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ABSTRACT In this paper the distributed leader-follower consensus tracking problem is investigated for
unknown nonlinear non-affine discrete-time multi-agent systems. Via a dynamic linearization method both
for the agent system and the local ideal distributed controller, a distributed adaptive control scheme is
proposed in this paper using the Newton-type optimization method. The proposed approach is data-driven
since only the local measurement information among neighboring agents is utilized in the control system
design. The consensus tracking stabilities of the proposed approach are rigorously guaranteed in the cases
of fixed and switching communication topologies. The simulations are conducted to verify the effectiveness
of the proposed approach.

INDEX TERMS Dynamic linearization, data-driven control, adaptive control, multi-agent systems, consen-
sus tracking.

I. INTRODUCTION
The recent two decades have witnessed a burgeoning research
direction in the automatic control of interconnected sys-
tems [1], [2]. Such systems are the well-known multi-agent
systems (MASs). Cooperative control of MASs is aimed to
exploit the local interactive control protocols among net-
worked agents for achieving a global objective that is difficult
to be accomplished by a single agent. Due to its powerful
potential applications [3]–[5], a considerable attention has
been attracted for different cooperating tasks, such as consen-
sus, formation, coverage control, flocking and containment
control. Among these research topics, consensus control is an
important and fundamental problem. Remarkable results on
consensus have been investigated from different perspectives,
and readers are referred to [6]–[8] and references therein.

Because of the pioneering works [9], [10] on consen-
sus, many scholars have extensively investigated different
consensus problems. For instance, in [11]–[13], the dis-
tributed consensus of linear continuous-time and discrete-
time homogeneous systems was discussed. Moreover, some
works, such as [14], [15], were extended to heterogeneous
network systems. Since almost all the physical dynamics
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of controlled systems in practice are inherently nonlinear,
the aforementioned control schemes cannot be directly
applied to nonlinear systems. Recently, the adaptive control
schemes were developed for nonlinear MASs [6], [7]. How-
ever, the aforementioned works are usually based on avail-
ability of the dynamic models or structural information of
the controlled MAS. This means that the first principle or an
identification method is required for these distributed control
schemes, which have the problems of unmodeled dynamics
and model/controller reduction [16].

For the control problems of unknown systems, data-
driven control methodologies are a concerned research topic,
in which the model free adaptive control (MFAC), proposed
by Hou in [17] and further developed in [18], is valuable.
The MFAC has been extended from the original single-input
single-output systems [19], [20] and multi-input multi-output
systems [21], [22] to nonlinear MASs [23]–[25]. Besides,
the dynamic linearization based control methods have been
successfully applied to many practical applications, such
as servo motor systems [26] and exoskeleton robotic sys-
tems [27]. The detail of the dynamic linearization based
control methods can be found in [16].

However, some challenging issues still have not been
developed for unknown nonlinear discrete-time MASs on
data-driven consensus control. One issue is to how to
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design a distributed consensus controller structure through a
systematic approach. The local controller structures, such as
the distributed proportional and proportional-integral control
laws in [7], [28], are usually determined a priori by experi-
ence, which leads to the difficulty in determining their appro-
priation or effectiveness in applications. Another issue is to
how to design a distributed control gain updating algorithm
on condition that the local measurements are only applicable.
The control gains in existing distributed control schemes are
usually calibrated heuristically and chosen as fixed values if
the physical dynamics of the controlled MAS are unknown.
The dynamic linearization based control methods motivate us
to explore a novel data-driven distributed consensus tracking
approach for addressing these issues.

Comparing to existing distributed control methods,
the main contributions of this paper are as follows.
• Provide a systematic way of directly designing the dis-
tributed controller structure for unknown MASs on the
consensus tracking, and the designed distributed con-
troller is independent of the controlled MAS.

• Propose a data-driven distributed adaptive control
approach, where the local control law and control gain
updating algorithm are designed only using the local
information among neighboring agents.

• Establish the consensus tracking stability properties
of the proposed approach under fixed and switching
topologies.

The rest of this paper is organized as follows. Section II
formulates the consensus tracking problem. Section III con-
cludes the main results, including the designed control law,
distributed control gain updating algorithm, adaptive control
approach and its convergence properties. Section IV con-
ducts some simulations. Section V provides some conclud-
ing remarks. In this paper, ‖ · ‖ denotes any generic vector
or matrix norm.

II. PROBLEM FORMULATION
The communication topology of a leader-follower system
including the leader is represented by the graph G, where the
topology among agents is fixed and directional. The leader’s
command is only accessible to a subset of the follower agents
with unidirectional paths from the leader to the follower
agents. Each follower agent exchanges local measurement
information only with its neighboring follower agents under
a directional graph. It is assumed that the topology among
the follower agents is a fixed strongly connected graph and at
least one follower agent is communicated to the leader.

We consider a set of N heterogeneous nonlinear non-affine
discrete-time follower agents, where the physical model of
follower agent q, q = 1, 2, · · · ,N , is described by

yq(k + 1) = fq
(
yq(k), · · · , yq(k − ny),

uq(k), · · · , uq(k − nu)
)
, (1)

where yq(k) ∈ R1 and uq(k) ∈ R1 are the system output and
control input of agent q at the time instant k , respectively,

and k = 1, 2, · · · ; ny ∈ Z+ and nu ∈ Z+ are unknown orders
for the system outputs and control inputs of agent q; fq(·) :
Rny+nu+2 7→ R1 is an unknown nonlinear function.

Following [19], the agent system (1) can be transformed
into the following equivalent dynamic linearization data
model:

δyq(k + 1) = ψq(k)δuq(k), (2)

where δyq(k + 1) = yq(k + 1) − yq(k); δuq(k) = uq(k) −
uq(k − 1); the unknown time-varying parameter ψq(k) is
called the pseudo partial derivative (PPD) of the agent system
(1), satisfying |ψq(k)| ≤ bp, bp > 0 is a known constant.
Assumption 1: The sign of ψq(k), remains invariant, satis-

fying ψq(k) > 0 or ψq(k) < 0 for all k = 1, 2, · · · . Without
loss of generality, we consider 0 < ψq(k) ≤ bp in this paper.
Remark 1: The considered condition 0 < ψq(k) ≤ bp in

Assumption 1 implies that the control direction is known and
positive. This condition is reasonable since many practical
systems, such as autonomous underwater vehicles, unmanned
aerial vehicles and mobile robots, feature this property.

Note that the time-varying parameter ψq(k) is only a
concept in the sense of mathematics, and its existence is
rigorously guaranteed by the theorem in [19]. While the time-
invariant parameters usually introduced for traditional adap-
tive control methods indicate the variables of dynamics of a
controlled plant. It can be seen from the theorem in [19] that
ψq(k) is obviously time-varying even if the controlled plant
(1) is linear time-invariant since ψq(k) is only related to the
system outputs and control inputs by the time k . Moreover, all
of the possible properties of the controlled system (1), such
as the nonlinearity and time-varying parameters or structures,
are involved into ψq(k), which may lead to its complicated
characteristic, but the simple numerical behavior that can
be easily estimated. This implies that ψq(k) is capable of
managing these properties that are difficult to be handled
in the framework of traditional adaptive control due to its
possible insensitivity to these properties. More detail on the
parameter can be referred to [29].

Equation (2) is only a data model that is equivalent to (1)
in the sense of mathematics and it has no physical mean-
ings. This equivalent transformation is achieved by using the
compact form dynamic linearization method, and the detailed
derivations can be referred to [19] and [29]. The data model
(2) is only related to the system outputs and control inputs
of the controlled plant, and it not explicitly or implicitly
includes the parametric and structural information of physical
dynamics of a controlled plant. In addition, the data model
(2) is only purposed to the control system design, and it
is not suitable for other objectives, such as monitoring and
diagnosis.

The consensus tracking problem of the leader-follower
MAS described by (1) under the graph G is summarized as
follows.

The leader’s command at the time instant k is denoted as
yd (k). The global control objective is to develop a data-driven
distributed adaptive control approach that drives the system
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output yq(k) to yd (k) when the time instant k tends to infinity;
that is, the tracking error lim

k→∞
eq(k) = yd (k) − yq(k) = 0,

although the local information among neighboring agents is
only used and the leader’s command is only accessible to a
subset of the follower agents. To describe the local measure-
ment information of agent q with its neighbors, we define the
following distributed tracking error ξq(k) under G as:

ξq(k) =
∑
p∈Nq

aq,p
(
yp(k)− yq(k)

)
+ dq

(
yd (k)− yq(k)

)
, (3)

where Nq denotes the set of neighbors of agent q; aq,p = 1
if agent q can receive information from its neighboring agent
p, otherwise aq,p = 0, specially aq,q = 0; dq = 1 if agent q
receives the leader’s command yd (k), otherwise dq = 0.
The first issue for developing the distributed control

approach is the structure design of a distributed control law.
Since the physical model of theMAS described by (1) is com-
pletely unknown, so far there is not a systematic way to deter-
mine the distributed controller structure. The second issue is
related to the design of the distributed control gain updating
algorithm using only the local measurement information.
The last important issue is the stability properties of the
developed data-driven distributed control approach. In next
section, these issues are discussed in detail.

III. MAIN RESULTS
A. DISTRIBUTED CONTROL LAW
This subsection considers the design of the distributed
controller structure through only known local information.
Assume there exists an ideal distributed consensus controller
in theory that can guarantee the system output of agent q equal
to yd (k+1) in one step-ahead. The ideal distributed controller
can be written in the following mathematical form:

uq(k) = Cq
(
ξq(k + 1), · · · , ξq(k − ne + 2),

uq(k − 1), · · · , uq(k − nc)
)
, (4)

where Cq(·) : Rne+nc 7→ R1 is an unknown nonlinear
function; ne ∈ Z+ and nc ∈ Z+ are the unknown orders
of ideal distributed controller (4) on the distributed tracking
errors and control inputs, respectively.

The assumption on (4) implies that it is reachable and
the detailed discussions are referred to [30]. In practice,
the controller (4) is difficult to derive. Thus the key task is
to transform it into a practical distributed controller, while
keeping it equivalent to (4) in the input-output data sense.
In achieving this, the following two assumptions are required.
Assumption 2: The partial derivative of Cq(·) with respect

to the distributed tracking error ξq(k + 1) is continuous.
Assumption 3: Cq(·) satisfies the generalized Lipschitz

condition, that is, if |δξq(k + 1)| 6= 0, then there exists an
unknown constant β > 0 such that

|δuq(k)| ≤ β|δξq(k + 1)|, (5)

where δξq(k + 1) = ξq(k + 1)− ξq(k).

Assumption 2 is common since many controllers, such as
the distributed proportional controller [31] and the distributed
adaptive controller [32], generally satisfy this condition.
Assumption 3 implies that the ideal distributed controller (4)
is required to be stable [16].
Lemma 1: The controller (4) satisfies Assumptions 2

and 3. If |δξq(k + 1)| 6= 0, then there exists an unknown
controller parameter θq(k), such that (4) can be transformed
into the following equivalent distributed control law using the
compact form dynamic linearization (CFDL) method:

δuq(k) = θq(k)δξq(k + 1), (6)

where |θq(k)| ≤ bt , and bt > 0 is an unknown constant.
Proof:Lemma 1 can be proved by utilizing the differen-

tial mean value theorem through Assumptions 2 and 3. The
derivative detail is similar to the results in [30], [33] and thus
the derivations are omitted.

For simplicity, we label the obtained distributed control law
(6) as CFDL controller (CFDLc).
Remark 2: The CFDLc (6), with a time-varying lineariza-

tion structure, is equivalent to the ideal distributed controller
(4), which implies two points. One point is that the structure
complexity of (6) does not increase even though the agent sys-
tem (1) is highly nonlinear. Another point is that the CFDLc
(6) can be considered as a candidate consensus controller for
unknown nonlinear MASs as described by (1) since (6) can
drive eq(k + 1) = 0 in one-step. In other words, the issue
of designing a distributed controller structure is addressed
through the CFDL method, while the existing distributed
controller structures are usually given in an ad hoc way.
Remark 3: Lemma 1 indicates that the CFDLc (6) is inde-

pendent of the agent system (1), and θq(k) can be obtained
through only the local information using some data analytical
approaches when the dynamic model of agent q is unavail-
able. It can also be obtained via the model based optimization
method through submitting (6) into the agent system (1) when
its dynamic model is known. This paper just considers the
issue of obtaining θq(k) using only the local information
communicated with agent q.
The CFDLc (6) cannot be implemented in practice due to

the presence of the noncausal term ξq(k + 1) in (6). Similar
to [33], the following practical CFDLc is obtained:

δuq(k) = −θq(k)ξq(k), (7)

which means that uq(k) can be computed directly according
to the measured ξq(k) at current time instant k . Note that (7)
is not an approximation to (6), but a direct derivation from the
observation that (6) can drive eq(k + 1) = 0.

B. DISTRIBUTED CONTROL GAIN UPDATING ALGORITHM
This subsection considers the second issue on tuning θq(k)
in the CFDLc (7) using only the local information communi-
cated with agent q via the data model (2).
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We first consider the following control objective function:

Jq =
1
2

∑
p∈Nq

aq,p
(
yp(k + 1)− yq(k + 1)

)2
+

1
2
dq
(
yd (k + 1)− yq(k + 1)

)2
+

1
2
λδu2q(k), (8)

where λ > 0 is a weight factor used as penalty for δuq(k).
In order to obtain the optimal control gain θq(k) under the

control objective function (8), the relationship between yq(k+
1) and uq(k) for agent q is required. In achieving this, the data
model (2) is applied and we rewrite it as

yq(k + 1) = yq(k)+ ψq(k)δuq(k). (9)

Taking the CFDLc (7) and data model (9) into the control
objective function (8), we obtain

Jq =
1
2

∑
p∈Nq

aq,p
(
yp(k + 1)− yq(k)+ ψq(k)θq(k)ξq(k)

)2
+

1
2
dq
(
yd (k + 1)− yq(k)+ ψq(k)θq(k)ξq(k)

)2
+

1
2
λ
(
θq(k)ξq(k)

)2
. (10)

Equation (10) indicates that the control objective function (8)
is transformed into an identification function of θq(k). Then
the tuning of θq(k) is achieved by applying the following
Newton-type optimization method:

θq(k + 1) = θq(k)− γ

(
∂2Jq
∂θ2q (k)

)−1
∂Jq
∂θq(k)

= θq(k)− γ
ψq(k)ξq(k + 1)+ λθq(k)ξq(k)(

λ+ ψ2
q (k)

)
ξq(k)

, (11)

with the given resetting mechanism

θq(k + 1) = −bt if θq(k + 1) < −bt ,

or θq(k + 1) = 0 if θq(k + 1) > 0, (12)

where γ ∈ (0, 1] is the step size of θq(k).
Note that the control gain θq(k) is not required to be

updated if the distributed tracking error ξq(k) = 0 since
yd (k) = yq(k) in this case; that is, a perfect tracking for agent
q is achieved.

However the control gain updating algorithm (11) is not
realizable sinceψq(k) is unknown and ξq(k+1) is noncausal.
For simplicity, we consider the updating algorithm given
in [23] to estimate ψq(k):

ψ̂q(k) = ψ̂q(k − 1)+
ηεq(k)δuq(k − 1)
µ+ δu2(k − 1)

, (13)

with the resetting mechanism

ψ̂q(k) = ψ̂q(k − 1) if ψ̂q(k) < σ or ψ̂q(k) > bp, (14)

where

εq(k) = δyq(k)− ψ̂q(k − 1)δuq(k − 1),

µ > 0 is a weight factor, η ∈ (0, 1] is the step size of ψq(k),
and σ is a tiny positive constant.

Based on the estimation given in (13) and (14), the estima-
tion of the noncausal term ξq(k + 1) is given by

ξ̂q(k + 1) =
∑
p∈Nq

aq,p
(
ŷp(k + 1)− ŷq(k + 1)

)
+ dq

(
yd (k + 1)− ŷq(k + 1)

)
, (15)

where

ŷp(k + 1) = yp(k)− ψ̂p(k)δup(k), (16)

ŷq(k + 1) = yq(k)− ψ̂q(k)δuq(k). (17)

C. SUMMARIZED DISTRIBUTED ADAPTIVE
CONTROL APPROACH
The CFDLc (7), the two updating algorithms (11) and (13)
with the resetting mechanisms (12) and (14), and the dis-
tributed tracking error estimation (15), formulate the dis-
tributed consensus tracking approach. The detailed steps are
as follows.
Step 1: Set k = 1, initialize the local measurement data

and the ψ̂q(1) satisfying σ ≤ ψ̂q(1) ≤ bp, and randomly set
θq(1) satisfying −bt ≤ θq(1) < 0.
Step 2: Compute the control input

uq(k) = uq(k − 1)− θq(k)ξq(k), (18)

rewritten from the CFDLc (7), apply it to agent q, and collect
yq(k + 1) and uq(k).
Step 3: Update the PPD estimation value ψ̂q(k) using (13)

with the resetting mechanism (14).
Step 4: Compute ξ̂q(k + 1) by (15) with (16) and (17).
Step 5: Update the control gain

θq(k + 1) = θq(k)− γ
ψ̂q(k)ξ̂q(k + 1)+ λθq(k)ξq(k)(

λ+ ψ̂2
q (k)

)
ξq(k)

, (19)

with the resetting mechanism (12).
Step 6: Set k = k + 1, and go back to Step 2.
For convenient descriptions, we label the proposed

approach as CFDL based distributed adaptive control
(CFDL-DAC).
Remark 4: The proposed CFDL-DAC illustrates that no

physical dynamics of the controlled MAS are involved into
the distributed controller design. The parameter updating
algorithm (13) is based on only the input-output data of
each agent. The distributed tracking error estimation (15),
the distributed control law (18) and the distributed control
gain updating algorithm (19) are designed using only the local
information communicated to agent q. Further, the design for
the distributed control law (18) is an independent process of
the dynamics of agent q. Hence, the proposed CFDL-DAC is
a pure data-driven distributed control approach.

Note that the proposed CFDL-DAC can be extended to
deal with the leaderless control problems [34], [35] since it
is applicable as long as the local measurement information
can be described, which is demonstrated by (3). However,
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the results in [34], [35] are obtained for continues-time multi-
agent systems with unknown control directions, and this
paper considers discrete-time multi-agent systems where the
control directions are known. Therefore, the two obstacles are
required to be tackled before utilizing the proposed approach.

D. CONVERGENCE ANALYSES
The lemma following [36] is applied to facilitate the conver-
gence analyses.
Lemma 2: HHH (k) ∈ RN×N is an irreducible stochastic

matrix with positive diagonal entries and H is the set of all
possibleHHH (k). The multiplication of Q matrixes satisfies

‖HHH (Q)HHH (Q− 1) · · ·HHH (1)‖ ≤ ι, (20)

where {HHH (r)|r = 1, 2, · · · ,Q,Q ∈ Z+} is the subset of the
Q matrixes arbitrarily selected from H, and 0 < ι < 1.
Theorem 1: Let the MAS described by (1) under the com-

munication graph G satisfying Assumptions 1–3, be con-
trolled by the proposed CFDL-DAC. The leader’s command
yd (k) is assumed to be time-invariant, namely, yd (k) ≡ c, c
is a constant. Then eq(k) converges to zero as k →∞ for all
q = 1, 2, · · · ,N , if the following condition is satisfied:

bt <
1

bp
(

max
q=1,··· ,N

∑N
p=1 aq,p + dq

) . (21)

Proof:We let

yyy(k) = [y1(k), y2(k), · · · , yN (k)]T ∈ RN ,

uuu(k) = [u1(k), u2(k), · · · , uN (k)]T ∈ RN ,

eee(k) = [e1(k), e2(k), · · · , eN (k)]T ∈ RN ,

ξξξ (k) = [ξ1(k), ξ2(k), · · · , ξN (k)]T ∈ RN ,

and rewrite equations (2) and (3) respectively as the following
form based on yd (k) ≡ c:

eq(k + 1) = eq(k)− ψq(k)δuq(k), (22)

ξq(k) =
∑
p∈Nq

aq,p
(
eq(k)− ep(k)

)
+ dqeq(k), (23)

Then equations (22) and (23) can be respectively expressed
by the following vector forms:

eee(k + 1) = eee(k)−999(k)δuuu(k), (24)

ξξξ (k) = (LLL +DDD)eee(k), (25)

where

999(k) = diag(ψ1(k), ψ2(k), · · · , ψN (k)) ∈ RN×N ,

δuuu(k) = uuu(k)− uuu(k − 1),

DDD = diag(d1, d2, · · · , dN ) ∈ RN×N ,

and LLL ∈ RN×N is the Laplacian matrix of the follower agents
under the communication graph G.
Similarly, we rewrite (7) as the following vector form:

δuuu(k) = −222(k)ξξξ (k), (26)

where222(k) = diag(θ1(k), θ2(k), · · · , θN (k)) ∈ RN×N .

Substituting (26) into (24) yields the following closed-loop
error dynamics:

eee(k + 1) = eee(k)+999(k)222(k)ξξξ (k). (27)

Then based on equation (25), it has

eee(k + 1) = eee(k)+999(k)222(k)(LLL +DDD)eee(k)

=
(
III +222(k)999(k)(LLL +DDD)

)
eee(k). (28)

From Assumption 1, we have that 0 < ψq(k) ≤ bp.
Besides, III +222(k)999(k)(LLL+DDD) must be an irreducible matrix
since the communication graph G is assume to be strongly
connected. Based on the resetting mechanism (12), for the
matrix III+222(k)999(k)(LLL+DDD), if the condition (21) is satisfied,
then there is at least one row sum of the matrix strictly less
than one, which means that it is an irreducible stochastic
matrix with positive diagonal entries.
With equation (28), we can conclude that

eee(k + 1) = GGG(k, 1)eee(1), (29)

where

GGG(k, 1) =
k∏
j=1

(
III +222(k − j+ 1)999(k − j+ 1)(LLL +DDD)

)
.

Taking norms on both sides of equation (29) yields

‖eee(k + 1)‖ ≤ ‖GGG(k, 1)‖‖eee(1)‖, (30)

By grouping allQmatrixes together forGGG(k, 1) in (30), and
applying Lemma 2, we have

‖eee(k + 1)‖ ≤ ιb
k
Q c‖eee(1)‖, (31)

where b·c indicates the smaller but nearest integer to the real
number k/Q. Then it is obtained that lim

k→∞
‖eee(k + 1)‖ = 0;

that is, the tracking error eq(k) converges to zero as k → ∞
for all q = 1, 2, · · · ,N . This proof is completed.

Next the communication graph for the MAS described by
(1) is extended to switching topologies, where each commu-
nication graph is strongly connected and at least one agent is
communicated to the leader’s command at each time instant k
for each graph. To facilitate the description of the switching
topologies, we denote G(k) as a time-varying graph at time
instant k , then we can have matrixes LLL(k) and DDD(k) with the
same denotation as aforementioned. Furthermore, we denote
Gt = {G1,G2, · · · ,GP} as the set of all possible directed
graphs, describing the switching communication topologies,
where P ∈ Z+ is the total number of possible communication
topologies. In this case, the stability of the CFDL-DAC is
summarized as follows.
Corollary 1: Let the MAS described by (1) satisfying

Assumptions 1–3, be controlled by the proposedCFDL-DAC,
where the communication topology is the switching graphs
Gt = {G1,G2, · · · ,GP}, each graph is strongly connected, and
the leader’s command yd (k) is assumed to be time-invariant,
namely, yd (k) ≡ c. Then the tracking error eq(k) converges
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to zero as k → ∞ for all q = 1, 2, · · · ,N , if we select bt
satisfying the following condition:

bt <
1

bp
(

max
q=1,··· ,N
m=1,··· ,P

∑N
p=1 aq,p(m)+ dq(m)

) , (32)

where (aq,p(m)) is the weighted adjacent matrix of Gm, dq(m)
is the entries of D(m) = diag(d1(m), · · · , dN (m)) under Gm,
Gm is the element of set Gt , and m = 1, 2, · · · ,P.

Proof:In this case, equation (25) is rewritten as

ξξξ (k) = (LLL(k)+DDD(k))eee(k), (33)

then based on equations (24) and (26), we have

eee(k + 1) =
(
III +222(k)999(k)(LLL(k)+DDD(k))

)
eee(k). (34)

Since all the possible communication topologies are
strongly connected, III + 222(k)999(k)(LLL(k) + DDD(k)) is still an
irreducible matrix. It is noted that the set {LLL1 + DDD1,LLL2 +
DDD2, · · · ,LLLP + DDDP} includes all the possible matrices of
LLL(k)+DDD(k). If the condition (32) is satisfied, then the greatest
diagonal entry of III +222(k)999(k)(LLL(k) +DDD(k)) is less than 1;
that is, the matrix III +222(k)999(k)(LLL(k)+DDD(k)) is irreducibly
stochastic with positive diagonal entries. Similar to the proof
of Theorem 1, it then can be obtained that the tracking error
eq(k) converges to zero as k → ∞ for all q = 1, 2, · · · ,N .
This completes the proof.
Remark 5: The results of Theorem 1 and Corollary 1 are

based on the time-invariant leader’s command, and the con-
vergence conditions (21) and (32) require a global com-
munication topology to determine bt . The limitation in
determining bt probably can be avoided by introducing the
stability analysis methods given in [32]. However, the results
in [32] are based on the availability of physical model of a
controlled plant. The agent system considered in this paper is
unknown. Therefore, it may need to integrate other analysis
methods in addressing this problem. In future work the case
of time-varying leader’s command will be investigated for
generalizing the proposed approach given in this paper.

The conditions (21) and (32) given in Theorem 1 and
Corollary 1 seem from their mathematical forms that they
can be ensured by simply choosing −bt ≥ θq(k) < 0.
However, it should be noted that θq(k) is designed to achieve
its automatic tuning using only the local information among
neighboring agents. This is different from the most exist-
ing distributed control schemes where the control gains are
usually calibrated heuristically and chosen as fixed values
if the physical dynamics of a controlled plant are unknown.
As presented by the control gain updating algorithm (11), this
automation helps search and approximate the optimal value
of the control gain in the sense of minimizing the control
objective function (8). Moreover, bt is purposed to be chosen
a value as large as possible under the conditions of (21) and
(32), so that θq(k) can be searched in a larger space in order
to better approximate the optimal value.

FIGURE 1. Fixed communication topology.

IV. SIMULATION RESULTS
To illustrate the effectiveness of the proposed CFDL-DAC,
three examples are simulated in this paper. The three exam-
ples consider the same nonlinear heterogeneous discrete-time
MAS, where the first two examples are conducted under the
fixed and switching communication topologies, respectively,
with time-invariant leader’s command, and the third example
is proceeded with time-varying leader’s command.

The nonlinear heterogeneous discrete-time MAS consists
of four follower agents, where the follower agent models are
governed by

y1(k + 1) =
y1(k − 1)y1(k)

1+ y21(k − 1)+ y21(k)
+ 3u1(k),

y2(k + 1) =
y2(k)

1+ y42(k)
+ u32(k),

y3(k + 1) =
y3(k − 1)y3(k)u3(k − 1)+ u3(k)

1+ y23(k − 1)+ y23(k)
+u33(k),

y4(k + 1) =
y4(k)u4(k)

1+ y64(k)
+ 2u4(k),

(35)

and the initial system outputs of the four follower agents are
set as y1(1) = y2(1) = y3(1) = y4(1) = 0. Furthermore,
we would like to point out that the dynamic models of the
simulated MAS are only for generating the input-output data,
and are not involved in the control system design.

A. EXAMPLE 1: FIXED COMMUNICATION TOPOLOGY
Fig. 1 shows the communication topology, where the leader
is described by vertex 0, and only agents 1 and 4 receive the
leader’s command. The communication among neighboring
agents is depicted by solid arrows. We use 0 and 1 as weights
for the information communicated between two adjacent
follower agents, therefore the Laplacian matrix among the
follower agents is given by

LLL =


2 −1 −1 0
0 1 0 −1
−1 0 1 0
0 −1 −1 2

 ,
andDDD = diag(1, 0, 0, 1).
It is seen that the communication topology is strongly

connected. The bound of θq(k) is set as bt = 0.2, and the
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FIGURE 2. Tracking performance (Example 1).

FIGURE 3. Tracking error (Example 1).

FIGURE 4. Control gains (Example 1).

bound of ψq(k) is given as bp = 1. Thus it can be obtained:

{0.2, 0.15} <
1

1×
(

max
q=1,··· ,4

∑4
p=1 aq,p + dq

)
=

1
1× 3

≈ 0.3, (36)

which indicates that the convergence condition (21) of Theo-
rem 1 is satisfied.

We set the leader’s command as yd (k) = 6, and the
simulation is executed with 120 time instants. The simulation
results are shown in Figs. 2–4. Fig. 2 and Fig. 3 are the
tracking performances and tracking errors of the four follower
agents, respectively. Fig. 4 shows the updating values of the
control gains for the four follower agents.

It is obvious that the system outputs of the four follower
agents have large deviations from the leader’s command at

FIGURE 5. Switching communication topologies.

FIGURE 6. Tracking performance (Example 2).

FIGURE 7. Tracking error (Example 2).

the primary time instants, but all the tracking errors of the
four agents gradually decrease and the consensus tracking is
basically achieved after 60 time instants. Furthermore, we can
conclude from Fig. 4 that the proposed CFDL-DAC keeps
automatically tuning and updating the control gains for the
four follower agents to search the optimal values before the
consensus tracking is achieved.

B. EXAMPLE 2: SWITCHING COMMUNICATION
TOPOLOGIES
In this subsection, we represent that the proposed
CFDL-DAC also works well under switching communication
topologies. The communication topologies switch randomly
among three graphs, which are described by the set Gt =
{G1,G2,G3}, as shown in Fig. 5. Fig. 5 shows that each graph
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FIGURE 8. Control gain (Example 2).

FIGURE 9. Tracking performance for fixed topology (Example 3).

FIGURE 10. Tracking error for fixed topology (Example 3).

of the three communication topologies is strongly connected.
The bound of θq(k) and ψq(k) are respectively set as bt =
0.12 and bp = 2, therefore it can be obtained that

0.12 <
1

2×
(

max
q=1,··· ,4

∑4
p=1 aq,p + dq

) = 1
2× 3

≈ 0.17,

(37)

which indicates that the convergence condition (32) for
Corollary 1 is satisfied.

We set the leader’s command as yd (k) = 4, and the simula-
tion results are shown in Figs. 6–8. It is observed that the con-
sensus tracking is achieved, and the tracking errors of all the
follower agents converge to zero after 120 time instants which
verifies the result of Corollary 1. The automatic tuning of the
control gain, as shown in Fig. 8, contributes to the ability of
tracking the leader’s command for the proposed CFDL-DAC
even under the switching communication topologies.

FIGURE 11. Tracking performance for switching topologies (Example 3).

FIGURE 12. Tracking error for switching topologies (Example 3).

C. EXAMPLE 3: TIME-VARYING LEADER’s COMMAND
To further demonstrate the effectiveness of the proposed
approach, in this subsection we consider the time-varying
leader’s command described by

yd (k) = 3+ 2 sin(0.9kπ/260)+ cos(kπ/240), (38)

and the simulation is executed with 700 time instants. In this
simulation, the fixed graph as shown in Fig. 1 and the switch-
ing topologies as depicted in Fig. 5 are considered.

The simulation results are presented in Figs. 9-12. These
results show that the system outputs of the four follower
agents rapidly approximate to the neighborhood of the
leader’s command from a large deviation at the initial time
instant. Although the tracking errors do not converge to zero,
they reduce to a small bound.

V. CONCLUSION
This paper investigated a distributed leader-follower consen-
sus tracking approach for a class of unknown nonlinear non-
affine discrete-timeMASs. A data-driven distributed adaptive
control scheme was designed using only the local measure-
ments exchanged among neighboring agents via the dynamic
linearization method applied to the controlled MAS and the
ideal distributed controller. The stabilities of the proposed
distributed adaptive control approach were rigorously guar-
anteed under both the fixed and switching communication
topologies. In future, investigating a more general distributed
adaptive control scheme and analyzing its stability properties
for a time-varying leader’s command are interesting topics.
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