found by Ultra
Wide Band sensor localization to acknowledge whether the
waypoint has been visited and trigger the following required
plan toward the next moves among transformation, orien-
tation, and translation in order to clear all the waypoint
sequentially.

If an abnormality between the current hRombo structure
is found in the k pair at source reference point W s

k and the
associated structure at target pointW g

k in the direction, it will
provide the request for the microcontroller in the robot to
fulfill its structural movement request by command the servo
motor turning to the predefined point. The current region of
the robot xwh , y

w
h is continuously being observed to determine

if the distinction between the robot region and thewanted area
is a lower defined value. As the condition is verified, the robot
takes the route to the associated improvement point. A similar
procedure is performed for the following reference point until
all actions stored in the robot database are cleared.

VI. EXPERIMENTAL RESULTS
In this section, after presenting the result and analysis of RL
training, simulated workspaces and real environment setups
are used to validate the outperformance of the proposed

FIGURE 12. Worksapces with corresponding the trajectories by RL
method. (a) 6 × 6; (b) 12 × 12; (c) random; (d) obstacles.

tiling-based complete coverage path planning framework for
the hRombo robot in terms of saving navigation energy travel
time.

A. RESULTS AND ANALYSIS OF RL TRAINING
We verified the performance of generated trajectories derived
by different CTPP algorithms in simulated workspaces with
rhombus-based tileset setups. Simulations of the rhombus
grid-based workspace with various layout setups are gen-
erated by the Matlab Simulink. The grid cell is the same
size as a hRombo block, as shown in Figure 12. Each four
rhombus cells corresponding to the robot form are set with
different colors to denote the robot shape identically inside
the defined workspace. The cells corresponding with obstacle
regions are placed randomly and colored as black with the
value of -1. The backtracking algorithm loop over the entire
workspace to generate the set of random tiles and cover the
whole workspace. The optimal trajectories are plotted inside
each workspace and denoted as brown arrows linking tiles in
order. To demonstrate the novelty of hRombo shape-shifting,
the complex workspaces such as Figure 12 (c) and (d) are
generated so that only fixed robot form such as D or I shape
will fail to cover completely without overlapped cells.

We used TensorflowRL software (with pointer network for
TSP) and changed REINFORCE loss to PPO. The zigzag,
spiral, greedy search, genetic algorithm, and ant colony opti-
mization are coded using python3 in the ubuntu version.
All experiments run on computing nodes with the following
specs: Intel Core i7-9750H processor and 16GB Memory
with GPU Nvidia Quadro P620. We have experimented with
1000 graphs of 20,50 and 100-waypoint instances of TSP. The
mini-batch is set to 256 sequences with length n = 10, n =
20 and n = 50. The reward function considers the analysis
energy usage during hRombo navigation within simulated
workspace as Equation 5 are derived at each iteration step.
The coefficient α = 0.3 is selected based on the experimental
trials. We use Adam optimizer [46] with an initial learning
rate of 1e-3 to minimize the cross-entropy loss over each
mini-batch.
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TABLE 3. Numerical Costweight and Trajectory Generation Time
Comparisons.

FIGURE 13. Generated trajectories by different tested methods.
(a) Zigzag; (b) Spiral; (c) Greedy search; (d) GA; (e) ACO; (f) Proposed RL
TSP-based metho.

The conventional TSP approaches that include zigzag,
spiral, greedy search, genetic algorithm, and ant colony opti-
mization are used to generate the trajectories cost-weights for
each workspace to compare with the corresponding results
of RL based proposed method. Figure 12 presents visualiza-
tion for trajectory outputs of RL based method for differ-
ent workspaces and tileset setups. The Figure 13 shows the
comparison trajectories of all tested methods for workshops
with obstacles of Figure 12 and the table 3 is numerical data
for costweights trajectory generation time. Note that the cost
function of RL as Equation 5 is also used during optimization
processes of RL, evolutionary-based optimization Genetic
Algorithm (GA) [8] and Ant Colony Optimization (ACO) [4]

From the data in Table 3. All the tried-out techniques have
comparable Euclidean length. As similar to [38] for small
TSP, the solutions of the RL-TSP framework reached to the
optimal cost weight for all tested workspaces. The differ-
ence between RL-TSP and evolutionary-based optimization
GA and ACO also varies very slightly with relatively small
numbers of waypoints. Although the fastest time is achieved,
the simple zigzag and spiral techniques linking the pair by
straight lines and outer-wise order produce weights slightly
higher than the Greedy search. The running time and cost-
weight of the greedy search are extremely higher than in GA
and ACO strategies. Nevertheless, the RL-based approach
archives both outperform in numerical values of costweight
and generation time. The costweight of the RL-basemethod is
slightly about 5% less than the second-best method as ACO.

FIGURE 14. Real workspace setup with 29 waypoints similar as
Figure 12d. (a) hRombo at waypoint 1; (b) hRombo at waypoint 3;
(c) hRombo at waypoint 12; (d) hRombo at waypoint 9, (e) hRombo at
waypoint 28, (f) hRombo at waypoint 29.

Considering the technique based on RL, two reference
points with similar morphology and less directional mod-
ification are chosen to pair within the found trajectory as
in Figure 13f. Optimization for similar tile heading during
path generation, RL frequently offers a higher priority to
select the following waypoint with the cell of less directional
adjustment. For example, with the same with Z shapes, from
the tile 14, CTPP routes to the tile 10 instead of the tile 12
to be the next tile since there is no heading correction in
rad is required. Besides, the RL optimization-based CTPP
framework chooses the following tile that remains unchanged
in shape or with fewermodules among fourmodules that need
to rotate to shift the robot form to the next waypoint. For
instance, from the tile 7 of I shape, it selects the tile 17 of the
same I shape, even though the tiles 5, 11, 16 have the shorter
Euclidean distance. Moreover, from the tile 17, the proposed
RL select the tile 16 of L shape, which requires only on
module rotation of pi rad around hinge h3 with amagnitude of
l1 rather than tile 26 of D shape, which requires two modules
do a rotation of same π rad around hinge h2 and h3 (making
the total 2π required rotation angle) with the magnitude of l1
and l2, respectively. As a result of reducing change steps and
directions when moving away from the reference points with
a predefined workspace, the minimum weight can be found
by CTPP.

B. REAL ENVIRONMENT TESTBED
In real environment setup, the energy and travel time spent to
complete the generated routes according to the instructions
found in the planned database are estimated during robot
navigation. Descriptions of the complete area coverage routes
for the workspace (Figure 12d) is shown in Figure 14. The
robot is set to autonomous mode and navigate sequentially to
fit its COM to each defined waypoint, combining its desired
location and shape. Their navigation includes the sequence of
action among transformation, heading correction, and linear
movement planned in an organized manner. Robot naviga-
tion works under the communication mechanism of the ROS
network. The movement order by the proportional integral
derivative( PID) controller [47] is loaded to the motor drivers
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TABLE 4. Numerical Comparison for Consumed Energy and Travel Time in Real Testbed Workspace.

to provide the proper linear speed for the DC motor and the
rotation of the servo motor at the robot axes to change the
robot forms. After the direction has been specified, the servo
motor drives the steering units to this direction, then the bear-
ings of the same parts as the DC motor are activated to con-
duct the linearmotion. The real-time localization of the robots
is enhanced by the various sensors function of the Kalman
EKF approach that incorporates modern UWB frames and
wheel encoders, and the IMU ensures robots comprehend the
current location even in the case of any sensors struggles the
malfunction or environment noise. Robot avoids the obstacles
during the navigation. We can see at tile 9 in the workspace
as Figure 14d for limited space; robots need to change to the
I form to explore the narrow space between obstacles. The
energy usage by of hRombo is determined using the current
sensors connecting to the robot’s main battery power 14.4V,
1000mAh. The current reading is set at 10 kHz. The DC
motor is set with a maximum speed of 50 rpm.

Comparative analysis of energy and time spent by all the
discussed strategies is presented in Table 4. From the given
numerical comparison data, one can realize that if the robot
follows the strategy’s direction, which comes from the less
costweight, the less energy usage can be archived. The best
CTPP technique with the best energy and time usage is the
proposed RL based method. This method yield is about ten %
less than the ACO as the second-best technique. The results
demonstrate that the proposed CTPP is a feasible technique
that can be achieved energy-aware coverage planning by the
hRombo tiling robot.

The energy spent on the single operation among transfor-
mation, heading correction, and linear movement to complete
the tested directions is also given in Table 4. As per results,
the linear motion spends the most battery energy because
all three DC motors need to transmit the entire robot block,
and all the guided servo motors are controlled to solve the
problem, the change that brings more power usage. The trans-
formation is the second; then, the heading correction is the
third in energy usages.

VII. CONCLUSION AND FUTURE WORKS
The hRombo platform with reconfigurable forms provides an
achievable answer to cover the various predefined workspace
with saving power and consuming less time than conven-
tional CTPP techniques. The RL based CTPP has proved to
be outperformed in terms of deriving the shortest trajectory

for proposed TSP than the conventional evolutionary-based
methods such as GA and ACO. The proposed CTPP is
ready to be applied flexibly to other tiling robot stages. The
framework in this article is the first step to implementing
the proposed platform into the cleaning industry where the
fixed form cleaning robots have constraints in covering the
workspace of the complex environment.

Since the robot is underdeveloped and can operate with the
relatively small workspace, testing the proposed method on
the bigger workspace to verify different RL-TSP frameworks
is planned for future works. Since policy-based methods offer
practical ways of dealing with large action spaces, explor-
ing continuous action spaces in larger workspaces is also
planned as future works. Alternatively, for the big workspace
we can use cellular decomposition techniques such as hlto
simplify the map to small sub-maps. The inspection opens
up various potential researches that should be addressed,
including optimal control methods. Future exploration works
can be devised to follow: (1) a model for estimating vital-
ity in a dynamic and bundled workspace, (2) Considering
simultaneously how to generate tileset and trajectory by RL
frameworks, (3) multi-objective RL, (4) RL policy-based
methods continuous actions spaces with normal distributions
(5) Focusing on long-distance independence with robot stage
tiling motion. (6) Further studies on the power of devouring
electrical parts, robot movements, and friction
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