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ABSTRACT As part of the energy structure transition, a key focus in district heating systems is the load
distribution optimization of multiple heat sources under the specific heating network. A multi-objective
optimization approach is discussed in this paper with a goal of achieving complementary advantages among
heat sources, and improving the performance of the system in terms of economic cost, energy structure, and
environmental benefits. This paper firstly establishes the mechanism model for multi-source district heating
systems (MSDHS). Secondly, it proposes a multi-objective optimization system to account for the operation
economy, energy structure, and environmental impact for MSDHS. The selected objectives are such selected
that they could be justified and used in real sites. The weights of the objective functions are obtained via
the fuzzy analytic hierarchy process (FAHP). Finally, this paper solves the optimization problem via particle
swarm optimization (PSO) to obtain the optimal load distribution and tests its validity in a real heating system
covering an area of 15 million m2. The optimized load distribution scheme achieves a coal saving of 1.14%,
a natural gas saving of 0.53%, and a cost-saving of $3,270 during a 24-hour pilot operation. This study
provides the basis for future optimization enhancement and algorithm development.

INDEX TERMS District heating system, fuzzy analytical hierarchy process, load distribution.

NOMENCLATURE
ACRONYMS
AHP analytic hierarchy process
CHP combined heat and power
DEA data envelopment analysis
DHS district heating system
DOM dynamic-objective method
FAHP fuzzy analytic hierarchy process
IDHS indirect district heating system
MOO multi-objective optimization
MSDHS multi-source district heating system
PSO particle swarm optimization
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SYMBOLS
A fuzzy complementary judgment matrix
A∗ Complementary judgment matrix corresponding to

wcal
α model parameter to be identified of the gas-fired

boiler
aij binary weight distribution of the relative importance

of i and j
aji binary weight distribution of the relative importance

of j and i
β environment pollution value
C basic loop vector of the heating network
C0 fuel price, $/t or $/m3
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c1, c2 acceleration factor
D mass flow rate of the working fluid, t/h
D0 overall heat load of the system
Dk heat load provided by the k-th heat

source
E section vector of the heating network
Ek power generation of heat source k in

dispatching period, MW
F (x) objective function of a multi-objective

optimization problem
PL power transmission loss
Pk power provided by the k-th heat source
Pe,k on-grid price, $/kWh
Ph,k heating profit, $/t
1P pressure drop vector of sections
pij admissible deviation of the judgment

matrix
p′ij random variable with zero mean
Q heat absorption of the equipment, kW
q net mass flow rate vector of the nodes
T maximum number of iterations
1T dispatch period, h
V node vector of the heating network
vmax maximum particle speed
vij (t) j-dimension flight speed of the particle

i when it evolves to the t-th generation
Vi =
(vi1, vi2, . . . , vin) current flying speed of particle i
W work of the equipment, kW
w weight
1wi deviation between the working fluid

flow rate and the specified flow rate in
a section

xij (t) j-dimensional vector of particle i when
it evolves to the t-th generation

X association matrix of nodes and
sections

Xi =
(xi1, xi2, . . . , xin) current position of particle i
χ ratio of pollutants emitted from fuel

combustion
Y associationmatrix of sections and basic

loops
η equipment efficiency
δ boolean state variable signifying

whether the heat source supplies
power

δwi the maximum allowable deviation
ε arbitrarily small positive number
λw penalty coefficient for flow rate devia-

tion in heat supply quality calculation
9 maximum load increasing rate

SUBSCRIPT
fw velocity deviation coefficient of the pipe

network

gl (x) expression of a constraint
gbest (t) best position that all particles have experienced
G (D) utility function
h enthalpy of the working fluid, kJ/kg
1h enthalpy change of the working fluid, kJ/kg
K number of heat sources
LHVf low heating value of the fuel, kJ/kg
Mf mass flow rate of the fuel, kg/h
N population size
ncmp number of the working fluids in a device mod-

ule in the CHP system
P0 overall power demand of the system
ac amount of constraints
b boiler
cal calculated
cmp component
f fuel
fw boiler feed water
g sequence number of gas-fired boiler heat

sources
k sequence number of heat sources
ms main stream
rh reheat steam
ri reheat steam inlet
ro reheat steam outlet

I. INTRODUCTION
A. BACKGROUND
In 2010, nearly 70% of China’s urban area’s heat demand
was supplied by small coal-fired boilers [1]. Due to the rapid
increase in the building area (from 2001 to 2016, the area
of cities and towns in northern China increased from five
billion m2 to 13 billion m2) [2], clean heating has become a
centerpiece in China’s emission control policy. That leads to
a dramatica change of district heating source structure. The
ongoing trend is the shift from small coal-fired boilers to
combined heat and power (CHP) units as the main source and
peaking boilers as a supplement. As of 2017, more than 50%
of the heat demand for urban district heating in China was
provided by CHP units, and the coal consumption of heating
in North Chinawas 5.8 billionGJ [3]. Such change of heating
source structure in China is part of the continuous renovation
of urban energy systems.

The foundation of the multi-source district heating systems
(MSDHS) optimization is building its mechanism model,
which provides data support for the optimization process.
A lot of researchers have made their contributions to the mod-
eling of MSDHS [4]–[6]. Yang et al. separated the district
heating system (DHS) into three major parts: the straight
pipe, four kinds of local pipes, and the radiator [7]. Their
work built a steady-state model of the DHS that included
hydraulic and thermal sub-models. Li et al. implemented
both steady-state modeling and dynamic modeling of the
indirect district heating system (IDHS) [8]. Respectively, the
steady-state model was used to study the impact of important
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system parameters, and the dynamic model based on energy
balance was used for the efficiency analysis of the system.
Unlike the above studies, Choi et al. considered the thermal
power plant as the core component of the district heating
system, and the validation of the model was verified by the
case study [9].

Based onmodeling, researchers who have a special interest
in the field of MSDHS optimization could focus on the
single-objective optimization of the system. From the per-
spective of improving economic performance, Karlsson et al.
studied the economic potential of multiple heating opera-
tors for regional combined heating [10]. Similarly, Zhang
conducted an economic analysis of heat load distribution in
MSDHS through hydraulic calculation [11]. His objectives
were the optimized design of the heating network and the
scheduling of multiple heat sources. Similarly, regarding the
optimal scheduling of heating systems, Bowitz and Trong
applied the cost-benefit analysis method on the system eco-
nomic performance optimization [12].

In recent years, due to the vigorous promotion of
sustainable development, researchers have shifted their
focus on the MSDHS optimization field from conventional
single-objective optimization to multi-objective optimization
(MOO), including economy and environmental protection.
Xu et al. quantitatively analyzed the economic and envi-
ronmental advantages of Canada’s MSDHS using an energy
balance model [13]. Agrell and Bogetoft used the Data
Envelopment Analysis (DEA) method to comprehensively
evaluate the economic and environmental benefits of the
Danish district heating system driven by CHP units [14].
Hamalainen and Juha proposed a dynamic multi-indicator
optimization model for heating systems considering load
fluctuation conditions [15]. Their work included a case study
with the goal of heating energy consumption, heating cost,
and temperature range. Incorporating more goals into their
study, Zheng and Cai analyzed and compared different heat-
ing modes from three aspects of the economy, environmental
protection, and technology [16]. Their work adopted the gray
system multi-objective comprehensive effect measurement
method to choose the better heating mode. Besides, based
on fuzzy mathematics, Liu and Ang established a multi-level
mathematical model for the comprehensive optimization of
heating systems [17]. Zhang and Ding denoted the uncer-
tainty factors in the central heating system with vectors to
simplify the optimization process [18]. Li et al. proposed a
two-stagemethod that combinesmulti-objective optimization
(MOO) with integrated decision making (IDM) to address
the problem of combined heat and power economic emission
dispatch [49].

From existing studies, it should also be noted that the
integration of objectives through the weight method is widely
used since it can reduce the decision-making cost. The key is
the selection of the weights. Weight methods rely on the data
source and can be divided into two types: objective methods
and subjective methods. Common objective weighting meth-
ods include the entropy weight method, principal component

analysis, and fuzzy comprehensive evaluation. Among them,
the entropy method is widely used in indicator analysis and
risk assessment [19]–[21]. The analytic hierarchy process
(AHP), first proposed by Saaty et al. [22], is a represen-
tative subjective weight method. It combines quantitative
analysis with qualitative analysis and uses the experience of
decision-makers to judge the relative importance of each indi-
cator. Researchers have made improvements to the original
AHP method and proposed new methods such as improved
AHP, fuzzy AHP, extension fuzzy AHP, and grey AHP [23].

As for the optimization algorithm selection, particle swarm
optimization (PSO) has been widely used in the multi-
objective optimization (MOO) field [24], [25]. It is a global
search algorithm first proposed by Eberhart and Kenedy
in 1995 [26]. It simulates the migration and gathering
behavior of birds in the process of foraging and uses the
intelligence of the group to search for better solutions.
However, the traditional PSO has a poor local search capabil-
ity, and the search performance is dependent on parameters.
Therefore, researchers have proposed improved methods of
PSO. In terms of parameter setting, Chatterjee et al. pro-
posed a PSO algorithm with non-linear changes in inertia
weight [27]. Ratnaweera et al. proposed an asynchronous
time-varying acceleration factor [28]. At the same time,
researchers have analyzed the convergence of the algorithm
and proposed methods to improve the convergence [29]–[31].
A large number of engineering practices show that compared
with other optimization algorithms, particle swarm optimiza-
tion needs fewer parameters to adjust, and its structure is
simple, so it is easier to implement in engineering.

Overall, when compared with conventional district heating
systems, well-operated multi-source district heating systems
(MSDHS) are expected to achieve the following advantages.
First, it can safeguard the use of heat sources with volatil-
ity and instability, which are driven by renewable energy.
Second, it can ensure good performance on the economy,
environmental protection, supply reliability, and schedul-
ing flexibility of the urban heating system. Third, it can
achieve coordinated operation of renewable energy, industrial
waste heat, cogeneration, and regional boilers (if necessary)
under the circumstances that the scale of urban heating is
expanding. The specific implementation method of MSDHS
is applying real-time optimization of multi objectives such as
economy, energy structure, and environment to load distribu-
tion among heat sources so that the merits of complementary
advantages can be fully realized.

However, such the expected effect of emission reduc-
tion has not been achieved so far in China’s large-scale
MSDHS due to the fact that MSDHS still follows the con-
ventionally empirical and even manual operation control for-
mulated for single-source small-scale heating systems. The
key problem is that there is no practical multi-constraint
and multi-objective heat load distribution method in China’s
MSDHS that considers the diversity of the current heating
source structure.However, the heat load distribution of the
MSDHS is critical to its operation benefits. For example,
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when the heat demand is low, the system should utilize heat
sources with higher efficiency or are more environmentally
friendly. However, when the heat demand is high, the first
priority is to operate the heat sources connected to the grid
complementarily. Such a tradeoff between operation econ-
omy and environmental impact is necessary. Moreover, even
with the same type of heat sources, the efficiencies of the
sources are impacted by fuel type, model number, and load
conditions. For example, the CHP units and boilers have a
peak in their performance curves, as shown in Fig. 1 and
Fig. 2 [32], [33]. InMSDHS, it is critical to find a reasonable
load distribution ensuring that each heat source (boiler and
CHP units) is in an efficient working condition during the
dispatching period.

FIGURE 1. The efficiency of a CHP unit under different load conditions.

FIGURE 2. The efficiency of a boiler under different load conditions.

Moreover, researches have not been seen that consider the
multi-source load distribution strategy of the heating system
under the constraints of the operation of the heating network
and comprehensively optimize the economy, energy struc-
ture, and environment. Along with the transition of urban

heating systems, a major trend in this area is to take into
account the demand aspect from the heating network with a
complex topology structure during the operation of MSDHS,
such as what Cai et al. mentioned in the heating system
demand-side management study [34].

B. MOTIVATION
Overall, the existing studies haven’t discussed the critical
issue of load distribution problem in MSDHS. As discussed
above, such load distribution should be taken care of under
the general framework of MOO discussed in the previous
studies taking into account the economic and environmental
requirements and coal substitution. In addition, this study
investigates the optimization of multi-source load distribu-
tion by considering both the heating network and the source
coordination and introducing network transport capability
constraints. The goal is the validate the approach of MOO
in both simulation and on-site tests to verify the feasibility of
optimized dispatching strategies in real MSDHS.

The rest of the paper is organized as follows: Section II
illustrates the structure of a typical MSDHS and sets up
the mechanism model for MSDHS, including its sources
and network. Section III establishes an indicator system
for MSDHS based on the fuzzy analytic hierarchy process
(FAHP) and proposes a multi-objective optimization model
for load scheduling and its solving method. Section IV and
section V discuss the results when the proposed methodology
is applied to a real heating system in Beijing and conclude
with the findings from the study, respectively.

II. MODELING OF MSDHS
Referring to the current situation of China’s urban heating
systems [35], the heat sources of the MSDHS considered in
this paper are mainly composed of CHP units and gas-fired
boilers (peaking boilers). Moreover, the modularity and iden-
tification modeling methods described below also apply to
the construction of a general model of MSDHS that contains
renewable energy and industrial waste heat. This paper firstly
constructs an MSDHS model to solve the corresponding
relationship between fuel quantity and heat load. Besides,
the heat supply for the load side in the model is obtained by
prediction.

A. CHP UNITS
Based on the modular modeling method, this paper simulates
the full working condition characteristics of a CHP unit under
a steady state. Any device module in the CHP system can be
modeled using the following equation:

η
∑ncmp

cmp=1
Dcmp1hcmp − Q−W = 0 (1)

where η is the equipment efficiency. ncmp is the number of
working fluids in a device module in the CHP system. The
subscript cmp represents the cmp-th working fluid. D is the
mass flow rate of the working fluid, t/h. 1h is the enthalpy
change of the working fluid, kJ/kg. Q is the heat absorption
of the equipment, kW.W is the work of the equipment, kW.
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As an illustrative example, the boiler module’s energy
balance equation is as follows:

D0
(
hms − hfw

)
+ Drh (hro − hri) = Qb (2)

where D0 is the overall heat load of the system. hms is the
enthalpy of the mainstream. hfw is the enthalpy of the boiler
feedwater.Drh is the mass flow rate of the reheat steam. hro is
the enthalpy of the reheat steam outlet. hri is the enthalpy
of the reheat steam inlet. Qb is the heat absorption of the
boiler, kW.

The first item in the above formula is the heat input from
fuel-burning:

D0
(
hms − hfw

)
= Mf LHVf (3)

whereMf is the mass flow rate of the fuel, kg/h. LHVf is the
low heating value of the fuel, kJ/kg.

B. GAS-FIRED BOILERS
During operation, natural gas and electricity consumption of
gas-fired boilers are key considerations as they constitute the
major sources of pollution [36]. For simplicity, this paper
uses the identification method to build the gas boiler model,
and only considers the influence of the boiler’s heat load on
its thermal efficiency. Therefore, the performance curve of
the d th gas boiler, which illustrates the relationship between
the heat load D and the fuel consumption f , can be obtained
by using the least square method:

fd (Dd ) = αd0 + αd1Dd + · · · + αdcDcd (4)

where α is the model parameter to be identified of the
gas-fired boiler.

In this paper, (4) takes the quadratic polynomial to meet
the accuracy requirements.

C. HEATING NETWORK
In this paper, a graph-based method is used to establish a
mathematical model describing the topology of the heating
network, and the solution of the network balance is solved by
Kirchhoff’s law. The specific process is as follows:

1) The heating network topology is described as a
directed flow chart containing M nodes (heat sources,
users, pumps, etc.), N sections (pipes), and S basic
loops. These components are represented by vectors,
respectively:

V = {V1, . . . ,Vm, . . . ,VM } (1 ≤ m ≤ M) (5)

E = {E1, . . . ,En, . . . ,EN } (1 ≤ n ≤ N ) (6)

C = {C1, . . . ,Cs, . . . ,CS} (1 ≤ s ≤ S) (7)

where V is the node vector of the heating network. E is
the section vector of the heating network. C is the basic
loop vector of the heating network.

2) The association matrix X (M × N ) is used to represent
the connection relationship between any node Vm and
any section En of the heating network. The matrix

row number corresponds to the node number, and the
column number corresponds to the section number:

X =



X11 · · · X1n · · · X1N
...

. . .
...

. . .
...

Xm1 · · · Xmn · · · XmN
...

. . .
...

. . .
...

XM1 · · · XMn · · · XMN

 (8)

The matrix element Xmn is defined as follows:

Xmn =


1 If the working fluid in section
−1 If the working fluid in section
0 If section n is not connected

n flows to node m

n flows to node m

to node m (9)

The association matrix Y (S × N ) is used to represent
the affiliation between any section En and any basic
loopCS of the heating network. Thematrix row number
corresponds to the basic loop number, and the column
number corresponds to the section number:

Y =



Y11 · · · Y1n · · · Y1N
...

. . .
...

. . .
...

Ys1 · · · Ysn · · · YsN
...

. . .
...

. . .
...

YS1 · · · YSn · · · YSN

 (10)

The matrix element Ysn is defined as follows:

Ysn =


1 If segment n belongs to
−1 If segment n belongs to
0 If segment n does not

loop s and is clockwise

loop s and is counterclockwise

belong to loop s (11)

3) The node energy conservation and basic loop momen-
tum conservation equations are established as follows:

XQTnet = q (12)

Y1PT = 0 (13)

where QTnet is the heat absorption of heating network
when working fluid temperature is T , kW. q is the
net mass flow rate vector of the nodes. 1PT is the
pressure drop vector of sections when working fluid
temperature is T .

Based on (12) and (13), this paper initializes the distri-
bution of the mass flow rate for each section based on the
least square method. Then this paper uses the maximum clo-
sure difference method to redistribute the flow rate. Finally,
the pressure distribution of thewhole networkmodel is solved
via iterations. The detailed solving process could be found
out in the authors’ previous study, where an industrial heating
network was used as an example [37].
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TABLE 1. Binary scale values of the complementary judgment matrix.

III. MULTI-OBJECTIVE OPTIMIZATION OF MSDHS
The MOO problem refers to minimizing of several objec-
tives simultaneously under a set of constraint conditions. The
MOO problem containing num objectives and ac constric-
tions can be described as the following general form:

minF (x) = min [f1 (x) , f2 (x) , . . . , fnum (x)]

s.t. gl (x) ≤ 0, l = 1, 2, . . . , ac (14)

One of the approaches to solving the MOO problem is the
weight method [38]. Due to its simplicity and engineering
applicability, this paper uses weight analysis in bothmodeling
and field tests. Through assigning weights to each objective,
the objective functions are combined into a single composite
function to obtain an optimal solution. However, it should be
emphasized that the difficulty lies in how to determine the
weights.

A. MULTI-OBJECTIVE WEIGHT ANALYSIS
According to the principle of constructing the MOO
indices [39] and recent developments of MSDHS in China,
this article establishes a MOO index system by referring to
related researches [40]–[42]. After applying the analysis of
laddered coherence, the system (consisting of the goal layer,
index layer, and scheme layer) is illustrated in Fig. 3.

FIGURE 3. Multi-objective optimization index system for multi-heat
source heating system.

In this paper, weights corresponding to the economy,
energy structure, and environment on the index layer relative
to the goal layer are calculated employing FAHP. The AHP
has been widely used in the integrated optimization of heat-
ing systems. FAHP based on the complementary judgment
matrix is one of the improved AHPs in terms of weight

determination [43], [44]. The overall calculating process of
FAHP in this paper can be briefly stated as following steps:
• Step1: Determine the binary weights according to the
definitions in Table 1, and construct a fuzzy complemen-
tary judgment matrix by pairwise comparison between
optimization indices.

• Step2: Conduct a consistency check for the matrix con-
structed in Step 1.

• Step3: Solve the judgment matrix that meets the con-
sistency requirements to obtain the weight vector of
optimization indices.

According to Table 1, fuzzy complementary judgment
matrix A can be written as:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


∀i, j = 1, 2, . . . , n, 0 ≤ aij ≤ 1, aij + aji = 1 (15)

where aij is the binary weight distribution of the relative
importance of i and j. aji is the binary weight distribution of
the relative importance of j and i.

Let the i-th and the j-th index be respectively wi and wj.
Then aij is given by:

aij =
wi

wi + wj
(16)

where w is the hypothesis index of complementary judgment
matrix, weight vector.

For fuzzy complementary judgment matrix A =(
aij
)
n×n ,∀i, j, k = 1, 2, . . . , n, if:

aikakjaji = aijajkaki (17)

Then A is said to be complementary and consistent.
If fuzzy complementary judgment matrix A =

(
aij
)
n×n ,

∀i, j = 1, 2, . . . , n does not satisfy the consistency, but

A′ =
(
a′ij
)
n×m

a′ij = aij ± pij, ∀i, j = 1, 2, . . . , n (18)

satisfies the consistency,A is said to be with satisfying consis-
tency. pij is the admissible deviation of the judgment matrix.
Assuming that deviation of judgment matrix elements

is p′ij, then the matrix composed by p′ij is called the deviation
matrix of the judgment matrix A.

p′ij = aij −
wi

wi + wj
(19)

According to (18), the deviation optimum objective func-
tion is defined as:

min� =
∑n

i=1

∑n

j=1

[(
wi + wj

)
p′ij
]2

=

∑n

i=1

∑n

j=1

(
aijwi + aijwj − wi

)2
s.t. wi < 0, and

∑n

i=1
wi = 1 i, j =1, 2, . . . , n (20)

where wi is obtained by the Lagrange multiplier rule.
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The judgment matrix A∗ with complementary and consis-
tency can be constructed making use of wi, which is based
on (15). After that, a consistency check is carried out through
statistical hypothesis testing of the difference between matrix
elements in A and A∗.

In accordance with the idea of weight determination, what
this paper adopts in practice is the following three steps:
• Step1: Construct a fuzzy complementary judgment
matrix according to the needs of different projects or
stage requirements.

• Step2: Through the Lagrange multiplier rule mentioned
above, seek a weight vector which is mostly close to
the fuzzy complementary judgment matrix (optimiz-
ing (19)).

• Step3: According to the optimal results, weights of three
indices in this paper are determined as follow:

wcal = (0.4771, 0.2071, 0.3158) (21)

where the subscript cal is the calculation result.
Complementary judgment matrix A∗ corresponding towcal

is presented below:

A∗ =

 0.500 0.697 0.602
0.303 0.500 0.396
0.398 0.604 0.500

 (22)

B. OPTIMIZATION FORMULATION
1) OBJECTIVE FUNCTION
Based on the heating system model (used for generating
system energy consumption under different working condi-
tions) and weight vector with respect to optimization indices
(applied to weight method analysis), this article specifically
focuses on the MOO problem of MSDHS. At the given
temperature of the working fluid, heat load distribution can be
converted to mass flow rate distribution of the working fluid.
The optimization functions corresponding to each index have
the following forms:
Economic objective:

F1 (D) =
∑K

k=1
1T

[
δkEkPe,k + DkPh,k−fk (Dk)Cok

]
(23)

Energy structure objective:

F2 (D) =
∑G

g=1
fg
(
Dg
)
/
∑K

k=1
fk (Dk) (24)

Environmental objective:

F3 (D)=−
∑K

k=1
T
(
βSO2,kχSO2,k+βNOX ,kχNOX ,k

)
fk (Dk)

(25)

where F (x) is the objective function of a multi-objective
optimization problem. 1T is the dispatch period, h. δk is
the boolean state variable signifying whether the heat source
supplies power. When the heat source is a CHP unit, δk is
a positive value, but considering the auxiliary power, δk is
less than 1. When the heat source is a gas-fired boiler,

δk is equal to −1. The subscript k is the sequence number
of heat sources. Ek is the power generation of heat source k
in dispatching period, MW. Pe,k is the on-grid price, $/kWh.
Ph,k is the heating profit, $/t. Co is the fuel price, $/t or $/m3.
The subscript g is the sequence number of gas-fired boiler
heat sources. χ is the ratio of pollutants emitted from fuel
combustion.

TABLE 2. Amount of pollutants produced by fuel combustion.

Environmental pollution values βSO2,k and βNOX ,k are
illustrated in Table 2 [45].

Subsequently, through normalizing objective functions,
the MOO utility function of MSDHS can be written as:

maxG (D) = max
∑3

i=1
wiF̄i (D) (26)

where F̄i (D) is the index performance value of the i-th index
after normalization.

2) CONSTRAINTS
1) The constraint of heat load equilibrium and power

demand equilibrium:∑K

k=1
Dk = D0 + DL∑K

k=1
Pk = P0 + PL (27)

2) The constraint of heat load variation range:

Dmin
k ≤ Dk ≤ Dmax

k (28)

3) The constraint of increasing load rate and decreasing
load rate: ∣∣Dk,T+1 − Dk,T ∣∣

1T
≤ 9k (29)

where D0 is the overall heat load of the system. DL is
the heat transmission loss. Dk is the heat load pro-
vided by the k-th heat source. P0 is the overall power
demand of the system. PL is the power transmission
loss. Pk is the power provided by the k-th heat source.
The superscripts min and max represent the minimum
and maximum heat load that the heat source can pro-
vide, respectively.Dmax

k depends on the design capacity
of the heat source. Dmin

k refers to the lowest heat load
that the heat source can provide when it can operate
continuously, safely, and stably. The minimum allow-
able load of the boiler in a thermal power plant is
generally 60%-70% of the rated load and the minimum
load can reach 40-50%.1T is the dispatch period.9k is
the maximum heating load rise and fall rate that the kth
heat source can bear. For a steam turbine, too fast lifting
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and lowering load rate will lead to a large temperature
difference between the upper and lower surfaces of the
steam turbine cylinder and the inner and outer surface,
and the thermal stress of the steam turbine is too large.
Therefore, the load-lifting and lowering rate of the large
and medium-sized steam turbine should be controlled
within 1%/min-1.5%/min to ensure the safety of the
unit.

4) The constraint of transmission and distribution capacity
of the heating network:

fw ≤ fw,max (30)

1wi ≤ δwi (31)

fw =
∑

1wi (32)

1wi =


λw
wi,min − wi
wi,min

, wi < wi,min

0, wi,min ≤ wi ≤ wi,max

λw
wi − wi,max

wi,max
, wi > wi,max

(33)

To ensure the feasibility of the optimization results,
not only the constraints of heat sources but also the
constraints of the heat supply network should be con-
sidered. The constraints of the urban heating network
aremainly reflected in the transmission and distribution
capacity of the network, that is, the hot water flow
rate should be kept within a certain range. Where fw is
the velocity deviation coefficient of the pipe network.
fw,max is the maximum value of fw.1wi is the deviation
between the working fluid flow rate and the specified
flow rate in a section. δwi is the maximum allowable
deviation. λw is the penalty coefficient for flow rate
deviation in heat supply quality calculation. w is the
working fluid flow rate.

In addition, to avoid the hydraulic imbalance problem in
the heating system, constraints of heating network distribu-
tion capacity should be considered. The key is to determine
whether there is a solution satisfying the distribution capacity
of the heating network under the combination of pumps,
valves, and the heat load distribution. In this paper, through
solving the heating network model mentioned above, if the
flow rate and the pressure distribution are positive, the system
achieves in matching supply and demand of heat sources and
users. Otherwise, the given heat load distribution is invalid.

IV. PARTICLE SWARM OPTIMIZATION(PSO)
A. BASIC PRINCIPLES OF PARTICLE SWARM
OPTIMIZATION
Particle swarm optimization is a typical swarm intelligence
optimization algorithm. Its idea originates from the research
and behavior simulation of the simplified social model of bird
swarms [26].

In the process of particle swarm optimization, each particle
flies at a certain speed in the n-dimensional search space.
Suppose Xi = (xi1, xi2, . . . , xin) is the current position of

particle i, Vi = (vi1, vi2, . . . , vin) is the current flying speed
of particle i, pbesti = (pbesti1, pbesti2, . . . , pbestin) is the
optimal position experienced by particle i.
In the load scheduling optimization problem of multi-

source district heating system, particles represent different
load scheduling schemes, and the current position of particles
represents the objective function value under the load alloca-
tion scheme. When the total heat load is constant, the dimen-
sion n of particles is related to the number of heat sources k ,
n = k − 1.
Assuming that the utility functionG (D) of multi-objective

optimization of multi-source complementary heating system
is the maximum objective function, then the optimal position
of particle i is determined by the following equation:

pbesti (t + 1)

=

{
pbesti (t) , If G (Di (t + 1)) ≤ G (pbesti (t))
Di (t + 1) , If G (Di (t + 1)) ≥ G (pbesti (t))

(34)

The number of particles in the population isN , and the best
position that all particles have experienced is gbest (t), it is
the global optimal position.

gbest (t) = max {G (pbest1 (t)) ,G (pbest2 (t)) ,

. . . ,G (pbestN (t))} (35)

The particle’s flight speed, which is the load variation
range and position of each heat source in the load scheduling
scheme, can be dynamically adjusted according to individual
flight experience and group flight experience. The update
equation of velocity and position is as follows:

vij (t + 1) = wvij (t)+ c1
(
pbestij (t)− xij (t)

)
+ c2

(
gbestj (t)− xij (t)

)
(36)

xij (t + 1) = xij (t)+ vij (t + 1) (37)

where i is the ith particle. j is the j-th dimension of the
particle. vij (t) is the j-dimension flight speed of the particle i
when it evolves to the t-th generation. w is the inertia weight.
xij (t) is the j-dimensional vector of particle i when it evolves
to the t-th generation. pbestij (t) is the optimal position of
the j-th dimensional individual of particle i when it evolves
to the t-th generation. gbestj (t) is the j-dimension component
of the optimal position gbest of the whole particle swarm
when it evolves to the t-th generation. c1 and c2 are the
acceleration factor (also known as ‘learning factor’).

In the particle swarm optimization algorithm, all particles
will advance to the global optimal position. At the same
time, the optimization of individual particles in the group
can ensure that the particles are explored in multiple regions,
which can prevent the algorithm from ending early and falling
into local optimization.

B. IMPROVED PARTICLE SWARM OPTIMIZATION
The MOO problem proposed can be solved by PSO. When
operating in practice, it is necessary to combine the solution
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with the dynamic operating conditions of a specific sys-
tem. Based on the dynamic-objective method(DOM) [46],
this paper introduces a complex constraint handling mecha-
nism in primary PSO so that the MOO function and corre-
sponding solution strategy can be reconstructed to adapt the
load distribution of MSDHS. Compared to traditional PSO,
the improved PSO based on DOM transforms constraints
to a new objective function, which is firstly solved through
defining distance function8(D). Therefore, the optimization
problem with p inequality constraints and q equality con-
straints is expressed by the following equation:

maxF (x) , s.t.

{
gi (X) ≥ 0, i = 1, 2, . . . , p
hj (X) = 0, j = 1, 2, . . . , q

(38)

The distance function corresponding to the constraint con-
ditions is as follows:

8(X) =
p∑
i=1

max {0, gi (X)} +
q∑
j=1

{
0,
∣∣hj (X)∣∣− ε} (39)

where ε is an arbitrarily small positive number. In the opti-
mization of the heating system, we can take ε = 1. During
the execution of the optimization algorithm, the original opti-
mization goal will become the new optimization goal.

max (8 (X) ,F (X)) (40)

If the particle is not in the feasible region, 8(X) is taken
as the optimization objective to make the particle close to
the feasible region. Only when 8(X) = 0 or 8(X) ≤ δ,
the optimization of F (X) starts. δ is the allowable error of
constraint, which is taken as 0.2 in this paper.When optimiza-
tion F (X) is started, if the particles leave the feasible region
again, the optimization target returns to 8(X) again.

In this way, particles prefer approaching to feasible region,
for which solution efficiency is improved. The flow chart of
the improved PSO is shown in Fig. 4.

1) PARTICLE SWARM OPTIMIZATION PARAMETER SETTINGS
The parameters of the particle swarm optimization include
population size N , inertia weight w.acceleration factor c1, c2,
maximum particle speed vmax, and maximum number of
iterations T .

1) The maximum particle speed vmax: In order to prevent
the particle velocity from being too large and exceeding
the search space range, it is necessary to limit the parti-
cle velocity. The update speed of all particles should be
within [−vmax, vmax], and if the particle is out of range,
let it be the boundary value. It has little effect on the
final result. In this paper, vmax = 0.5.

2) The inertia weight w: The setting of inertia weight
has a great influence on the final result. Inertia weight
w refers to the ability of a particle to maintain the
previous state of motion. At present, the setting meth-
ods of inertia weight mainly include constant setting,
linear adjustment, fuzzy adaptive, and random adjust-
ment [24], [25]. Shi et al. suggested setting the inertia

FIGURE 4. Flow chart of improved particle swarm multi-objective
optimization algorithm based on DOM constraint mechanism.

weight to 0.8 [47]. Because the fuzzy adaptive method
needs a lot of experience in setting weights, it is dif-
ficult to apply in thermal engineering. In this paper,
three schemes of setting fixed value, linear adjustment,
and random adjustment are compared. The calculation
equations of linear adjustment and random adjustment
are as follows:

w (t) = (w1 − w2)
T − t
T
+ w2 (41)

w (t) = 0.5+
rand ()

2
(42)

where w1 and w2 represents the initial value and termi-
nal value of inertia weight respectively. T and t are the
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maximum evolution algebra and the current evolution
algebra respectively. rand () is a random number in the
interval [0,1].

FIGURE 5. Influence of inertia weight setting on fitness.

The final result is shown in Fig. 5. It can be seen
from the figure that when the inertia weight is set
randomly, the algorithm achieves convergence around
the 80th generation, and the final convergence accuracy
is 75.45. In summary, the weight coefficient of random
adjustment is better than the other two methods. For
the problem of high precision, the randomly adjusted
inertia weight ensures the diversity of particles to a
certain extent. Therefore, this paper uses the weight
coefficient set randomly.

3) The acceleration factor c1, c2: c1 and c2 respec-
tively represent the acceleration weight of each par-
ticle moving towards the pbest and gbest directions.
There are two kinds of acceleration factor setting
strategies: constant setting and linear adjustment.
Kennedy et al [26] suggested that setting the acceler-
ation factor to two can achieve the best convergence
results. Ratnaweera et al [28] thought that the linear
adjustment was better than the constant setting. The
equation of linear adjustment is:

c1 (t) =
(
c1f − c1i

) T − t
T
+ c1i (43)

c2 (t) =
(
c2f − c2i

) T − t
T
+ c2i (44)

where c1i, c2i is the initial value of c1 and c2 respec-
tively. c1f , c2f is the final value of c1 and c2 respec-
tively. T and t are the maximum evolution algebra and
the current evolution algebra respectively.
As can be seen from Fig. 6, there is little difference
between the optimization accuracy of the two methods,
but the optimization iterations of the constant setting
are few. This paper takes c1 = c2 = 2.

4) The maximum number of iterations T : The maximum
number of iterations of the algorithm is the termination

FIGURE 6. Influence of acceleration factor setting on fitness.

condition of the algorithm, and its value should be
determined according to the specific situation. In this
paper, T = 200.

FIGURE 7. Influence of improved particle swarm optimization on fitness.

It can be seen fromFig. 7 that comparedwith the traditional
particle swarm optimization, the improved PSO has faster
convergence speed and better convergence accuracy.

This paper adopted the scheme of real coding.The
mechanism model of this study was implemented in C++
programming language, and the optimization algorithm was
implemented in Python.

V. CASE STUDY AND RESULTS ANALYSIS
A. INTRODUCTION TO THE PILOT HEATING SYSTEM
After establishing the mechanism model and optimization
scheduling model above, this paper selected a central heating
system in a certain city in China as the experimental and
verification site. The composition of heat sources in this city’s
heating system is diverse, and the structure of the heat supply
network is complex. There are three central heat sources in

VOLUME 8, 2020 209083



H. Zhang et al.: Load Distribution Optimization of MSDHS Based on FAHP

the heating system. Among them, the combined design heat
capacity of the #1 and #2 CHP units is about 370-380MW;
the #3 and #4 CHP units are designed to provide 620MW
heat capacity. Another heat source is four 116MW gas-fired
hot water boilers, which are connected to the main network
for commissioning operation during the heating season. The
different capacities of heat sources lead to different efficien-
cies, which gives room to load distribution optimization.

FIGURE 8. Schematic diagram of heating network in the heating area.

At present, there are 230 heating stations in the heating
area. The overall heating area is divided into two main net-
work lines, which are shown in Fig. 8. Heat source A has
two cogeneration units, which are called #1 and #2 CHP
units. Mainline E (blue part in Fig. 8) has a heating area of
8.5 million m2, which is supplied by the #1 and #2 CHP units.
Heat source B also has two cogeneration units, which are
called #3 and #4CHP units.MainlineD (red part in Fig. 8) has
a heating area of seven million m2, which is mainly supplied
by the #3 and #4 CHP units. Heat source C has four gas-fired
boilers. It’s an auxiliary heat source.

During the operationMSDHS, the heat demand is provided
by each heating station based on the heating area and weather
data over the years. These heat demands are accumulated and
sent to the heat sources. For example, Fig. 9 is the heat load
distribution map recorded in mainline E in one month. As can
be seen, the daily load varies in a relatively narrow scope.
Once the heat demand from all lines (main line, sublines) are
accumulated, the overall heat demand accepted by the heat
sources is flattened. In this study, the typical day was selected
from the load-interval with the highest amount of days.

B. MODEL VALIDATION
The centralized control room of the thermal power plant is
equipped with a distributed control system (DCS), through
which the operation data acquisition of the whole power
plant can be realized. The accuracy of the simulation data is
checked by comparing the data recorded in DCS under dif-
ferent load conditions with the theoretical model simulation
results in Section 2.

FIGURE 9. Heat load distribution map of mainline A in December 2017.

Table 3 and Table 4 show the heat load, power generation,
and coal consumption for heating of #1, #2 and #3, #4 thermal
power plants respectively from DCS. Table 5 shows the gas
consumption of four gas-fired boilers under different heat
load demands.

TABLE 3. The operation data of #1 and #2 CHP units.

Fig. 10 and Fig. 11 show the relationship between fuel
consumption and heat load of #1 and #2, #3 and #4 CHP
units, respectively. The curve in the figure is the result of
the theoretical model simulation in Section 2, and the scatter
point is the actual operation data collected from DCS. It can
be seen from the figure that the simulation results are in good
agreement with the actual operation data, and the determina-
tion coefficients R2 are all greater than 0.95, indicating that
the simulation results have high reliability.

It can be seen from the figure that the simulation results
are in good agreement with the actual operation data, and
the determination coefficients R2 are all greater than 0.95,
indicating that the simulation results have high reliability.
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TABLE 4. The operation data of #3 and #4 CHP units.

FIGURE 10. Curve of coal consumption with heat load of #1 and #2 CHP
units.

FIGURE 11. Curve of coal consumption with heat load of #3 and #4 CHP
units.

It can be seen from Fig. 12 that although the configuration
of the four gas-fired boilers is the same, the characteristic
curves of the four units are different due to the aging of

TABLE 5. The operation data of 4 gas-fired boilers.

FIGURE 12. Curve of fuel consumption versus heat load of 4 gas-fired
boilers.

components during operation. Therefore, for a given load of
the whole plant, it is necessary to optimize the load distri-
bution among the heat sources and within the four gas-fired
boilers.

C. OPTIMIZATION VALIDITY TEST
In order to illustrate the validity of optimization, this study
selected the working conditions of one day in Decem-
ber 2017 for comparison.

By applying the PSO method, the process curve of the
MSDHS utility function is shown in Fig. 13. The utility func-
tion expresses the proximity of each load dispatch scheme
to the optimal. It ends with the optimal scheme when the
value of the utility function is close to one. To minimize
optimization, the utility function value is taken as negative.
After 100 optimization iterations, the value of the utility
function stabilizes, which means that the algorithm has found
the optimal solution, and the corresponding value is 0.818.
The time complexity of the algorithm is analyzed objectively
by the ‘‘big-O notation’’ [48]. The time complexity of the
algorithm is O (NTd), where N is the population size, T is
the maximum number of iterations, d is the space dimension.
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FIGURE 13. Process curve of PSO.¬.

Each optimization time is less than five minutes, which can
fully meet the engineering requirements compared with the
thermal system once an hour.

FIGURE 14. Diagram of the distribution of heat load and electricity load
over time in the site.

Fig. 14 shows the overall heat and electricity load change
curve of the day. PSO algorithm is also used to optimize the
load distribution among different heat sources, and finally,
the diagrams of heat source optimization comparison shown
in Fig. 15, 16, and 17 can be obtained.

Fig. 15 shows the heat load change curve of each heat
source over time. At 0-10 a.m., the gas-fired boilers are
maintained in a constantly low load state, because the total
heat load is low. Under this circumstance, the load of #1 and
#2 CHP units is reduced to maintain the energy balance in the
energy system.

In the periods from 11 a.m. to 1 p.m. and from 7 p.m.
to 9 p.m., the total heat load increases, and the heat load is
at the peak stage. During these two periods, the output of
each heat source is increased to meet the need of heat load.
Fig. 16 shows the percentage of each heat source’s output
after optimization. It can be seen that the heat load of the
#3 and #4 CHP units is the highest, accounting for 46.1%, and

FIGURE 15. Diagram of the heat load of each heat source over time.

FIGURE 16. Diagram showing the distribution of the percentage of heat
sources’ output over time.

FIGURE 17. Diagram of fuel consumption change with time before and
after optimization of MSDHS.

the heat load of the gas-fired boilers is the lowest, basically
maintaining 23.8%. There are almost no fluctuations among
the output of different heat sources.

Fig. 17 is a comparison of the total fuel consumption before
and after optimization. It can be found that the fuel con-
sumption of the optimized heating system is generally lower
than that of the original empirical load distribution scheme.
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The average fuel saving is 1.14%, and the gas-saving is
0.53%. By assuming the coal price of $77/t and the gas price
of $0.35/m3, this optimization method can save $3,270 in the
24-hour project verification.

D. RESULTS ANALYSIS
In order to further show the feasibility and necessity of
the optimization scheme, we calculate the load distribution
results of each source under different total heat loads and
further analyze the results.

FIGURE 18. Curve of heat load distribution as a function of the total load.

After optimizing via PSO, the curves of heat load distribu-
tion among different heat sources changing with the total load
are illustrated in Fig. 18. It shows that the heat load of #1 and
#2 CHP units increases rapidly when the total heat load is
low, which is 3750-4000 GJ/h. In the meantime, the load
variation of #3 and #4 CHP units is smooth. In this case,
considering that the three objective functions are related to the
fuel consumption, increasing the heat load of #1 and #2 CHP
units can make the whole heating system achieve better eco-
nomic and environmental benefits while adding total load.
When #1 and #2 CHP units are close to design load in the
situation of the total load ranging from 4000 to 4500 GJ/h,
it is sufficient to satisfy heat demand and meet the relatively
optimal performance of the heating system by increasing heat
load of #3 and #4 CHP units. As the total load increases
to 4500-4750 GJ/h, increasing the heat load of the gas-fired
boilers is the only method to meet the total heat demand
because all CHP units have been near the design load.

It can be seen from Fig. 18 that when the total heat load
increases, the two CHP units can achieve the maximal over-
all system efficiency. There are two reasons. On one hand,
the weight of the economic index is high. On the other hand,
the prices of fuel used by CHP units and gas-fired boilers
are quite different, and the heating cost of gas-fired boilers is
higher, which makes it costly to use gas-fired boilers. There-
fore, the scheduling load of the CHP units in preference to
the gas-fired boilers are a reasonable way to achieve optimal
system economy.

In the heating system studied in this paper, due to the
diversity of heat sources and the complexity of the heat supply
network structure, after the optimal load dispatch among the
three heat sources in the first level is determined, the load
distribution of four gas-fired boilers is optimized, as shown
in Fig. 19.

FIGURE 19. Process curve of PSO..

For the gas-fired boiler heating system, because it only uses
a single fuel (natural gas), its energy consumption and envi-
ronmental benefits are consistent, that is, under the condition
of meeting a certain heat load, the less fuel used, the greater
the economic benefits and the fewer pollutant emissions.

FIGURE 20. Load distribution variation diagram of 4 gas-fired boilers.

It can be seen from Fig. 19 that after 110 iterations, the
curve tends to be stable, and the particle swarm optimization
algorithm finds the relative optimal solution. Under this load
scheduling scheme, the gas consumption is the least and the
heating system is the most economical. Fig. 20 shows that
when the total heat load of the gas boiler increases, increasing
the load of one of the gas boilers to meet the overall heat
load demand can maximize the economy of the entire heating

VOLUME 8, 2020 209087



H. Zhang et al.: Load Distribution Optimization of MSDHS Based on FAHP

TABLE 6. Comparison of fuel consumption values before and after
optimization under specific heat load.

system. When the gas boiler is at a higher load Increasing
the load of other gas-fired boilers can reduce the total fuel
consumption, which is caused by the differences in the fuel
consumption curves of the four gas-fired boilers.

Based on the optimal load distribution of heat sources, this
study compares fuel consumption before and after optimizing
distribution in an actual situation, where the total heat load is
4175GJ/h. It can be seen from the above analysis that increas-
ing the heat load of #1 and #2 CHP units helps to realize
multi-objective comprehensive optimization. After optimiz-
ing working conditions in actual heating units, comparison
data is shown in Table 6. As seen in Table 6, after optimization
by improved particle swarm algorithm, the heat load of #1 and
#2 CHP units increases, leading to a reduction of 1.34 t/h of
coal consumption (1.06% of the total fuel usage). In terms
of gas-fired boilers, through the optimal distribution of four
gas-fired boilers, gas consumption decreases by 139 Nm3/h
(0.48% of the total fuel usage), while the heat load slightly
increases. Compared with the original condition, the utility
function value of each primary index under the optimized
working condition has been improved, and the economic
index has been improved the most. Therefore, it is of great
significance to optimize the load scheduling of a multi-source
complementary heating system through PSO.

There are two limits to this study. First, to facilitate the
applicability of the proposedmethod in the real site, this study
uses theweightmethod rather thanmore advancedmethods to
solve the MOO problem. Second, this study does not discuss
the impact of the proposed approach when applied to an
MSDHSwith a greater covered area andmore diverse heating
sources (including renewable energy-based heating sources).
Under that condition, the system uncertainty will increase.
With the increase of population size, the convergence time of
the algorithm may be longer and the convergence accuracy
may be worse. Compared with other optimization algorithms,
the improved particle swarm optimization proposed in this
paper is slightly insufficient in dealing with the problem of
local optimization. The future work followed by this study

will focus on two aspects. First, the future work will demon-
strate this method in a larger MSDHS (covering an area
of 100 million m2) with more uncertainties. We plan to report
the impact of this methodology in a scaled-up megacity and
discuss the challenges introduced by the scale of the system
after a complete run in heating season. The second is the
comparison between the proposed method and conventional
gradient-based methods from both simulation and field test
aspects while introducing regional particulate matter data into
the objective functions. This shall also include the enhance-
ment of the MOO process by generating its Pareto front.

VI. CONCLUSION
After considering the influence of the heating network on
the feasibility of dispatching strategies, this paper firstly
gives a real-time optimization model of load scheduling for
MSDHS. Secondly, from the three perspectives of economy,
energy structure, and environment, this paper establishes a
multi-objective optimization evaluation system for MSDHS
where FAHP analysis is used to find out the corresponding
weight factors of each objective function to formulate an
integrated objective function. Thirdly, this paper solves the
optimal load distribution strategy of multiple heat sources
with the improved PSO algorithm. Finally, this paper takes
a real MSDHS and its covered heating area as a pilot site.
The above optimization scheme is verified by the example
of the load distribution in each heat source of the site. The
results show that the optimized load scheduling scheme can
make the comprehensive utility function value of the heating
system higher. By optimizing the daily heat load in the pilot
site, the total coal consumption can be saved by about 1.14%,
the gas consumption can be saved by about 0.53%, and
the cost can be saved by more than $3,270, justifying the
economic feasibility of the study.
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