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ABSTRACT The first wave of the 2019 novel coronavirus (COVID-19) epidemic in China showed there
was a lag between the reduction in human mobility and the decline in COVID-19 transmission and this
lag was different in cities. A prolonged lag would cause public panic and reflect the inefficiency of control
measures. This study aims to quantify this time-lag effect and reveal its influencing socio-demographic
and environmental factors, which is helpful to policymaking in controlling COVID-19 and other potential
infectious diseases in the future. We combined city-level mobility index and new case time series for 80 most
affected cities in China from Jan 17 to Feb 29, 2020. Cross correlation analysis and spatial autoregressive
model were used to estimate the lag length and determine influencing factors behind it, respectively. The
results show that mobility is strongly correlated with COVID-19 transmission in most cities with lags
of 10 days (interquartile range 8 – 11 days) and correlation coefficients of 0.68 ± 0.12. This time-lag is
consistent with the incubation period plus time for reporting. Cities with a shorter lag appear to have a shorter
epidemic duration. This lag is shorter in cities with larger volume of population flow from Wuhan, higher
designated hospitals density and urban road density while economically advantaged cities tend to have longer
time lags. These findings suggest that cities with compact urban structure should strictly adhere to human
mobility restrictions, while economically prosperous cities should also strengthen other non-pharmaceutical
interventions to control the spread of the virus.

INDEX TERMS COVID-19, control measures, cross correlation, human mobility, influencing factors.

I. INTRODUCTION
The novel coronavirus disease 2019 (COVID-19), first iden-
tified in Wuhan, Hubei province, in December 2019, has
spread rapidly across China and even globally [1], [2].
On March 11, The World Health Organization (WHO)
declared the COVID-19 outbreak a pandemic, which has
posed a threat to global public health. 43,623,111 cases of
COVID-19, including 1,161,311 deaths, have been reported
globally as of October 27, 2020 [3]. In the absence of
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effective vaccine and specific therapeutic drug, many coun-
tries have implemented non-pharmaceutical interventions
(NPIs), of which human mobility restrictions is an essential
component [4]–[6].

Several studies have investigated the effect of human
mobility and control measures on the COVID-19 pandemic
around the world [7]–[9]. Human mobility is one of the key
factor in the spread of infectious diseases [10], [11]. Trans-
mission of the disease is enabled by both the long-distance
transportation, such as air, land and sea transportation
among countries [12], and the short trip such as commut-
ing within cities [13]. Based on a ‘‘risk source’’ model,
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Jia et al. [14] found that the population outflow from Wuhan
could accurately predict the relative frequency and geo-
graphic distribution of COVID-19 incidence through Febru-
ary 19, 2020 in China. To contain the spread of COVID-19,
mobility restrictions are implemented in many regions.
Chinazzi et al. [15] estimate the travel ban from Wuhan
on January 23 led to a 77% reduction in cases imported
from China to the rest of the world in early February;
Gatto et al. [16] found that restrictions posed tomobility have
reduced the COVID-19 transmission by 45% in Italy.

These studies demonstrate that humanmobility restrictions
can effectively mitigate the spread of COVID-19. However,
the effect of such restrictions on the COVID-19 transmis-
sion is not immediately evident. For example, Badr et al. [17]
found that the effect of decreased mobility on COVID-19
transmission in the US took at least 9-12 days and even
3 weeks to be perceptible, consistent with the incubation
period plus additional time for reporting. Therefore the length
of this time-lag indicates the efficacy of themeasures. Quanti-
fying this time-lag is important for relieving public panic (for
example, people care about how soon the COVID-19 trans-
mission will decline after mobility has declined) and uncov-
ering the factors influencing it can, in turn, inform policy
development and refinement. However, until recently, little
is known about these. To address these issues, in this study,
we aimed to investigate the effect of reduced human mobil-
ity on COVID-19 transmission in severely affected Chinese
cities during the first wave of COVID-19 epidemic in China,
based on the assumption that the decline in new case solely
depends on the mobility. The cross-correlation analysis were
used to quantify the time-lag, socio-demographic and envi-
ronmental factors influencing the time-lagged effects were
explored using both multiple linear regression model and
spatial autoregressive model.

The remainder of this paper is organized as follows.
Section II introduces the study area and data. Section III
shows our analytical framework. Section IV shows the results
of our analysis, and a discussion is provided in section V. The
conclusions are drawn in the last section.

II. STUDY AREA AND DATA
We chose China as the study area. Despite being the first
place to be hit by COVID-19, China has managed to control
this epidemic rapidly and effectively. In order to prevent the
spread of the epidemic, Wuhan was placed under a strict
lockdown from Jan 23. All provinces launched the Level
1 Response almost simultaneously, with the benefit of a cen-
tralized epidemic response system. The government imple-
mented control measures such as the isolation of suspected
and confirmed cases, suspension of the public transportation
system and so on. People were encouraged to stay at home
and keep social distancing. Therefore, human movements
were severely curtailed.

We collected the daily count of new confirmed cases
from the official reports of the health commissions in cor-
responding provinces or cities from January 17 (one week

before the Wuhan lockdown) to February 29, 2020. After
February 29, the international importation case become pre-
dominant in China [18], so we chose the time period before
that. We recorded the date when the Level 1 Response was
launched for each province. This key date marked the begin-
ning of the mobility restrictions. Besides, we also recorded
each city’s epidemic duration, defined as the interval between
the date of first case occurrence and the first date that
new confirmed cases remain zeros in 7 consecutive days.
We choose city with more than 50 confirmed cases as our
study area (80 cities in total, 62 cities excluding Hubei
province). 50 is the upper quartile of all cities’ cases, therefore
we choose this as a threshold to represent severely affected
cities during the first wave of COVID-19 epidemic in China,
as illustrated in Fig. 1.

FIGURE 1. Cities with more than 50 cases of COVID-19 from Jan 17 to
Feb 29, 2020.

TheBaidumobility index data during the same study period
was acquired from Baidu Map (https://qianxi.baidu.com/).
Baidu records users’ location based on the GPS, IP address
andWI-FI when they use Baidu apps on their phones, such as
mapping and searching. As of 2017, Baidu mapping service
had a 30% market share in China [19]. We used the mobility
index of intra-city traffic volume to represent the human
mobility. The Baidu mobility index for city i on date d is
calculated as:

Mi,d =
ai,d
bi
× C (1)

where ai,d is the number of people travelling within city i on
date d . It also implicitly includes people who enter city i and
generate an origin and destination pair in city i. Hence both
short- and long-distance mobility are considered in ai,d . bi is
the number of residents in the city i, C is a constant and is
same for all cities. Therefore, the Baidu mobility index is a
ratio considering the size of city and can be compared across
cities. In this dataset, the maximum value of mobility index
appeared in Bozhou city (a small city in Anhui province) on
January 23, at 8.8778, and the minimum value appeared in
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Wuhan city (a core city in Hubei province) on February 22,
at 0.5687. Recent studies have shown that this index can be
used to represent residents’ mobility and the resumption of
economic activities [20]–[22].

Figure 2 shows the Baidu mobility index for Wuhan from
January 17 to February 29, 2020 and for the same period in
the 2019 lunar calendar. The study period includes the Spring
Festival, which is a traditional holiday for family reunions
and public gatherings. Due to social distancing, people turn
to stay at home during this holiday in 2020, hence the sub-
stantially decrease in the mobility index compared to 2019.

FIGURE 2. Baidu mobility index for Wuhan.

To understand the city-level variation in the time lag
between human mobility and COVID-19 transmission,
we collected socio-demographic and environmental data for
cities. Population density, family size, the proportion of
elderly people (aged 60 and above) and GDP per capita data
for each city were retrieved from the China City (Prefecture)
Statistical Yearbook 2018 (produced by the National Bureau
of Statistics of China). To calculate road density in the urban
area of each city, we collected the road network data in
2018 from one of the biggest navigation companies in China.
The urban boundary data in 2018 were acquired from [23],
which were generated using 30 m global artificial impervi-
ous area data [24]. We also collected the density of desig-
nated hospitals for diagnosing COVID-19 infection in each
city. To measure the impact of the population outflow from
Wuhan, we collected mobile-phone-data-based volume of
outbound traffic fromWuhan to other cities from January 1 to
January 23, 2020, for details about this data please refer
to [14]. Table 1 summarizes the descriptive statistics for all
data used in this study.

III. ANALYTICAL FRAMEWORK
Figure 3 shows the analytical framework in this study. It is
composed of three steps. In the first step, we analyzed the
mobility time series to evaluate the impact of the control
measures on residents’ mobility. Second, we performed a
cross correlation analysis between the human mobility and
the COVID-19 new case time series to explore the time lag

TABLE 1. Descriptive statistics for data used in this study.

FIGURE 3. The flowchart of the analytical framework.

and correlation coefficient between them. Third, we used both
multiple linear regression model and spatial autoregressive
model to explore the potential factors affecting this rela-
tionship. The following section will present the procedure
of analyzing mobility time series and cross correlation, tak-
ing a typical city (Ningbo with 157 confirmed cases until
February 29) in China as an example. Then the selection of
variables and construction of the multiple linear regression
model will be introduced.

A. ANALYSIS OF MOBILITY TIME SERIES
To evaluate the impact of the control measures on human
mobility, we first found the date when Level 1 Response was
launched in the city and further extracted the mobility time
series oneweek before and after the date for analysis.We used
the Mann-Kendall trend test [25] to detect the monotonic
trend of mobility time series in the first 14 days. The decline
ratio (DR) was defined as:

DR = 100×
Mb −Ma

Mb
(2)

where Mb and Ma are the median of two subseries before
and after the date of Level 1 Response. This value quantified
the magnitude of mobility change in response to the control
measures; a large value of DR showed a great reduction.
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Taking Ningbo as an example, as illustrated in Fig. 4(a),
human mobility showed a declining trend in the first
14 days(S = −89, p < 0.0001) with a decline ratio of 58%
(Mb = 4.18, Ma = 1.73) when the Level 1 Response was
launched in Ningbo. We performed this analysis for all cities
with more than 50 cases and a correlation analysis between
DR and the total movements from Wuhan before lockdown
in each city. The results will be presented in section IV-A.

FIGURE 4. The analytical framework for Ningbo city. (a) Time series for
Baidu mobility index and COVID-19 case. The dashed purple line shows
the date when Level 1 Response was launched. (b) Time-lag correlation
between mobility and COVID-19 cases series.

B. CROSS CORRELATION BETWEEN HUMAN MOBILITY
AND COVID-19 CASES
To quantify the relationship between human mobility and
COVID-19 transmission, we performed a cross correlation
analysis between the two time series. Since the daily case
reporting data might have errors due to both reporting issues
and limited test capacity, we firstly used 3-day moving
averages to smooth them [17]. Then we calculated cross-
correlation coefficient (rxyk ) between the mobility time series
and the corresponding COVID-19 case time series with lag
from 0 to 21 days. rxyk is calculated as:

rxyk =

∑
(yt − ȳ)(xt−k − x̄)√∑

(yt − ȳ)2
√∑

(xt − x̄)2
(3)

where xt is the mobility time series, yt is the COVID-19 daily
new case time series, x̄, ȳ are the mean values of each series,
and k is the lag [26]. The cross correlation method have
been widely used in estimating the lag between two time
series in previous studies [27], [28]. The first positive sig-
nificant time-lag (denote by K) reflects the time interval
between the decline in COVID-19 transmission in response
to the mobility decline in the city. The maximum correlation
coefficient denotes how well the mobility series predicts the

new case series. Therefore, we use both the first positive
significant time-lag and the maximum correlation coefficient
to quantify the relationship between human mobility and
COVID-19 transmission. We further performed a correlation
analysis between the first positive significant time-lag and
epidemic duration to see whether cities with faster response
will have a shorter epidemic duration.

As shown in Fig. 4(b), the relationship between two time
series in Ningbo changed from a significant negative corre-
lation to a positive correlation as the lag increases, which
indicates that the effect of decline in human mobility on
COVID-19 transmission is not immediately evident. When
the lag was 11 days, they began to show a significant positive
correlation (r > 0.3, p < 0.05). The maximum correlation
coefficient was 0.67, which suggested that the reduction of
COVID-19 new case were associated well with the decline of
human mobility. The time series of mobility and new cases
for all 80 cities are shown in the supplementary material.
We performed the cross correlation analysis for all 80 cities,
the results of the lag and correlation coefficient will be pre-
sented in section IV-B.

C. MULTIPLE LINEAR REGRESSION MODEL
To explore the factors associated with the time lag between
human mobility and COVID-19 transmission, a MLR model
was developed as:

Ki = β0 + xiβ + εi (4)

where in the city i, Ki is the first positive significant time-lag,
as introduced in section III-B, xi is the vector of explanatory
variables, β is the vector of regression coefficients, and εi is
a random error term. The potential explanatory variables are
listed in Table 2. The reasons for choosing these variables
are as follows. First, recent studies show that elderlies are
found to be more vulnerable to COVID-19 [29], therefore
we use the proportion of elderly people (aged 60 and over)
to reflect the age structure of the local population. Second,
manyCOVID-19 transmissionwere found to bewithin family
clusters in China [30], [31], we wondered if the larger family
sizewould contribute to the spread of COVID-19 so that delay
the response time. Third, road density in urban area reflected
the city’s urban structure [32], which has impact on the pop-
ulation flow within the city and the COVID-19 spread [33].
Fourth, the timing of Level 1 response may also be a key
factor in mitigating the spread, we wondered whether the
earlier the policy were launched, the faster response between
mobility decline and case decline. To compare the degree of
influence of each impact factor on the dependent variable, all
variables were normalized before the regression. The MLR
results for time lag will be presented in section IV-C.

D. SPATIAL AUTOREGRESSIVE MODEL
The spatial dependence of time-lag are omitted from theMLR
model, therefore we further applied a SAR(spatial autoregres-
sive)model to account for this. The twomost commonmodels
used in SAR are the SLM(spatial lag model) and SEM(spatial
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TABLE 2. Information about the potential factors.

errormodel) [34]. In our case, we choose the spatial lagmodel
based on the Lagrange multiplier principle [35]. The SLM
uses a ‘‘spatial-lagged dependent variable’’ to incorporate
spatial dependence into the regression model and was devel-
oped as:

Ki = β0 + xiβ + ρWiKi + εi (5)

where ρ is the spatial lag parameter and Wi is a row of
spatial weights matrix, which measures the spatial proximity
of city i to other cities. In this model, the weight matrix was
generated based on the K-Nearest Neighbors to avoid the
problem of isolates. The meaning of other variables is the
same as equation (4). The SLM results for time lag will be
presented in section IV-C.

All aforementioned data processing and statistical analyses
were performed in Esri’s ArcGIS, GeoDa and the R (with
packages of stats, car, gvlma, tseries) software environments.
Results with p values of less than 0.05 were considered
statistically significant in all statistical tests.

IV. RESULTS
A. CHANGE OF HUMAN MOBILITY IN RESPONSE TO
CONTROL MEASURES
As shown in Fig. 5, all cities with more than 50 cases
showed a statistically significant decreasing trend in mobility
when the Level 1 Response was launched (p < 0.05). The
decline ratio averaged 57.4% (SD = 11.3%, n = 80), with
the maximum (81.3%) occurring in Wuhan. The decline ratio
in each city was positively associated the total movements
from Wuhan from January 1 to January 23 (Spearman’s rho
= 0.52, p< 0.001, n= 79). At the early stage of the outbreak,

FIGURE 5. Mobility decline ratios for cities with more than 50 cases.

the population outflow fromWuhan drives the distribution of
COVID-19 cases. Therefore, this significant positive corre-
lation suggests that in response to the outbreak, cities with
a higher risk of imported COVID-19 infection had a more
drastic decline in residents’ mobility.

B. DISTRIBUTION OF LAG AND CORRELATION
COEFFICIENT
There was a significant positive lagged correlation (p< 0.05)
between the mobility time series and COVID-19 new case in
all cities except Jining, Qianjiang and Dongguan; therefore,
we excluded them from the analysis of lag and correlation
coefficient. As shown in Fig. 6, the median of time-lag is
10 days (interquartile range 8 – 11 days). This value is close
to the total time from infection to confirmation on average,
which is a combination of the incubation period (mean =
5.2 days [1], [36]) and the time from symptom onset to
official reporting (median= 3 days [31]). A shorter lagmeans
the decline in COVID-19 new case was more responsive
to the decline in mobility. Cities in Hubei province had a
longer lag (median = 10 days, interquartile range 8 – 11
days, n = 15) than those outside Hubei (median = 9 days,
interquartile range 9 – 11 days, n = 62), which may be due
to the limited testing and treatment resources at the early
stage of the outbreak. The time-lag is positively related to
the epidemic duration of cities (r = 0.4, p < 0.001, n = 77),
which suggests that cities with faster response will also have
a shorter epidemic duration.

As shown in Fig. 7, cities that were close to the Hubei
province generally had a larger correlation coefficient. The
correlation coefficient averaged 0.69 (SD = 0.12, n = 77).
The difference of correlation coefficient in and outside Hubei
province is small (mean = 0.65 in Hubei and 0.70 outside
Hubei). The coefficient of variations of the time-lag and cor-
relation coefficients were 0.32 and 0.17, respectively. These
indicated that although the time-lag varied across cities,
the decline in mobility was consistently well associated with
the decline in the COVID-19 cases.
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FIGURE 6. Time lags for cities with more than 50 cases. The inset shows
the histogram for lag.

FIGURE 7. Correlation coefficients for cities with more than 50 cases. The
inset shows the histogram for the correlation coefficient.

C. FACTORS ASSOCIATED WITH TIME LAG
The MLR and SLM results for time lag are reported
in Table 3 and Table 4, respectively. We excluded cities in
Hubei for their severe under-reporting bias. The regression
models were both statistically significant (p < 0.001), and
the SLM outperformed OLS based on the higher adjusted
R2 (0.504) and a lower AIC (143.413). The results show
that urban road density, density of designated hospitals and
the volume of population flow from Wuhan had significant
negative effects on the time lag, whereas GDP per capita
had a significant positive effect. The significant positive sign
of the autoregressive lag coefficient rho suggests that clus-
tering of similar regions. The family size and proportion of
elderly people might have a slight positive effect, but they
are not statistically significant. The standardized coefficients
of the significant influencing factors show that economy have
greater influence on the time lag.

V. DISCUSSION
A. THE IMPACT MECHANISM OF TIME LAG
The time lag in this study reflects how long it takes for the
effect of decline in mobility on COVID-19 transmission can

TABLE 3. The results of multiple linear regression for lag.

TABLE 4. The results of spatial lag model for lag.

be perceptible, and we found that a median of 10 days in
Chinese cities with more than 50 cases. It can be regarded
as a combination of the incubation period and the time from
symptom onset to official reporting. The length of the time
lag is influenced by a combination of factors, such as the
transmission rate of virus, testing capacity, personal and
government attitude towards the control measures. In this
section we will discuss the joint effects of these factors on
the time lag.

According to the results of MLR and SLM, we found that
GDP per capita had a positive effect on time lag. This may
be related to the fact that cities with higher per capita GDP
generally have more social interactions as a result of more
necessary economic activity [37], which may contribute to
the transmission of COVID-19. With high transmission rates,
an increasing number of infections will arise, new cases will
continue to occur. It will delay the decline of new cases and
therefore it leads to a long time lag. The COVID-19 out-
break posed a huge challenge to medical resources [38]. The
demand for critical care, including hospital beds, intensive
care units (ICU) and special medical facilities, is expected to
increase with the rising number of cases. Cities with higher
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density of designated hospitals generally have better medical
care quality and enough testing capacity, which enables the
suspected and confirmed cases of COVID-19 to be treated
immediately. This could help to reduce the epidemic duration
so that has the negative effect on the time lag. At the early
stage of outbreak, the population flow fromWuhan drives the
distribution of COVID-19 cases [14]. Cities with close ties to
Wuhan have a larger population influx and early detection of
the imported cases. At the same time, as mobility declined,
local transmission was contained and the epidemic curve
peaked then declined rapidly, thus shortening the time lag.
The road density in the urban area reflects the city organi-
zation, a higher road density usually means a more compact
urban structure. Although the compact structure is believed
to be more susceptible to the rapid spread of epidemics,
but it also makes mobility restrictions quite effective, while
the sprawled structure is less responsive to mobility restric-
tions [39]. This could help explain its negative effect on the
lag in this study. The population density does not reflect the
congestion level in the urban area, and both the differences
in family size and the timing of Level 1 Response are small,
therefore they are not significant.

In addition to these factors, there are some other important
factors. However, they are difficult to quantify and therefore
are not included in our regression models. Here, we briefly
discuss the impact of these factors based on the results.
First, the testing capacity is crucial at the early stage of the
outbreak. As shown in Section IV-B, the testing capacity
was limited in Hubei province at the very beginning of the
outbreak and infected cases could not be diagnosed in time,
therefore it has a longer time lag than regions outside of
Hubei. At the same time, the attitude of local government
was also an important factor. For example, Wenzhou was
considered a city at higher infection risk due to its close
ties with Wuhan, but the decisive decision-making and strict
enforcement of control measures by the Wenzhou’s govern-
ment led to a rapid decline in cases [40]. While in Jining city,
the local government negligence made the Rencheng Prison
a major source of infection and led to a spike in new case
time series [41]. Therefore the peak of the epidemic curve
was delayed. Although it is beyond the scope of this study to
conduct detail analysis for these factors, they are critical to
our understanding of time lag and need to be explored further
in the future.

B. EVALUATION OF CONTROL MEASURES IN CITIES
The time lag and correlation coefficient could jointly be used
to evaluate the effectiveness of mobility control measures
implemented in cities, and also provide some implications for
containing potential emerging infectious disease in the future.
The scatterplot of lag and correlation coefficient is illustrated
in Figure 8. After normalizing the two variables, we classified
the cities into three clusters based on the K-means clustering.

Cities in cluster 1 have a short time lag and a high correla-
tion coefficient, with the clustering center (lag = 7.6 days,
r = 0.74). Mobility decline in these cities could predict

FIGURE 8. The cluster of cities based on lag and correlation coefficient.

the case decline well with a short lag, which indicated the
mobility control measures have proven to be effective in
containing COVID-19 outbreak. For example, because of its
close economic ties with Wuhan, Wenzhou became the most
affected Chinese city outside of Hubei at the early stage
of the outbreak [40]. Control measures were preemptively
implemented, such as the isolation of people who returned to
Wenzhou from Wuhan, regional quarantine, and suspension
of the public transportation system. These measures led to
a large decline in mobility and the COVID-19 new case
declined quickly in February. Its relative high road density in
urban area and high medical care quality could contribute to
the short lag. Cities in this cluster could focus on forestalling
imported cases and gradually restoring the order of produc-
tion and life.

Cities in cluster 2 have a medium time lag and a
medium correlation coefficient, with the clustering center
(lag= 7.6 days, r= 0.69). China’smegacities such as Beijing,
Guangzhou, Shanghai and Shenzhen are all in this cluster.
Take Beijing for example, it has a developed economy and
a large floating population. Therefore Beijing has faced not
only import risk frommany other regions but also a high com-
munity transmission risk due to the frequent necessary eco-
nomic activities. Therefore the emergency response should
always be prepared to relaunch timely to reduce the risk of a
secondary outbreak in this type of city.

Cities in cluster 3 have a long time lag and a low correla-
tion coefficient, with the clustering center (lag = 14.1 days,
r= 0.49).Mobility decline in these cities could not predict the
case decline well and the lag is long. The longer lagged effect
suggested that after the control measures were implemented,
new infections still occurred for a relatively long time. The
mobility decline ratios in these cities were the lowest of the
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three categories, the mobility restrictions played a limited
role. The high proportion of elderly people and large city size
may also contribute to the long time lag. Therefore some other
non-pharmaceutical interventions should be enhanced, such
as isolation of cases and close contacts.

Among the three clusters, more than half of the cities
(69.4%) are concentrated in the cluster 1 and cluster 2. This
relatively high proportion showed that the mobility control
measures implemented in China effectively contained the
COVID-19 outbreak. Decline in the mobility tend to be a
strong signature for the decline in the COVID-19 transmis-
sion in the absence of a vaccine or effective antiviral.

VI. CONCLUSION
In this study, we used cross-correlation analysis to quan-
tify the time-lagged effect between the human mobility and
the COVID-19 new case time series. Factors that influ-
enced the lag were further examined by both multiple
linear regression model and spatial autoregressive model.
We found that (1) human mobility is positively associ-
ated with COVID-19 transmission with a median time lag
of 10 days (interquartile range 8 – 11 days) and correlation
coefficient of 0.68(±0.12). (2) The time lag is shorter in
cities with more population flow fromWuhan, better medical
resources, and denser urban road network but longer in eco-
nomically advantaged cities. In practice, based on the factors
influencing the time lag, the implications for policymaking in
controlling COVID-19 and other potential infectious diseases
in the future are as follows:

(1) Cities with developed economy should maintain a high
degree of sensitivity to launch the emergency response as
soon as sporadic cases are detected, avoiding a rapid initial
spread and community transmission.

(2) In the event of an outbreak, cities with high road
network density and compact urban structure should deci-
sively implement mobility restrictions measures, which can
reduce the transmission of infectious disease in a relatively
short period of time. In cities with loose structure, mobility
restrictions play a limited role, therefore it is important to
strengthen the implementation of other measures such as
contact tracing of suspected ill persons and confirmed cases,
personal preventive actions and so on.

(3) A shortage of medical resources such as detection
kits and hospital capacity will inevitably prolong diagnosis
time, which results in a slower response speed. So proper
scheduling and allocation of medical resources is critical.

This study is subject to several limitations. First, in this
study, we only considered the effect of mobility on the cases,
other factors, such as the protection of personal hygiene and
the hard work of the front-line fighters, were not in the
model due to the lack of city-scale data. Therefore some cities
decline trend in new case could not be explained well by
the declining mobility. These factors are also critical for our
understanding of COVID-19 transmission and need further
exploration. Second, the case data might be subject to errors
due to both reporting issues and limited testing capacity.

These might also be different across the cities. While we par-
tially addressed this issue by using a 3-day moving average
of the case data, some uncertainty still remains. Third, due to
the different request frequency in different cities, there may
be selection bias in the Baidu mobility index and the users
are still underrepresented among specific subgroups (i.e.,
children and the elderly). Fourth, we did not distinguish the
trip purpose, since different destinations have different risk
of infection, it is interesting to explore that which purpose of
travel reduction is more effective for controlling the outbreak.
In the future, we plan to collect more detail trajectory data
within city to understand it.
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