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ABSTRACT Tire pressure monitoring is essential to driving safety. Indirect tire pressure monitoring
system (TPMS) is a cost-effective alternative to direct tire pressure monitoring system. Its performance
depends on the algorithm for data pre-processing and analysis which is normally complicated, sensitive to
initial calibration with limited working range. In this work, four tests were carried out with Baojun 530 with
a different deflated tire in each case. Speed data read through ABS CAN bus was analyzed and traditional
frequency based method was employed to identify the deflated tire. To simplify the data pre-processing and
improve response speed and working range, a new artificial neural network (ANN) based method was also
proposed to identify deflated tire based on speed data point collected through antilock brake system (ABS)
sensors in tests. A long short-term memory (LSTM) network was developed to locate the deflated tire with
an accuracy of 0.83 after training for individual data points. And performance of this method can be further
improved by employing a soft voting mechanism with 3 LSTM networks. In proposed ANN based method,
benchmark data from properly inflated tire is not required, which makes it a promising solution for multiple
deflated tires cases which is challenging for traditional frequency-based method.

INDEX TERMS Artificial neural network, tire pressure, indirect tire pressure monitoring system, under-
inflated tire.

I. INTRODUCTION
Tire pressure is essential for driving performance, fuel effi-
ciency and safety of the driver. Low tire pressure can increase
the possibility of a car crash that needs braking, because it
can lead to longer braking distance. Based on a study from
US DoT (Department of Transportation), 27% of passenger
cars and 33% of light trucks are operated with one or more
substantially under-pressured tire [1]. According to Society
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of Automotive Engineering (SAE) report, 260 thousand traf-
fic accidents were caused by tire failure, 75% of which was
a result of pressure loss [2]. Hence, tire pressure monitoring
system (TPMS) becomes mandatory parts in automobiles in
major developed countries (such as US, EU) and develop-
ing countries (such as China) [3]. Generally, there are three
types of TPMS, direct TPMS (that monitors the status of
tires directly by pressure sensor), indirect TPMS (that warns
the tire pressure drop by processing signals from sources
other than the pressure of tire, such as wheel speed) and
hybrid TPMS (both pressure sensor and indirect TPMS are
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integrated in one system to overcome situations that indirect
TMPS cannot identify) [4]. Though direct TPMS is more
reliable in terms of measuring tire pressure, it can be of
high cost due to the fact that sensors need to be installed in
each tire directly along with wireless communication system
to transmit measurement results to a receiver connected to
electronic control unit (ECU) [5]. Power supply for sensors
in direct TPMS poses another significant issue in service life
of sensor and its necessary maintenance [6]. In contrast, indi-
rect TPMS can collect necessary data with existing sensors
and ECUs, which can achieve much lower cost and flexible
installation.

For indirect TPMS, the common practice is to gain the
wheel speed data based on signal from anti-lock braking
system (ABS) and build a certain algorithm to analyze the
status of tires, thus send warnings if tires are under-inflated
[4], [7]. Frequency-based method is frequently employed to
evaluate the pressure loss [5], [8], [9]. But it is well known
that this method requires several steps of sophisticated data
pre-processing (such as wheel speed correction to minimize
errors from manufacturing tolerance of gear teeth in data
preparation) and complicated method to analyze frequency-
based signals. And it is extremely challenging for these algo-
rithms if two tires at the same axle deflates or all the four tires
are under-deflated.

In recent years, artificial intelligence has been proved to
be powerful in solving classification, prediction and sev-
eral other types of problems. There are only a few works
reporting the application of artificial intelligence in indi-
rect TPMS system. Hemanth M. Praveen et al. reported a
cloud-based system to classify the tire condition of front
axle of heavy duty vehicles for large fleet operators with
different vehicle models. The primary output is good or bad
regarding the monitored tire condition [10]. Alex Kost trained
recurrent neural network-long short-term memory (RNN-
LSTM) network and a convolutional neural network (CNN)
by simulated data for TPMS to classify the status of tire
pressure as under inflation, nominal condition and over
inflation [11]. Artificial intelligence has also been adopted
to investigated other issues in automotive. A joint time
series modelling (JTSM) method based on LSTM and RNN
has been proposed by Yang Xing and Chen Lv et al. for
energy consumption analysis of vehicles, motion prediction
of leading vehicle in connected autonomous vehicles and
dynamic estimation of the brake pressure of EVs [12]–[14].
Deep RNN model is also commonly used in driver activities
recognition [15].

To simplify the data processing and improve response
speed and working range of traditional algorithm in indirect
TPMS, ANN method was employed to identify the deflated
tire among others in this work. Four types of tests were car-
ried out on passenger car. Long short-term memory (LSTM)
network was developed and optimized to locate the deflated
tire based on speed data from tests. Its classification accuracy
was further improved by employing a soft voting mechanism
consisted of 3 LSTM networks.

TABLE 1. Status of each tire in Four experiment tests.

II. EXPERIMENTS
Experiments were carried out with Baojun 530 produced by
Shanghai General Motors Wuling (SGMW). Four types of
tests started by intentionally deflating one tire for each case,
including left front tire (LF), right front tire (RF), right rear
tire (RR) or no deflated tire (None) (listed in Table 1). The
pressure of properly inflated tires was 2.3 bar and that of
under-inflated tire was 1.7 bar. Speed range of the four tests
was 0m/h∼73.01km/h, and speed data was read through ABS
CAN bus with Vector CANcaseXL in real time. The data
acquisition rate of ABS sensor was 100Hz. The raw data from
ABS sensor was series of recorded time when a pulse was
triggered. Therefore, wheel speed can be estimated by

v =
2πr
Nt1t

, (1)

where r is the radius of wheel, which is 0.35m in this work;
Nt is the number of teeth of gear, which is 42 in tested vehicle.
Based on Equation (1), speed of all 4 wheels can be derived
and used for further analysis.

After tests, 120000 data points were collected for this study
(30000 data points from each test). Two different methodolo-
gies were employed to identify the deflated tire, traditional
frequency based method and ANN based method. Details of
frequency based method is reported in reference [9].

Tensorflow was used to build Artificial Neural Net-
work (ANN) for offline data analysis to identify the deflated
tire among others. The input speed range for ANN was
0.22km/h∼73.01km/h. The methodology is illustrated in Fig-
ure 1. A LSTM network was built and tested by 10-fold
cross validation scheme, which is widely employed to eval-
uate robustness of ANN [16]. Under this scheme, the input
data was randomly divided into 10 subgroups. During each
evaluation, nine of the subgroups (108000 data points) were
selected as the training data to build the model, and the rest
subgroup (12000 data points) was used for prediction test.
Average prediction accuracy from 10-fold cross validation
was accepted as the final categorization accuracy of the net-
work. All these analysis, training and predictions were done
offline with personal computer.

If prediction accuracy was not acceptable, parameters and
structures of LSTM network were optimized with Random-
SearchCV tool in sklearn. It can provide information of the
best ANN with its outputs and parameters with given condi-
tions. After tried over 300 ANNs the optimum ANN can be
found.
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FIGURE 1. ANN-based methodology in this work.

TABLE 2. Details of input data for LSTM networka.

Details of input data used in categorization are listed
in Table 2. It was consisted of two parts, speed data of each
tire and label of the tests, taking the form [speed of LF tire,
speed of RF tire, speed of LR tire, speed of RR tire, label
of data]. Before feeding to neural network, all nulls in input
data were removed and the speed data were then standardized
(z-score) in pre-processing. Number of data from different
categories are generally the same to guarantee a balance
distribution among different categories.

In training, categorical cross-entropy was used as the loss
function to estimate the error of LSTMnetwork. The equation
is as following [17].

CE = −
M∑
c=1

to,c log(po,c), (2)

where M is the number of classes, t is the indicator if class
label c is the correct classification for observation o, p is the
predicted probability that observation o is of class c.

Softmax was used as the activation function in the output
layer of network. This function is widely used in multiclass
classification problem. The equation is as following [18].

Si =
eVi∑n
1 e

Vj
and

∑n

i
Si = 1, (3)

where Vi and Vj are the ith and jth element of the input vector.
So, the output for any element will be in the interval (0,1), and
all the outputs add up to 1. With input data, softmax function
can generate a multiclass probability distribution. The label

FIGURE 2. Soft voting mechanism for classification.

FIGURE 3. Speed spectrum of four wheels in four tests, (a) test 1: left
front tire deflated, (b) test 2: right front tire deflated, (c) test 3: right rear
tire deflated and (d) test 4: all the four tires are properly inflated.

with highest possibility can be accepted as the categorization
result of LSTM network.

To improve the performance of classification, a soft voting
mechanism based on LSTM networks was also built. In soft
voting, each LSTM provides a probability that a specific data
point belongs to a particular target class. Then the label with
the greatest sum of probabilities wins the vote. The process
of soft voting mechanism is illustrated in Figure 2. For given
input data, each of the three LSTM networks would give a
probability distribution for the 5 categories (label 1,2,3,4,5).
Label with the highest sum of probability will be the final
output of this voting LSTM network. This voting mechanism
can improve the robustness of ANN and maximize the effect
of classifications with relatively higher probability. 10-fold
cross validation schemewas also utilized to evaluate the accu-
racy and robustness of proposed LSTM voting mechanism.

III. RESULTS
A. TEST RESULTS AND FREQUENCY-BASED METHOD
Figure 3 shows the summary of speed spectrum of four
wheels in four different tests. It can be found that the speed
covered 0-72.9km/h. The wide speed range in test 4 was
designed to test the effect of different speed distribution on
categorization accuracy.

Figure 4 illustrates the speed difference between deflated
tire and the other three properly inflated tires. The speed
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FIGURE 4. Speed difference between deflated tire and normal tires in
four tests: (a) test 1: left front tire deflated, (b) test 2: right front tire
deflated, (c) test 3: right rear tire deflated and (d) test 4: all the four tires
are properly inflated.

difference was defined as Vdifference = Vdeflated tire −
Vinflated tire. It can be found that the majority of speed differ-
ence is slightly higher than 0 km/h in Figure 4 a), b) and c),
which means that speed of deflated tire is higher than those
of inflated tire. This can be further confirmed by average
speed difference (the red curve), which was calculated by
Vaverage difference = (Vdifference1 + Vdifference2 + Vdifference3)/3.
All the average speed difference curves are higher than
0 km/h. Spikes below the reference curve could be a result
of steering condition or sudden change in road conditions.
In contrast, in Figure 4 d), both Vdifference and Vaverage difference
curves are generally symmetry with 0 km/h line in the center.
This is consistent with the reports that decreased pressure can
lead to drop in effective rolling radius, and thus the deflated
tire would rotate faster [8]. Hence, speed of deflated tire is
higher than that of properly inflated tire.

After four tests, raw data recorded by sensor was further
analyzed according to the methodology described in refer-
ence [9]. The natural frequency of inflated tire and deflated
tire were analyzed, and the benchmark data was from test
4 with no tires deflated. It was found that the peaks of deflated
tire in PSD spectrum was generally lower than those of
inflated tires. Figure 5 b) presents an example of different
PSD spectrum by frequency-based method based on data
from test 1. Analysis results are summarized in Table 3. It can
be found that within the tests, a difference of 0.7 to 2.6 can
be identified between peaks in PSD spectrum for inflated
tire and under-inflated tire. This shows that frequency-based
method can be used to identify the under-inflated tire among
others.

But several potential drawbacks of this frequency based
method were also identified in analysis:

(a) Based on our work, the reported frequency based
method works much better at relatively higher speed range,
for example above 60km/h in our work. For tests with speed

FIGURE 5. Example of (a) speed data and (b) PSD spectrum derived from
raw data with frequency based method.

TABLE 3. Variation among PSD peaks in each test.

FIGURE 6. Example of PSD spectrum from tests with speed range lower
than 50km/h.

lower than 40km/h, no noticeable peaks can be identified in
PSD spectrum, as illustrated in Figure 6;

(b) In reported frequency-based method, speed data from
tests with four properly inflated tire is mandatory to identify
tire pressure loss. This set of data serves as a standard for each
tire in tests. And complicated data pre-processing is required
to extract necessary signal data for identifying under-inflated
tire.

(c) One of basic prerequisites for frequency-based method
is that the wheel speed will change if tire pressure drops.
Though this is true in most cases, it will fail if two tires at
the same axle deflate or all the four tires are under-deflated,
which can lead to failure of frequency-based method.

B. PREDICTION ACCURACY OF LSTM NETWORK
To simplify data pre-processing and improve the perfor-
mance, LSTM network was built to identify the deflated tire
among others based on speed data from ABS sensor. The
optimum structure and parameters found in this work (named
as LSTM 1) are listed in Table 4. The network consisted of
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TABLE 4. Structure of LSTM 1 in this work.

FIGURE 7. Categorization accuracy of LSTM 1 in training and prediction
accuracy test: (a) Categorical accuracy in training and validation; (b) Loss
in training and validation; (c) Comparison between prediction and true
values in prediction accuracy test; (d) Prediction accuracy for each
category with error bars.

four layers, input layer, 1st Dense layer, 2nd LSTM layer, 3rd
LSTM layer and a Dense layer for output. Adam optimizer
with a learning rate of 0.002 was used for ANN optimization.
Categorical cross-entropy was used as the loss function, and
performance of ANN was evaluated by categorical accuracy.

Figure 7 shows typical evolution of accuracy of LSTM 1 in
training and prediction accuracy test. In training, the accuracy
increased gradually and plateaued at 0.83 while the loss
dropped continuously (Figure 7 a and b). With the trained
LSTM network, 19958 out of 24000 data points were catego-
rized correctly in prediction accuracy test. Figure 7c) and d)
illustrate details of prediction accuracy in each category.
It shows that the highest accuracy of 0.94 for test 2 and lowest
accuracy of 0.69 for test 4. In 10-fold cross validation, it was
found that the average prediction accuracy was 0.83 with a
deviation of 0.003.

C. PERFORMANCE OF LSTM VOTING MECHANISM
In order to improve the classification accuracy, three of best
LSTM networks (LSTM 1, LSTM 2 and LSTM 3) among
built networks in this work were employed to form a voting
mechanism as described in section II. Details and perfor-
mance of the three networks were listed in Table 5.

With the same set of training and test dataset as those in
section B, the prediction accuracy of this voting mechanism

TABLE 5. Details of LSTM 2 and LSTM 3 employed in soft voting
mechanism.

FIGURE 8. Prediction accuracy for each category with error bars by soft
voting mechanism.

is 0.84 with deviation of 0.004 in 10-fold cross validation.
Detailed accuracy distribution among the 5 categories is illus-
trated in Figure 8. With soft voting mechanism, the highest
prediction accuracy was 0.94 for test 2 and the lowest was
0.7 for test 4. In comparison to LSTM 1, it can be found that
prediction accuracy can be slightly improved with the soft
voting mechanism. Particularly, the classification accuracy of
label 1 and 5 was 0.01 higher than those in Figure 7 d).

IV. DISCUSSION
A. COMPARISON BETWEEN FREQUENCY-BASED
METHOD AND ANN
In FMVSS 138, both direct TPMS and indirect TPMS are
required to warn the driver within 10 minutes if any tire is
under-inflation. In traditional algorithm for indirect TPMS,
identification of under inflated tire is normally based on
analysis on frequency signal, in which spectrum for a certain
duration is required [9]. For proposed ANN method in this
work, classification can be done for individual speed data.
This means alarms can be given promptly if tire pressure drop
happens, because speed data can be fed by ABS speed sensor
with high frequency (100Hz in this work).

It should also be noticed that start speed for ANN iden-
tification (0.22km/h in this work) can be much lower than
traditional indirect TPMS (50km/h in FMVSS 138). This
means that ANN based method is capable to identify the
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deflated tire before the speed gets too high, which can sig-
nificantly improve driving safety. On the other hand, complex
preprocess of input data is mandatory in traditional frequency
based methodology, such as eliminating manufacturing error
in ABS tooth ring, wheel speed averaging and filtering. All
these data preprocessing is not necessary in ANN based
method, which canmake the ANNmore easily to be deployed
in application.

These advantages make ANN potentially more accurate
with timely response in applications in comparison to cur-
rent frequency-based method in indirect TPMS. And driv-
ing safety can be further improved. In real application of
ANN method, an appropriate time threshold may be needed
before giving an alarm.Without this, because ANN processes
input data at an individual data point base, the driver could
be repeatedly alarmed because of sudden tire speed change
(or pressure drop) or sensor malfunction for very short time
in an unusually dynamic situation (such as running on a road
with poor condition).

In real applications, there are also some potential limi-
tations of proposed ANN method. Setting up ANN model
and followed training and validation were done on personal
computer with Tensorflow in this work. But, the deployment
of built ANN model into ECUs can be challenging in appli-
cation, because there are some libraries involved in setting
up ANN. To achieve this, noticeable work may be required
to transfer a complex ANN model into normal mathemat-
ics, such as matrix computations. Another potential issue
is that performance of ANN (such as prediction accuracy
and response speed) is generally dependent on computa-
tion capability of hardware and complexity of ANN model.
A balance between accuracy and response speed of ANNmay
be required to deliver the best performance with given ECU
capabilities.

B. POSSIBLE FACTORS THAT LOWER THE
PERFORMANCE OF ANN
In both Figure 7d) and Figure 8, the overall performance of
ANNwas generally limited by the much lower categorization
accuracy for data from test 1 and test 4. On the other hand,
the categorization accuracy for data from test 2 and test 3 is
much higher. One of the possible factors is the imbalanced
distribution of speed data. As illustrated in Figure 3, the range
of collected data from test 1 and test 4 is notably wider than
those from test 2 and test 3. Therefore, the data distribution
from the former two tests is more decentralized, which is
particularly true for test 4 (as listed in Table 6). This may pose
significant negative effect on LSTM training due to much
more outliers.

V. CONCLUSION
In this work, we presented an ANN based methodology to
identify the deflated tire among properly inflated tries. Anal-
ysis flow and identification accuracy were elucidated. Based
on presented results and discussions, following conclusions
can be drawn:

TABLE 6. Major statistics of speed distribution in four tests (km/h).

1. Deflated tire can rotate faster than properly inflated
tires and the difference can be identified in PSD spec-
trum by traditional frequency based method with some
drawbacks.

2. In this work, the optimum prediction accuracy of
LSTM network is 0.83, and the performance of current
ANN is mainly hindered by the decentralized distribu-
tion of data.

3. Categorization accuracy of LSTM network can be
improved with a soft voting mechanism.

4. ANN based method can identify the deflated tire
starting from a much lower speed with more timely
response than that requested in FMVSS 138, which
makes it capable to provide much better safety.

In future, the performance of ANN will be improved by
extending its capability in handling decentralized speed data
from ABS to achieve better prediction accuracy without
bringing too much extra workload to ECUs. On the other
hand, cases with more complicated conditions will be sys-
tematically studied by ANN-based method, including two
deflated tires, three deflated tires and four deflated tires,
which are particularly challenging for traditional frequency-
based method. So that, the viability, advantages and potential
risks of ANN in TPMS application can be evaluated. After
that, we will try to implement this methodology to a vehicle
to achieve real-time output with online data collection in our
next stage.
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