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ABSTRACT The sparsity and the severe attenuation of millimeter-wave (mmWave) channel imply that
highly directional communication is needed. The narrow beam produced by large array requires accurate
alignment, which is difficult to achieve when serving fast-moving users. In this article, we focus on accurate
two-dimensional (2D) beam and channel tracking problem aiming at minimizing exploration overhead and
tracking error. Using a typical frame structure with periodic exploration and communication, a proven
minimum overhead of exploration is provided first. Then tracking algorithms are designed for three types
of channels with different dynamic properties. It is proved that the algorithms for quasi-static channels and
channels in Dynamic Case I are optimal in approaching the minimum Cramér-Rao lower bound (CRLB).
The computational complexity of our algorithms is analyzed showing their efficiency, and simulation results
verify their advantages in both tracking error and tracking speed.

INDEX TERMS Millimeter-wave mobile communication, beam and channel tracking, 2D phased antenna
array, optimal exploring beam, Cramér-Rao lower bound.

I. INTRODUCTION
Millimeter-wave (mmWave) mobile communication is cur-
rently a hot topic due to its much wider bandwidth com-
pared with the sub-6GHz spectrum. In mmWave channels,
the much higher frequency leads to severe propagation loss,
atmospheric absorption, penetration loss and other obstruc-
tions [1]. Fortunately, the shorter wavelength in the mmWave
band allows the deployment of a larger antenna array, pro-
viding a considerable beamforming gain to compensate for
the path loss [2]–[6]. For a hybrid or analog beamforming
(ABF) system as cost-efficient ways to obtain this array gain,
misalignment of beam direction may not only degrade the
effective receiving power, increasing mutual interference, but
also lead to the loss of beam observations due to the users’
mobility, especially in fast-varying environments [7], [8].
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Therefore, accurate beam tracking is crucial for serving fast-
moving users in mmWave mobile communication system.

In this article, we will focus on the problem in ABF.
Since only one RF chain connected with the antennas via
programmable phase shifters is available in ABF, only one set
of phase shifts can be applied (forming a so-called exploring
beamforming vector (EBV) in this article) and one dimen-
sion of the multiple-antenna channel can be observed at a
certain time. Hence, in order to estimate the direction and the
gain of the beam, the transceiver needs to try several different
EBVs one by one. These EBVs can have a significant impact
on tracking performance [9]–[11].

Although there already exist some beam tracking methods
in [7], [12]–[16], which utilized historical exploring direc-
tions and observations to obtain current estimates, the EBVs
were not optimized in those tracking algorithms.While beam-
forming resulting in the highest combining signal-to-noise
ratio (SNR) is the best for data transmission, it is not the best
for tracking accuracy [10], [11]. Optimal design of EBVs is
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necessary to achieve as accurate beam alignment as possible
in mmWave mobile communication.

In [9], a beam tracking algorithm was proposed, trying
to optimize the EBVs, assuming that the channel gain is
known. In [10], the authors started to jointly track the channel
gain and the beam direction with optimal EBVs. In [11],
the optimization of the EBVs is converted to a convex prob-
lem and solved by online optimization toolboxes. Despite
the progress, only one-dimensional (1D) array is supported
for beam tracking optimization in these works. However,
in most mobile applications, two-dimensional (2D) arrays are
necessary, not only for providing much higher array gain,
but also for supporting both horizontal and vertical beam
direction variation [17], [18]. It brings huge challenges when
extending the optimal EBVs in [10], [11] to 2D arrays.
The optimization of the exploring directions in [10] relies
on the symmetrical property of the two exploring beams,
however, keeping this symmetrical property may result in
more overhead when extended to 2D tracking. As for the
algorithm in [11], the objective function versus the EBVs
becomes extremely complicated and quite different in 2D
tracking compared with 1D tracking, leading to the failure of
the previously used optimizationmethod in 1D system. To the
best of the authors’ knowledge, there is no work on the design
of optimal EBVs for 2D array yet.

FIGURE 1. The frame structure for tracking.

In this article, we focus on the design of the optimal EBVs
and the accurate single-path tracking algorithms based on
2D phased antenna array. The widely used frame structure
[8], [10], [19] is adopted here. As shown in Fig. 1,
the transceiver periodically works in exploration and com-
munication mode. In the exploration stage of each explo-
ration and communication cycle (ECC), the transmitter
sends a pre-defined pilot sequence for q times. At each
time, the receiver forms one exploring beam pointing in one
direction to observe the channel. Then the channel gain and
the direction of the incoming beam are estimated with the
q observations of the channel. In the communication stage
of each ECC, the beam is aligned in the current estimated
direction, and the current estimated channel gain will be
used for the subsequent process. Based on this structure,
the following questions are to be answered:

1) What is the minimum exploration overhead q in each
ECC for 2D tracking?

2) How to determine the q exploring directions based
on the channel observations in previous ECCs for 2D
tracking?

3) How to track the 2D beam direction and the channel
gain for different time-varying channels, e.g., from
quasi-static channels to fast-fading channels?

4) How is the accuracy, convergence and stability of the
tracking algorithm?

Following these questions, we summarize the main contri-
butions of this article as below:

1) Based on a reasonable EBV constraint, it is proved that
the minimum exploration overhead counted by the number
of exploring directions is q = 3, for a unique solution of
the 2D beam direction and the channel gain within only one
ECC, while simple extension from 1D to 2D tracking will
need q = 4.
2) Dynamic beam and channel tracking strategies for three

different time-varying channels (called Quasi-static Case,
Dynamic Case I and Dynamic Case II in this article) are
proposed and optimized. The salient advantages of these
tracking algorithms are given below:

i) In Quasi-static Case (channels with quasi-static beam
direction and channel gain), the optimal exploration offsets
are derived. Also, a joint beam direction and channel gain
tracking algorithm is proposed, and the tracking error is
proved to converge to the minimum Cramér-Rao lower
bound (CRLB).

ii) In Dynamic Case I (channels with quasi-static beam
direction and fast-fading channel gain), the Rayleigh fading
channel is studied as a special case in this article. The optimal
exploration offsets are obtained and an algorithm for beam
(only) tracking is proposed, which is proved to converge and
achieve the minimum CRLB on the beam direction.

iii) In Dynamic Case II (channels with fast-changing beam
direction and channel gain), a joint tracking algorithm of the
beam direction and the channel gain is proposed with faster
and more accurate performance.

3) The impact of the antenna pattern on the tracking algo-
rithms and the performance is taken into account, showing
that the proposed algorithms are suitable for practical imple-
mentations.

Part of this work was presented in our conference
paper [20], while the main difference and novelty of this arti-
cle lies in the following four aspects: 1) tracking with a gen-
eral antenna pattern rather than a simple isotropic pattern: we
consider a more general direction-dependent antenna element
pattern here rather than an isotropic pattern; 2) tracking for
different types of time-varying channels: in addition to slow-
fading channels, fast-fading channels are also studied in this
article and the corresponding tracking strategy is proposed
and optimized, while the prior algorithm does not support
fast-fading channels; 3) the complexity analysis: we analyze
the computational complexity of the proposed tracking algo-
rithms while this was missing in our previous work; 4) more
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rigorous conclusions and more complete proofs: we provide
more rigorous lemmas and theorems with more complete
proofs in this article, correcting the corresponding flaws in
the previous work.

The remaining part of this article is organized as follows:
the system model is described in Section II. In Section III,
the tracking problem with some constraints is formulated.
Then the minimum exploration overhead of joint 2D beam
and channel tracking is given in theory in Section IV.
In Section V and Section VI, the tracking problems for Quasi-
static Case (Section V) and Dynamic Case I (Section VI)
are studied separately. The tracking performance bounds are
derived and corresponding tracking algorithms are developed
with convergence and optimality analysis. In Section VII,
a tracking algorithm is developed for Dynamic Case II.
Then the complexity analysis of these algorithms is given in
Section VIII. Section IX presents numerical results to verify
the performance of our proposed algorithms.
Notations: We use lower case letters such as a and a to

denote scalars and column vectors. Respectively, |a| and ‖a‖2
represent the modulus and 2-norm of the vector a. Upper
case boldface letters, e.g., A, are used to denote matrices.
The superscript ¯(·), (·)T, (·)H are utilized to denote conju-
gate, transpose and conjugate-transpose. For a matrix A, its
inverse, pseudo-inverse and determinant are written as A−1,
A+ and |A|. The identity matrix of order q is denoted by Jq.
Let CN (µ, σ 2) represent the symmetric complex Gaussian
distribution with mean µ and variance σ 2, and N (µ, σ 2)
stand for the real Gaussian distribution with meanµ and vari-
ance σ 2. The Kronecker product is represented as⊗. The sta-
tistical expectation is denoted by E [·]. The real (imaginary)
part is represented as Re {·} (Im {·}). The natural logarithm
of a scalar y is obtained by log (·) and the phase angle of a
complex number z is written as 6 z. The main acronyms used
in this article are summarized in TABLE 1.

TABLE 1. Summary of the main acronyms.

II. SYSTEM MODEL
A. SYSTEM CONFIGURATION
We consider a mmWave receiver1 equipped with a planar
phased antenna array, as shown in Fig. 2. The planar array

1Note that tracking is needed at both the transmitter and the receiver. How-
ever, considering the transmitter-receiver reciprocity, the tracking of both
sides have similar designs. Hence, we focus on beam and channel tracking
at the receiver side.

FIGURE 2. MmWave receiver with 2D phased antenna array.

consists of M × N antenna elements that are placed in a
rectangular area, where M (N ) antenna elements are evenly
distributed along x-axis (z-axis) with a distance d1 (d2)
between neighboring elements. These antenna elements are
connected to the same RF chain via programmable phase
shifters.

Single RF chain of ABF makes a constraint that only one
beam can be formed at any time and hence the receiver
has to work alternatively in exploration and communication
mode, resulting in a frame structure of periodic ECC. The
angle of arrival (AoA) and the channel gain are assumed
to be constant in each ECC and may change in different
ECCs. In the exploration stage of one ECC, the transmit-
ter sends a pre-defined pilot sequence s for q times, where
s =

[
s1, · · · , sLs

]
∈ C1×Ls contains Ls same symbols.

At each time, the receiver forms one exploring beam pointing
in one direction to observe the channel. Then the channel
gain and the direction of the incoming beam are estimated
according to the q observations obtained in the current and
previous ECCs. In the communication stage of each ECC,
the beam is aligned in current estimated direction, and the
current estimated channel gain will be used for the subsequent
process.

B. CHANNEL MODEL
In mmWave outdoor communication, the scattering is not
rich and the number of effective propagation paths is usually
limited [1], [21]. Besides, the beam formed by a large array
in the mmWave system is quite narrow and the interaction
between multi-path is relatively weak [22]. In other words,
the incoming paths are usually sparse in space, making it
possible to track each path independently. Hence, we focus
on the method for tracking one path, while different paths can
be tracked separately by using the samemethod. In k-th ECC,
the direction of the incoming beam is denoted by (θk , φk ),
where θk ∈ [−π2 ,

π
2 ) is the elevation AoA and φk ∈ [0, π) is

the azimuth AoA. Then the channel vector of this path during
k-th ECC is

hk = η (θk , φk) βcka(xk ), (1)
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where η (θ, φ) is the direction-dependent antenna gain
(antenna pattern) of each element,2 βck is the complex
channel gain, xk ,

[
xk,1, xk,2

]T
=

[Md1 cos(θk ) cos(φk )
λ

,
Nd2 sin(θk )

λ

]Tis the direction parameter vector (DPV) deter-
mined by (θk , φk ),

a(xk ) = a1
(
xk,1

)
⊗ a2

(
xk,2

)
(2)

is the 2D steering vector with

a1(xk,1) ,
[
1, ej2π

xk,1
M , · · · , ej2π

M−1
M xk,1

]T
(3)

a2(xk,2) ,
[
1, ej2π

xk,2
N , · · · , ej2π

N−1
N xk,2

]T
, (4)

and λ is the wavelength. For the convenience of expression,
the antenna gain η (θk , φk) is denoted by η (xk) hereinafter.

Define the equivalent channel gain in k-th ECC as below:

β (xk) , η (xk) βck , (5)

then the channel vector in (1) can be rewritten as

hk = β (xk) a(xk ). (6)

C. RF AND BASEBAND PREPROCESSING
Synchronization in both carrier frequency and symbol timing
is necessary in mmWave wireless communications. In the
initial beam estimation stage in Fig. 1, the carrier frequency
synchronization information can be obtained and estimated,
the residual error of which can be converted to the time-
varying phase of the equivalent channel gain in (5). As for
the symbol timing, since it changes much slower, it can be
estimated and tracked much more easily both in the initial
beam estimation stage and the tracking stage. There already
exists a lot of work on the synchronization algorithms in
mmWave communication systems [23]–[25]. To make the
research goals more focused, we assume perfect synchroniza-
tion in this article. Futureworkmay be needed to further study
the impact of residual synchronization error on the beam
tracking performance.

Next, we will focus on the receiving beamforming based
on the perfect synchronization assumption above. Let wk,i ∈

CMN×1 be the EBV for receiving the pilot sequence s the
i-th (i = 1, · · · , q) time in k-th ECC. The entries of wk,i

are of the same amplitude with

∣∣∣∣ [wk,i
]
l

∣∣∣∣ = 1
√
MN

, where[
wk,i

]
l denotes the l-th element of wk,i. After phase shifting

and combining, the i-th received sequence in k-th ECC at the
baseband output of the RF chain is given by

νk,i = β (xk)wH
k,ia(xk )s+ ζ k,i. (7)

where ζ k,i ∈ C1×Ls is the receiving noise vector.

2Note that the antenna patterns of different elements in the array may not
be exactly the same and need to be carefully calibrated. However, considering
that it is not the focus of this article, we assume the same patterns for all the
elements here.

Bymatch filtering on the sequence νk,i, the i-th observation
in k-th ECC is given below:

yk,i = νk,i
sH

|s|
= β (xk)wH

k,ia(xk )s
sH

|s|
+ ζ k,i

sH

|s|
= |s|β (xk)wH

k,ia(xk )+ zk,i, (8)

where zk,i , ζ k,i
sH
|s| is an additive noise, which is mod-

eled as i.i.d. Gaussian distributed in this article, i.e., zk,i ∼
CN

(
0, σ 2

z
)
. This assumption is certainly held when the

receiving noise vector ζ k,i is i.i.d. Gaussian distributed.
Besides, even when the noise vector ζ k,i is non-Gaussian,
if the real and imaginary parts of the elements in ζ k,i
are i.i.d, the observation noise zk,i can also be regarded
as i.i.d. Gaussian distributed as long as the pilot sequence
length Ls is sufficiently large, according to the central limit
theorem [26].

Let Wk ,
[
wk,1, . . . ,wk,q

]
, zk ,

[
zk,1, . . . , zk,q

]T and
yk ,

[
yk,1, . . . , yk,q

]T denote the exploring beamforming
matrix (EBM), the noise vector and the observation vector
respectively. Then we can rewrite (8) as follows:

yk = |s|β (xk)WH
k a(xk )+ zk . (9)

D. TRACKING LOOP
As shown in Fig. 1, an initial estimate β̂0 = β̂re0 + jβ̂

im
0 and

x̂0 =
[
x̂0,1, x̂0,2

]T can be obtained in the beam estimation
stage. It is assumed in this article that the initial beam estima-
tor can output an estimate x̂0 falling within the main lobe of
x0, i.e., x̂0 ∈ B (x0), where B (xt) denotes the main lobe of
an arbitrary DPV xt =

[
xt,1, xt,2

]T, given by

B (xt) ,
(
xt,1 − 1, xt,1 + 1

)
×
(
xt,2 − 1, xt,2 + 1

)
. (10)

Then our tracking starts from this initial estimate x̂0 to find
more accurate beam directions. It is worth pointing out that
the main lobe in x domain in (10) has been normalized to a
square with twice the unit length of each side and centered at
the DPV xt after the transformation from the angle domain
to x domain. Hence, the main lobe size in x domain remains
unchanged even if the antenna sizeM , N scale.
In the exploration stage of k-th ECC, the receiver

needs to choose an EBM Wk based on historical obser-
vation vectors y1, · · · , yk−1 along with the correspond-
ing EBMs W1, · · · ,Wk−1. The new observation yk can
be obtained by applying Wk . Then the estimate ψ̂k ,[
β̂rek , β̂

im
k , x̂k,1, x̂k,2

]T
of the channel parameter vector ψk ,[

Re {β (xk)} , Im {β (xk)} , xk,1, xk,2
]T is obtained by using

all observation vectors available and the corresponding
EBMs. The whole tracking loop is given in Procedure 1 and
the focus of this article lies in Step 3 and Step 6.
From a control system perspective, ψk is the system

state, ψ̂k is the estimate of the system state, the EBM Wk
is the control action and yk is a noisy observation non-
linearly determined by the system state and the control action.

VOLUME 8, 2020 209847



Y. Liu et al.: Fast Accurate Beam and Channel Tracking for 2D Phased Antenna Arrays

Procedure 1 Tracking Loop
Input: Array sizeM ,N and the pilot sequence s.
Output: The estimate of the channel parameter vector ψ̂k .

1: Initialize ψ̂0 =

[
β̂re0 , β̂

im
0 , x̂0,1, x̂0,2

]T
;

2: for k = 1, 2, · · · do
3: Calculate Wk based on ψ̂0, W1, · · · ,Wk−1,

y1, · · · , yk−1;
4: ApplyWk in the exploring stage of k-th ECC;
5: Obtain the observation vector yk in k-th ECC;
6: Estimate ψ̂k based on ψ̂0, W1, · · · ,Wk ,

y1, · · · , yk ;
7: Point to x̂k in the communication stage of k-th ECC;
8: use β̂k for receiving in the communication stage of

k-th ECC.
9: end for

Hence, the task of a tracking design is to find the following
strategy:

Wk = Fck
(
ψ̂0,W1, · · · ,Wk−1, y1, · · · , yk−1

)
(11)

ψ̂k = Fek
(
ψ̂0,W1, · · · ,Wk , y1, · · · , yk

)
, (12)

where Fck denotes the control function and Fek denotes the
estimation function in k-th ECC.

III. PROBLEM FORMULATION
Let 4k =

{
Fck ,F

e
k

}
denote the set of beam and channel

tracking schemes in k-th ECC. Then the optimal beam and
channel tracking problem minimizing the mean square error
(MSE) of the channel vector estimate is formulated as:

min
4k

1
MN

E
[∥∥∥ĥk − hk

∥∥∥2
2

]
(13)

s.t. E
[
ĥk
]
= hk , (14)

(9), (11), (12),

where the constraint (14) ensures that ĥk , β̂ka
(
x̂k
)
is an

unbiased estimate of the channel vector hk = β (xk) a (xk).
It is worth explaining the following two points. First, an unbi-
ased estimator may not be the best estimator that achieves
the minimum MSE. Nevertheless, such an optimal estimator
with no constraints is hard to obtain and hence we add this
unbiasedness constraint. Second, we only need to guarantee
the unbiasedness of ĥk , as the objective function in (13) is
the MSE of the channel vector. The estimate of the equivalent
channel gain and the DPV, i.e., β̂k and x̂k , can be biased.

Problem (13) is challenging to be solved optimally due to
the following reasons:

1) It is a partially observed Markov decision pro-
cess (POMDP) which generally has not been solved
optimally [27], [28].

2) There areM×N phase shifts to adjust in each EBVwk,i.
This makes the optimization of the EBV too complicated due
to the joint design of so many phase shifts, especially when
the array sizeM × N grows large.

3) To obtain ψ̂k in k-th ECC, k EBMs, i.e., W1, · · · ,Wk ,
need to be designed, making it difficult to optimize so many
beamforming matrices simultaneously as k increases.
4) The time-varying features of the channel vector in (6)

restrict the tracking algorithm and the system performance.
Thus, it is hard to design an optimal tracking method for a
general channel model.
These challenges abovemake it extremely difficult to solve

this problem optimally. Hence, we add some reasonable con-
straints in this article to take the first step of the optimal
tracking policy:

A. THE EBV CONSTRAINT
As it is complicated to obtain the optimalM ×N phase shifts
in general for each EBV, we use steering vectors to design the
EBVs,

wk,i =
1
√
MN

a
(
ωk,i

)
, (15)

where ωk,i ,
[
ωk,i1, ωk,i2

]T denotes the i-th exploring
direction vector in k-th ECC. This ensures that only two
variables need to be designed for each EBV.

B. THE EXPLORING DIRECTION CONSTRAINT
Although the exploring direction vector ωk,i in (15) can be
of any form, however, considering the tracking accuracy, it is
better to make sure that ωk,i falls within the main lobe of the
DPV xk in (10). Thus, it is reasonable to choose exploring
directions near the recently estimated direction x̂k−1. For this
purpose, we use such an architecture in this article. That is,
the i-th exploring direction vector in k-th ECC, i.e., ωk,i,
is determined by the previous estimate of the DPV plus
an exploration offset 1k,i. Considering the design of the
offsets that change in different ECCs is also very complicated,
we adopt fixed exploration offsets 1i(i = 1, · · · , q) in this
article:

ωk,i = x̂k−1 +1i, i = 1, · · · , q. (16)

Therefore, the EBV in (15) can be rewritten as

wk,i =
1
√
MN

a
(
x̂k−1 +1i

)
, i = 1, · · · , q. (17)

C. THE TIME-VARYING CHANNEL CONSTRAINT
The time-varying channel vector in (1) is determined by
three parts: the antenna gain η (xk), the channel gain βck and
the DPV xk . Since the change of the antenna gain η (xk)
depends on the DPV xk for a given antenna element pat-
tern, we only consider the change of the DPV xk and the
channel gain βck when exploring the properties of the time-
varying channels. As the user motion characteristics can be
quite different in various situations [29]–[31], both of the
DPV xk and the channel gain βck may change slowly or fast.
Therefore, four possible cases exist, which correspond to
four different practical scenarios and can be modeled as
follows:

209848 VOLUME 8, 2020
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• Quasi-static Case: xk ≈ x, βck ≈ β
c

When both xk and βck change slowly, e.g., the user keeps
static or quasi-static in a room, the antenna gain η (xk)
and the equivalent channel gain β (xk) defined in (5)
also change slowly. The channel in this case can be seen
as approximately fixed. For the sake of convenience,
we assume that β (xk) = β = βre + jβ im, xk = x =
[x1, x2]T in this case.

• Dynamic Case: xk ≈ x, βck+1 6= β
c
k

For channels that xk changes slowly while βck changes
fast, e.g., a person walks at a fast pace in a room,
the beam direction can be seen as approximately fixed,
i.e., xk = x [29], [30]. To distinguish from other
dynamic scenarios, this case is called Dynamic Case I.

• Dynamic Case: xk+1 6= xk , βck ≈ β
c

This case requires that the beam direction changes
fast while the channel gain keeps static or quasi-static.
However, in real mmWave channels, the fast change of
the beam direction usually leads to the fast change of the
channel gain since the propagation paths change. This
case exists only when the user rotates around the base
station (BS) exactly in a circle in line of sight (LOS)
channels. This is not the usual case and not studied in
this article.

• Dynamic Case: xk+1 6= xk , βck+1 6= β
c
k

Both the beam direction and the channel gain in this
case change fast, which happens in most fast-moving
scenarios except Dynamic Case I, e.g., an unmanned
aerial vehicle (UAV) flies in the sky [31]. To distinguish
from Dynamic Case I, we call it Dynamic Case II.

It would be helpful to explain the following two aspects.
First of all, extra algorithms need to be introduced to effi-
ciently classify the channels according to the time-varying
features. However, to make the research goals more focused
in this article, we leave the details of this classification in
future work. Second, this article only exploits the indepen-
dent variation properties of βck and xk in these four cases to
obtain theoretical results. While in real mmWave channels,
the variation of the channel gain βck and the DPV xk might be
interrelated [32], which are supposed to be jointly taken into
account in future work.

With the above-mentionedEBV constraint, the exploring
direction constraint and the time-varying channel con-
straint, the beam and channel tracking problem in (13) can
be reformulated as:

min
4

1
MN

E
[∥∥∥ĥk − hk

∥∥∥2
2

]
(18)

s.t. (9), (11), (12), (14), (17).

IV. HOW MANY EXPLORATIONS ARE
NEEDED IN EACH ECC?
Before delving into the detailed tracking process in (18),
we will first study the number of explorations needed in this
section.

To estimate ψk , sufficient measurements from differ-
ent exploring directions are required. For Quasi-static
Case where ψk remains unchanged, i.e., ψk = ψ ,[
βre, β im, x1, x2

]T
, one exploration in each ECC is enough

since sufficient measurements are available after quite a num-
ber of ECCs. Nevertheless, in dynamic case, only using one
exploration in each ECC does not work well as ψk may
change fast. Hence, it is necessary to ensure that the estimate
can be obtained even by using the explorations in a single
ECC. Then the question becomes: under the condition above,
how many explorations are needed in each ECC?

With the constraint in (15), two explorations in each
ECC are sufficient to jointly track the equivalent chan-
nel gain and the 1D beam direction according to [10].
When tracking the 2D direction, it is straight forward
that four explorations are feasible by separately using two
explorations to track each dimension of the 2D direction.
However, using four explorations will lower the system
efficiency since it will cost time resources for each explo-
ration. Hence, we may ask that can we reduce the times of
exploration, or what is the minimum number of explorations
required?

Then the following lemma is proposed to help determine
the minimum exploration overhead q in each ECC:
Lemma 1: If the EBVs are of the steering vector forms,

i.e., wk,i =
1
√
MN

a
(
ωk,i

)
, and the observation vector in (9)

is noiseless, then
1) to obtain the unique solution of the channel parameter

vector ψk within one ECC, the minimum exploration over-
head is q = 3 in each ECC;
2) to obtain the unique solution of the DPV xk within one

ECC, the minimum exploration overhead is q = 3 in each
ECC.

Proof: See Appendix A.
Lemma 1 reveals that it is impossible to obtain the unique

solution within one ECC when only using two explorations,
whether we want to jointly estimate β (xk) and xk or just
estimate xk . If we use three explorations and design three
appropriate exploring directions in each ECC, then the unique
solution of the channel parameter vector ψk can be obtained.
Hence, we set q = 3 in this article, i.e., the EBM Wk =[
wk,1,wk,2,wk,3

]
.

V. QUASI-STATIC TRACKING: PERFORMANCE BOUND,
CONVERGENCE AND OPTIMALITY
In this section, we will focus on Quasi-static Case. As men-
tioned in Section III, in Quasi-static Case, ψk = ψ =[
βre, β im, x1, x2

]T
and hk = h , βa (x). For a given

channel parameter vector ψ and EBM Wk , the obser-
vation vector satisfies normal distribution with yk ∼

CN
(
|s|βWH

k a(x), σ
2
z J3

)
. Hence, the conditional probability

density function of yk is given by

pS (yk |ψ,Wk ) =
1

π3σ 6
z
e
−

∥∥∥yk−|s|βWH
k a(x)

∥∥∥2
2

σ2z . (19)
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In this section, we will first provide the lower bound of
the tracking error in Quasi-static Case. Then we develop a
tracking algorithm and prove it can converge to the minimum
CRLB with time.

A. CRAMÉR-RAO LOWER BOUND OF THE
TRACKING ERROR
The Cramér-Rao lower bound theory gives the lower bound
of the unbiased estimation error [33]. Based on this, we intro-
duce the following lemma to obtain the lower bound of the
tracking error in Quasi-static Case:
Lemma 2: In Quasi-static Case, given W1, · · · ,Wk , the

MSE of the channel vector estimate in (18) is lower bounded
as follows:

1
MN

E
[∥∥∥ĥk − h

∥∥∥2
2

]

≥
1
MN

Tr


(

k∑
l=1

IS (ψ,Wl)

)−1(
VHV

)
, C t

S (ψ,W1, · · · ,Wk), (20)

where V is the Jacobian matrix given by

V ,
∂h

∂ψT =

[
∂h
∂βre

,
∂h
∂β im

,
∂h
∂x1

,
∂h
∂x2

]
=

[
a (x) , ja (x) , β

∂a (x)
∂x1

, β
∂a (x)
∂x2

]
(21)

and the Fisher information matrix IS (ψ,Wl) is given by

IS (ψ,Wl) , E
[
∂log pS (yl |ψ,Wl)

∂ψ
·
∂log pS (yl |ψ,Wl)

∂ψT

]
=

2|s|2

σ 2
z

Re
{
VHWlWH

l V
}
. (22)

Proof: See Appendix B.
The CRLB in (20) is a function of the EBMsW1, . . . ,Wk .

Since it is hard to optimize so many EBMs simultaneously,
we will first try to find a lower bound of the CRLB under
the constraint (17), and later design a tracking algorithm
approaching this lower bound.

Consider any tracking algorithm under the constraint (17)
that can converge to the DPV x, i.e.,

lim
k→+∞

x̂k = x. (23)

Then the EBMWk also converges,

lim
k→+∞

Wk =W = [w1,w2,w3]T , (24)

where wi is given by

wi ,
1
√
MN

a
(
x+1S,i

)
, i = 1, 2, 3 (25)

with
{
1S,1,1S,2,1S,3

}
denoting the fixed set of exploration

offsets inQuasi-static Case. Hence, the normalizedCRLB (by

multiplying k) converges as k →+∞:

lim
k→+∞

kC t
S (ψ,W1, · · · ,Wk )

= lim
k→+∞

k
MN

Tr


(

k∑
l=1

IS (ψ,Wl)

)−1(
VHV

)
=

1
MN

Tr
{
IS (ψ,W)−1

(
VHV

)}
, (26)

which is a function of ψ, W and will be denoted as
CS (ψ,W).
According to (26), for a given channel (direction and gain),

there exists an optimal EBM, which leads to the minimum
normalized CRLB as a function of the channel parameter
vector ψ :

Cmin
S (ψ) = minW CS (ψ,W) = CS (ψ,W∗S ). (27)

Solving problem (27) yieldsW∗S =
[
w∗S,1,w

∗

S,2,w
∗

S,3

]
with

w∗S,i =
1
√
MN

a
(
x+1∗S,i

)
, i = 1, 2, 3, (28)

where
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
denotes the optimal set of explo-

ration offsets for a given array size and a given ψ .

B. ASYMPTOTICALLY OPTIMAL SET OF
EXPLORATION OFFSETS
In general, the minimum CRLB in (27) is a function of a set
of system parameters including the equivalent channel gain β,
the DPV x and the array size M , N . Hence, the optimal set
of 2D exploration offsets should also be a function of these
parameters. Since it is very hard to obtain the expression of
this optimal set, we adopt numerical search to deal with this
issue. However, as many parameters in (27) may affect the
optimal result, numerical search has to be reconducted for
different parameter sets, resulting in high complexity.

Fortunately, through our investigation, some useful prop-
erties of the minimum CRLB and the optimal set of explo-
ration offsets are given to simplify the numerical search,
as described in the following lemma:
Lemma 3: In Quasi-static Case, the minimum CRLB

Cmin
S (ψ) and the optimal set of exploration offsets{
1∗S,1,1

∗

S,2,1
∗

S,3

}
have the following three properties:

1) Cmin
S (ψ),

{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are invariant to the equiv-

alent channel gain β;
2) Cmin

S (ψ),
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are invariant to the DPV

x;
3) Cmin

S (ψ) converges as M, N→ +∞ and there exists a
fixed set of exploration offsets that are unrelated to the array
size M ,N , denoted as

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
, such that

lim
M ,N→+∞

CS (ψ, W̃∗S ) = lim
M ,N→+∞

Cmin
S (ψ),

where W̃∗S = [w̃∗S,1, w̃
∗

S,2, w̃
∗

S,3] is obtained with

w̃∗S,i ,
1
√
MN

a
(
x+ 1̃∗S,i

)
, i = 1, 2, 3. (29)

Proof: See Appendix C.
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Lemma 3 reveals that
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
is only related

to the array size M , N . Hence, the numerical search times
can be reduced to one for a particular array size M , N .
Numerically, we find later that even if

{
1∗S,1,1

∗

S,2,1
∗

S,3

}
may change for different array sizes,

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
can

be used to take the place of
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
as long as M

and N are sufficiently large. Therefore, the numerical search
times is reduced to one in the end. As

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
can be used to achieve the minimum CRLB when M ,N →
+∞, it is called the asymptotically optimal set of explo-
ration offsets in Quasi-static Case in this article.

TABLE 2. The asymptotically optimal set of exploration offsets in
Quasi-static Case.

FIGURE 3. The asymptotically optimal set of exploration offsets in
Quasi-static Case.

By numerical search in the main lobe in (10), we can
obtain one asymptotically optimal set of exploration offsets{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
in TABLE 2 and Fig. 3. It can be seen

that the three exploring direction vectors do not form a reg-
ular triangle as the radiation pattern produced by (25) is not
isotropic from different angles. With this set in TABLE 2,
a general way to generate the EBM W̃∗S is obtained by (29).

The set of exploration offsets
{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
may

become sub-optimal when the antenna size M × N is finite.
To evaluate the robustness of this set of exploration offsets
to finite array size, we adopt

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
to antenna

arrays of limited size and compare the minimum CRLB with
the CRLB achieved by

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
in TABLE 2.

As illustrated in Fig. 4, when the antenna number

FIGURE 4. The performance of the offsets in TABLE 2.

M = N ≥ 8, we can approach the minimum CRLB with a
relative error less than 0.1% by using

{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
.

As a conclusion, it is practical to apply this asymptotically
optimal set of exploration offsets to any antenna array with
M = N ≥ 8, any channel gain and any direction.

C. JOINT BEAM AND CHANNEL TRACKING
In the above subsections, we have provided a low-complexity
numerical method to design the optimal exploration offsets
and obtain the minimum CRLB, given that the DPV x is
known. However, in a real tracking problem, the DPV x is
unknown and the EBMs need to be adjusted dynamically.
In addition, a sequence of optimal beamforming matrices
only tells us what the minimum CRLB is, but it cannot tell us
which tracking algorithm can achieve the minimum CRLB.
In this subsection, we propose a specific tracking algorithm
to approach the minimum CRLB.
The proposed tracker is motivated by the following

maximum likelihood problem:

max
Wk

{
max
ψ̂k

log p
(
y1, · · · , yk

∣∣∣∣ψ,W1, · · · ,Wk

) ∣∣∣∣
ψ=ψ̂k

}
(30)

s.t. (9), (11), (12), (14), (17).

Since y1, · · · , yk are independently observed vectors, we can
convert (30) as follows:

max
Wk

{
max
ψ̂k

k∑
l=1

[
log pS

(
yl

∣∣∣∣ψ,Wl

) ∣∣∣∣
ψ=ψ̂k

]}
(31)

s.t. (9), (11), (12), (14), (17).

This problem is somewhat similar to a kind of estimation
problem with control in [34, Section 10.2], where a two-layer
recursive algorithm is proposed and proved to converge to the
minimum CRLB under several requirements. The difference
is that the observation vector in [34, Section 10.2] is given
by y = fo (ψ,W) + z, where z is an i.i.d. Gaussian noise
vector and fo (ψ,W) is a convex function with respect to ψ .
However, in our problem, fo (ψ,W) = |s|βWHa (x) is non-
convex, leading to the failure of directly applying the algo-
rithm and the theoretical results of [34, Section 10.2].
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Despite this, we can still design a two-layer nested opti-
mization algorithm inspired by [34, Section 10.2]. Further-
more, our proposed algorithm can be proved to converge
to the minimum CRLB under some necessary requirements,
as will be explained in Section V-D.

The proposed algorithm is based on iterative maximization
in the inner layer and the outer layer of (31). In the inner layer
of (31), we use the stochastic Newton’smethod [35] to update
the estimate, given by

ψ̂k = ψ̂k−1 + bS,kςk , (32)

where bS,k is the tracking step-size in Quasi-static Case, and
ςk is the updating direction vector. This updating direction
vector is a function of the observation vector yk and the latest
estimated value of the channel parameter vector ψ̂k−1, and is
defined as below:

ςk,IS
(
ψ̂k−1,Wk

)−1 ∂log pS (yk |ψ,Wk)

∂ψ

∣∣∣∣
ψ=ψ̂k−1

. (33)

And it is derived that

ςk =
(
Re
{
V̂H
k WkWH

k V̂k

})−1

Re
{
eHk
(
yk − ŷk

)}
Im
{
eHk
(
yk − ŷk

)}
Re
{
ẽHk1

(
yk − ŷk

)}
Re
{
ẽHk2

(
yk − ŷk

)}

,
(34)

where ek = WH
k a
(
x̂k−1

)
, ŷk = |s|β̂k−1WH

k a
(
x̂k−1

)
, ẽk1 =

β̂k−1WH
k
∂a(x̂k−1)
∂x1

, ẽk2 = β̂k−1WH
k
∂a(x̂k−1)
∂x2

and V̂k is given by

V̂k =

[
a (x) , ja (x) , β

∂a (x)
∂x1

, β
∂a (x)
∂x2

] ∣∣∣∣
ψ=ψ̂k−1

. (35)

In the outer layer of (31), assuming that the estimate of
the channel parameter vector is accurate, i.e., ψ = ψ̂k−1,
the EBMWk =

[
wk,1,wk,2,wk,3

]
is obtained with

wk,i =
1
√
MN

a
(
x̂k−1 + 1̃

∗

S,i

)
, i = 1, 2, 3, (36)

Finally, the proposed tracking algorithm is summarized in
Algorithm 1.

D. ASYMPTOTIC OPTIMALITY ANALYSIS
In this subsection, the convergence and the optimality of
our proposed algorithm will be discussed. Since the entire
proofs are very long, we will provide the main statements and
ideas or clues here, and leave the proofs in the appendices.

The convergence and optimalitywill be stated in three steps
as follows:

i) We prove that the estimate of the proposed tracking
algorithm converges to a unique point with probability one
given appropriate sequences of step-sizes.

ii) We prove that if the initial estimate is within the main
lobe, i.e., x̂0 ∈ B (x) and the step-size is appropriate, then the
convergence point will be exactly the real channel parameter
vector ψ , with probability approaching one.

Algorithm 1 Joint Beam and Channel Tracking (JBCT)
for Quasi-Static Case

1) Exploring and Receiving (Step 3 in Procedure 1):
Transmit 3 pilot sequences in each ECC. The correspond-
ing EBV for receiving the i-th pilot sequence in k-th ECC
is given below:

wk,i =
1
√
MN

a
(
x̂k−1 + 1̃

∗

S,i

)
, i = 1, 2, 3, (37)

where
{
1̃
∗

S,1, 1̃
∗

S,2, 1̃
∗

S,3

}
is given by TABLE 2. After

match filtering, the observation vector yk is obtained via
(9).
2) Updating Estimate (Step 6 in Procedure 1): The
estimate of the channel parameter vector in k-th ECC,

i.e., ψ̂k =

[
β̂rek , β̂

im
k , x̂k,1, x̂k,2

]T
, is updated by

ψ̂k = ψ̂k−1 + bS,kςk , (38)

where ςk is the updating direction vector given by (34) and
bS,k is the step-size that will be specified after.

iii) Finally, if ψ̂k → ψ and the step-size is appropriate,
then the tracking error of our algorithm converges to the
minimum CRLB.

1) CONVERGENCE TO A UNIQUE POINT
Since the observation vector yk is corrupted by the Gaussian
noise vector, the updating direction vector ςk in (33) is also
a random vector, and can be expressed as follows:

ςk = fψ
(
ψ̂k−1

)
+ ẑk , (39)

where fψ
(
ψ̂k−1

)
is the deterministic part of ςk defined as

below:

fψ
(
ψ̂k−1

)
, E

[
ςk
]
, (40)

which is a function of ψ̂k−1 that takes ψ as a parameter
vector. The zero-mean random part of ςk , i.e., ẑk , is given by

ẑk , ςk − fψ
(
ψ̂k−1

)
. (41)

The randomness of ςk might cause the proposed algorithm
to diverge. However, if we adopt the diminishing step-size as
that in [34], [36], [37], i.e.,

bS,k =
εS

k + KS,0
, k = 1, 2, · · · (42)

where KS,0 ≥ 0 and εS > 0, then some convergence property
can be obtained, as described in the following theorem:
Theorem 1 (Convergence to a Unique Stable Point): If we

adopt the iterative method in (37), (38) and bS,k is given by
(42)with εS > 0 and KS,0 ≥ 0, then ψ̂k converges to a unique
stable point of fψ (ψ̂k−1) with probability one.
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A point ψ̂k−1 is called a stable point of fψ
(
ψ̂k−1

)
when it

satisfies two conditions: 1) fψ
(
ψ̂k−1

)
= 0 and 2)

∂fψ
(
ψ̂k−1

)
∂ψ̂

T
k−1

is negative definite. Hence, the stable points set is defined as
below:

S ,

ψ̂k−1 : fψ
(
ψ̂k−1

)
= 0,

∂fψ
(
ψ̂k−1

)
∂ψ̂

T
k−1

≺ 0

, (43)
where A ≺ 0 denotes that the matrix A is negative definite.
In our problem, fψ

(
ψ̂k−1

)
defined in (40) is given by

fψ
(
ψ̂k−1

)

=
2|s|2

σ 2
z

IS
(
ψ̂k−1,Wk

)−1


Re
{
eHk
(
βWH

k a (x)−β̂k−1ek
)}

Im
{
eHk
(
βWH

k a (x)−β̂k−1ek
)}

Re
{
ẽHk1
(
βWH

k a (x)−β̂k−1ek
)}

Re
{
ẽHk2
(
βWH

k a (x)−β̂k−1ek
)}


.

(44)

Proof of Theorem 1: See Appendix D. �
By Theorem 1, for the general step-size in (42), ψ̂k con-

verges to a unique stable point in S.

2) CONVERGENCE TO THE CHANNEL PARAMETER
VECTOR ψ
According to (43) and (44), it is easy to verify that the channel
parameter vector ψ is a stable point by the following two
points:

1) βWH
k a (x) = β̂k−1ek in (44) when ψ̂k−1 = ψ . Hence,

fψ (ψ) = 0;

2)
∂fψ

(
ψ̂k−1

)
∂ψ̂

T
k−1

∣∣
ψ̂k−1=ψ

= −J4 by derivation, where J4 is the

4-order identity matrix. Thus,
∂fψ

(
ψ̂k−1

)
∂ψ̂

T
k−1

∣∣
ψ̂k−1=ψ

is negative

definite.
Therefore, ψ is a stable point, i.e., ψ ∈ S.
Other stable points in S correspond to the local optimal

points of the beam and channel tracking problem, which are
out of the main lobe B(x) in (10). Except for the channel
parameter vector ψ , the antenna array gain of other stable
points in S is quite low, resulting in low tracking accuracy.
Unfortunately, the estimate of the DPV x may jump out
of the main lobe in the tracking process and converge to
other local optimal points due to the existence of observation
noise. Hence, one key challenge is to ensure that the tracking
algorithm converges toψ rather than other stable points. Then
we develop the following theorem to deal with this challenge:
Theorem 2 (Convergence to the DPV x): If we adopt the

iterative method in (37), (38) and (i) the initial estimate of
x is within the main lobe, i.e., x̂0 ∈ B (x); (ii) bS,k is given by
(42) with εS > 0, then there exist some KS,0 ≥ 0 and R > 0

such that

P
(
x̂k → x | x̂0 ∈ B (x)

)
≥ 1− 8e

−
R|s|2

ε2Sσ
2
z . (45)

Proof: See Appendix E.
We have assumed that the beam estimator in Fig. 1 can

output an initial estimate x̂0 within themain lobeB (x). Under
the condition x̂0 ∈ B (x), Theorem 2 tells us the probability
of x̂k → x is related to |s|2

ε2Sσ
2
z
. Hence, we can reduce the

step-size or increase the transmit SNR |s|
2

σ 2z
to make sure that

x̂k → x approaching probability one.
According to Theorem 1, ψ̂k converges to a unique sta-

ble point corresponding to a local optimal point. Hence,
this unique stable point will be exactly ψ when x̂k → x,
i.e., ψ̂k → ψ .

3) CONVERGENCE WITH THE MINIMUM CRLB
Finally, the following theorem is developed to tell us the
tracking error of the proposed algorithm:
Theorem 3 (Convergence to ψ With the Minimum CRLB):

If we adopt the iterative method in (37), (38) and (i) ψ̂k → ψ;
(ii) bS,k is given by (42) with εS = 1 and any KS,0 ≥ 0, then
ĥk − h is asymptotically Gaussian and

lim
k→+∞

k
MN

E
[∥∥∥ĥk − h

∥∥∥2
2

∣∣∣∣ψ̂k → ψ

]
= Cmin

S (ψ). (46)

Proof: See Appendix F.
By Theorem 1, Theorem 2 and Theorem 3, if x̂0 ∈ B (x)

and we adopt the step-size bS,k in (42) with εS = 1 and
KS,0 ≥ 0, then the minimum CRLB is achieved asymptot-
ically with high probability.

VI. RECURSIVE BEAM TRACKING FOR DYNAMIC CASE I :
PERFORMANCE BOUND, CONVERGENCE
AND OPTIMALITY
In Dynamic Case I, the channel gain changes fast while the
beam direction changes slowly. We assume that the beam
direction keeps static, i.e., xk = x = [x1, x2]T. Hence,
the antenna gain in the direction of the arriving path also
keeps static, i.e., η (xk) = η (x). When the channel gain
βck changes fast, it is very difficult to establish theorems of
tracking the channel gain and beam direction simultaneously,
as in Section V. Fortunately, acquiring the beam direction
information is sufficient for alignment in mmWave mobile
communication with analog beamforming. Hence, we only
focus on beam direction tracking in Dynamic Case I.

The channel gains of adjacent ECCs in this section are
assumed to be independent of each other. In addition, differ-
ent distributions of the channel gain βck can lead to different
suitable tracking strategies. The tracking strategy designed
for one distribution of the channel gain may deteriorate
sharply when applied to other distributions. Hence, each
type of channel gain distribution deserves studying, of which
Rayleigh fading channel is a special case that is easier to
be analyzed. This special case happens when quite a number
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of rays existing in a cluster are indistinguishable. In this
section, we choose Rayleigh fading channels to study for
Dynamic Case I, i.e., βck ∼ CN

(
0,
(
σ cβ

)2). Although the
theoretical results in this section are only applicable for
Rayleigh fading channels, the proposed algorithm is found
robust for other types of time-varying channels according to
the numerical results in Section IX-C.

When the channel gain βck is Gaussian distributed,
the equivalent channel gain β (x) = η (x) βck also satisfies
Gaussian distribution with the variance given below:

E
[
|β (x)|2

]
= |η (x)|2

(
σ cβ

)2
, σ 2

β . (47)

Correspondingly, the observation vector yk in (9) satisfies
Gaussian distribution for a given DPV x and EBM Wk ,
i.e., yk ∼ CN

(
0,6y,k

)
, where 6y,k is the covariance matrix

of yk defined as follows:

6y,k , E
[
ykyHk

]
= |s|2σ 2

βW
H
k a (x)

(
WH

k a (x)
)H
+ σ 2

z J3.

(48)

According to (48), we can obtain the determinant of 6y,k :

|6y,k | = σ
4
z

(
σ 2
z + |s|

2σ 2
β |W

H
k a (x)|

2
)
. (49)

Then the conditional probability density function of yk is
given by

pDI (yk |x,Wk ) =
1

π3|6y,k |
e−y

H
k 6
−1
y,kyk , (50)

The following structure of this section is similar to
Section V: we first formulate the beam tracking problem and
provide the lower bound of it. Then we develop a tracking
algorithm and prove this algorithm can converge to the mini-
mum CRLB.

A. PROBLEM FORMULATION
Since we only track the beam direction in Dynamic Case I,
the estimation function in (12) is reformulated as follows:

x̂k = FeDI ,k
(
ψ̂0,W1, · · · ,Wk , y1, · · · , yk

)
. (51)

Let 4DI ,k =

{
Fck ,F

e
DI ,k

}
denote a beam tracking scheme

set in k-th ECC: based on historical observation vec-
tors y1, · · · , yk−1 along with the corresponding EBMs
W1, · · · ,Wk−1, choose an appropriate EBMWk , apply it to
obtain yk and make an estimation of the DPV x in k-th ECC
by using all EBMs and observations available. Hence, in k-th
ECC, the tracking problem is formulated as:

min
4DI ,k

E
[∥∥x̂k − x

∥∥2
2

]
(52)

s.t. E
[
x̂k
]
= x, (53)

(9), (11), (17), (51),

where the constraint (53) ensures that x̂k is an unbiased
estimate of the DPV x.

Before providing a specific tracking algorithm, we will
first explore the performance bound of the problem in (52).

B. CRAMÉR-RAO LOWER BOUND OF TRACKING ERROR
We now perform some theoretical analysis on the beam track-
ing problem. Based on the CRLB theory in [33], we introduce
the following lemma to obtain the lower bound of the tracking
error:
Lemma 4: In Dynamic Case I, given W1, · · · ,Wk , the

MSE of the DPV estimate in (52) is lower bounded as follows:

E
[∥∥x̂k − x

∥∥2
2

]
≥ Tr


(

k∑
l=1

IDI (x,Wl)

)−1, (54)

where the Fisher information matrix IDI (x,Wl) is given by

IDI (x,Wl),E
[
∂log pDI (yk |x,Wl)

∂x
·
∂log pDI (yk |x,Wl)

∂xT

]
,

(55)

and the p-th row, j-th column (p = 1, 2; j = 1, 2) of
IDI (x,Wl) is derived by (56), as shown at the bottom of the
page, with gl , g̃l,p and Gl,p defined below:

gl ,WH
l a (x)

g̃l,p ,
∂|gl |2

∂xp
, p = 1, 2

Gl,p ,
∂glgHl
∂xp

, p = 1, 2.

(57)

Proof: See Appendix G.
The CRLB in (54) is a function of the EBMsW1, . . . ,Wk .

Similar to that in Quasi-static Case, we consider the normal-
ized CRLB (by multiplying k):

CDI (x,W) , Tr
{
IDI (x,W)−1

}
. (58)

By optimizing only one EBM W, we can further get the
minimum CRLB, given by

Cmin
DI (x) = minW CDI (x,W) = CDI (x,W∗DI ). (59)

Solving problem (59) yields the optimal EBM W∗DI =[
w∗DI ,1,w

∗

DI ,2,w
∗

DI ,3

]
with

w∗DI ,i =
1
√
MN

a
(
x+1∗DI ,i

)
, i = 1, 2, 3, (60)

where
{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
denotes the optimal set of

exploration offsets in Dynamic Case I.

[IDI (x,Wl)]p,j =
σ 6
z |s|

6σ 6
β

|6y,k |
2

{
−2|gl |2g̃l,pg̃l,j +

σ 2
z

|s|2σ 2
β

Tr
{
Gl,pGl,j

}
+ gHl

(
Gl,pGl,j +Gl,jGl,p

)
gl

}
, (56)
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C. ASYMPTOTICALLY OPTIMAL SET OF
EXPLORATION OFFSETS
In general, the CRLB in (59) is a function of a set of system
parameters including the equivalent channel gain parameter
σ 2
β , the DPV x and the array size M , N . Hence, the optimal

set of 2D exploration offsets should also be a function of these
parameters. Since it is very hard to obtain the expression of
this optimal set, we adopt numerical search to deal with this
issue. However, as many parameters in (59) may affect the
optimal result, numerical search has to be reconducted for
different parameter sets, resulting in high complexity.

Fortunately, through our investigation, some useful prop-
erties of the minimum CRLB and the optimal set of explo-
ration offsets are given to simplify the numerical search,
as described in the following lemma:
Lemma 5: In Dynamic Case I, the minimum CRLB

Cmin
DI (ψ) and the optimal set of exploration offsets{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
have the following three properties:

1) Cmin
DI (ψ) and

{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
are invariant to the

DPV x;

2)
|s|2σ 2β
σ 2z

Cmin
DI (ψ) converges to constant values as

|s|2σ 2β
σ 2z
→+∞;

3) Cmin
DI (ψ) converges as M, N→ +∞ and there exists a

fixed set of exploration offsets that are unrelated to the array

size and
|s|2σ 2β
σ 2z

, denoted as
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
, such that

lim
M ,N→+∞

CDI (ψ, W̃∗DI ) = lim
M ,N→+∞

Cmin
DI (ψ),

where W̃∗DI = [w̃∗DI ,1, w̃
∗

DI ,2, w̃
∗

DI ,3] is obtained with

w̃∗DI ,i ,
1
√
MN

a
(
x+ 1̃∗DI ,i

)
, i = 1, 2, 3. (61)

Proof: See Appendix H.
Lemma 5 reveals that

{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
is only

related to the array size M , N and
|s|2σ 2β
σ 2z

. Hence, the numer-
ical search times can be reduced to one for a particular array

size M , N and a particular
|s|2σ 2β
σ 2z

. Numerically, we find later

that even if
{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
may change for different

array sizes and
|s|2σ 2β
σ 2z

,
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
can be used

to take the place of
{
1∗DI ,1,1

∗

DI ,2,1
∗

DI ,3

}
as long as the

antenna sizeM ,N and
|s|2σ 2β
σ 2z

are sufficiently large. Therefore,
the numerical search times is reduced to one in the end.
Similar to that in Quasi-static Case,

{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
is called the asymptotically optimal set of exploration offsets
in Dynamic Case I in this article.

By numerical search in the main lobe in (10),
one asymptotically optimal set of exploration offsets{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
can be obtained in TABLE 3 and

Fig. 5. With this set of exploration offsets, a general way to
generate the EBM W̃∗DI is obtained by (61) to achieve the
minimum CRLB.

TABLE 3. The asymptotically optimal set of exploration offsets in
Dynamic Case I.

FIGURE 5. The asymptotically optimal set of exploration offsets in
Dynamic Case I.

FIGURE 6. The performance of the offsets in TABLE 3 when
|s|2σ2

β

σ2
z

= 0 dB.

By adopting
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
to smaller size

antenna arrayswhen
|s|2σ 2β
σ 2z
= 0 dB,we compare theminimum

CRLB and the CRLB achieved by
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
in TABLE 3. As illustrated in Fig. 6, when antenna number
M = N ≥ 8, we can approach the minimum CRLB with a
relative error less than 0.1%by using

{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
.

By applying
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
to different

|s|2σ 2β
σ 2z

when M = N = 8, we compare the minimum CRLB and
the CRLB achieved by

{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
in TABLE 3.

As illustrated in Fig. 7, when
|s|2σ 2β
σ 2z
≥ 0 dB, we can approach
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FIGURE 7. The performance of the offsets in TABLE 3 when M = N = 8.

the minimum CRLB with a relative error less than 0.1% by
using

{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
.

As a conclusion, it is practical to apply this asymptotically
optimal set of exploration offsets to any antenna array with

M = N ≥ 8, any channel gain with
|s|2σ 2β
σ 2z
≥ 0dB and any

direction.

D. RECURSIVE BEAM TRACKING WITH ASYMPTOTIC
OPTIMALITY ANALYSIS
For the Rayleigh fading channels, it is crucial to acquire the
variance of the equivalent channel gain in (47), while it is
hindered by the unknown antenna gain η (x). Fortunately,
the estimate of η (x) and σ 2

β can be seen as approximately
accurate for a given antenna element pattern as the estimate
of the DPV x̂k approach x. Hence, we assume a perfectly-
known σ 2

β here to design the algorithm in Dynamic Case I.
The deterioration of the tracking performance caused by the
estimation error of the antenna gain will be evaluated in
Section IX-D.

The proposed tracker is motivated by the following maxi-
mum likelihood problem:

max
Wk

{
max
x̂k

k∑
l=1

[
log pDI

(
yl
∣∣x,Wl

) ∣∣∣∣
x=x̂k

]}
(62)

s.t. (9), (11), (17), (51), (53).

Similar to that in Section V, we propose a two-layer nested
optimization algorithm to find the solution of (62). Finally,
the proposed tracking algorithm is given in Algorithm 2.

We now perform the asymptotic optimality analysis.
According to [34], [36], [37], the diminishing step-size is
adopted as follows:

bDI ,k =
εDI

k + KDI ,0
, k = 1, 2, · · · (63)

where KDI ,0 ≥ 0 and εDI > 0. Then we can prove that if
the initial estimate x̂0 is within the main lobe and εDI = 1,
the proposed algorithm can converge to x with the minimum
CRLB with high probability, i.e.,

lim
k→+∞

kE
[∥∥x̂k − x

∥∥2
2

]
= Cmin

DI (x). (64)

Algorithm2Recursive BeamTracking (RBT) for Dynamic
Case I
1) Exploring and Receiving (Step 3 in Procedure 1):
Transmit 3 pilot sequences in each ECC. The correspond-
ing EBV for receiving the i-th pilot sequence in k-th ECC
is given below:

wk,i =
1
√
MN

a
(
x̂k−1 + 1̃

∗

DI ,i

)
, i = 1, 2, 3, (65)

where x̂k =
[
x̂k,1, x̂k,2

]T and
{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
is

given by TABLE 3. After match filtering, the observation
vector yk is obtained via (9).
2) Updating Estimate (Step 6 in Procedure 1): The esti-
mate x̂k =

[
x̂k,1, x̂k,2

]T is updated by

x̂k= x̂k−1+bDI ,kIDI
(
x̂k−1,Wk

)-1 ∂log pDI (yk |x̂k−1,Wk
)

∂ x̂k−1
,

(66)

where IDI
(
x̂k−1,Wk

)
is defined in (55) and bDI ,k is the

step size that will be specified later.

Algorithm 3 Joint Beam and Channel Tracking (JBCT)
for Dynamic Case II

1) Exploring and Receiving (Step 3 in Procedure 1):
Transmit 3 pilot sequences in each ECC. The correspond-
ing EBV for receiving the i-th pilot sequence in k-th ECC
is given below:

wk,i =
1
√
MN

a
(
x̂k−1 +1DII ,i

)
, i = 1, 2, 3, (67)

where x̂k =
[
x̂k,1, x̂k,2

]T and 1DII ,i = 1̃
∗

S,i (i = 1, 2, 3)
are given by TABLE 2. After match filtering, the observa-
tion vector yk is obtained via (9).
2) Updating Estimate (Step 6 in Procedure 1): The
estimate of the channel parameter vector in k-th ECC,

i.e., ψ̂k =

[
β̂rek , β̂

im
k , x̂k,1, x̂k,2

]T
, is updated by

ψ̂k = ψ̂k−1 + bDII ,kςk , (68)

where ςk is the updating direction vector given by (34) and
bDII ,k is the step size for Dynamic Case II.

The proof is similar to that in Section V and the details are
omitted here since nothing new is provided in the proof.

VII. JOINT BEAM AND CHANNEL TRACKING FOR
DYNAMIC CASE II
In Dynamic Case II where both the channel gain βck and the
DPV xk change fast, the observation vector yk satisfies nor-
mal distribution with yk ∼ CN

(
|s|β (xk)WH

k a(xk ), σ
2
z J3

)
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for a given channel parameter vector ψk and EBM Wk .
Hence, the conditional probability density function of the
observation vector yk is given by

pDII (yk |ψk ,Wk ) =
1

π3σ 6
z
e
−

∥∥∥yk−|s|β(xk )WH
k a(xk )

∥∥∥2
2

σ2z . (69)

Establishing theorems of tracking, as in Section V and
Section VI, is very difficult in Dynamic Case II. Even if the
theoretical analysis is not conducted in this section, we still
provide a tracking algorithm in this section.

Inspired by the asymptotically optimal tracking algorithm
in Section V and Section VI, we design a similar joint beam
and channel tracking algorithm in Algorithm 3.
Different from the step-size in Quasi-static Case and

Dynamic Case I, we adopt constant step-size in Dynamic
Case II as the diminishing step-size cannot track the fast-
changing xk and βk . The constant step-size bDII ,k will be
specified later.

VIII. COMPUTATIONAL COMPLEXITY
In this section, we evaluate the computational complexity
of the proposed tracking algorithms in Quasi-static Case,
Dynamic Case I and Dynamic Case II. We focus on the
complex arithmetic operations in the tracking stage including
complex multiplication and division, while complex addi-
tion and subtraction are omitted since they require much
fewer operations. It seems that Algorithm 1, Algorithm 2 and
Algorithm 3 require a huge number of complex arithmetic
operations due to the Fisher information matrix inversion
in each ECC. However, most of these calculation work can
be finished off-line, by which the complex operations are
greatly reduced. The following lemma is proposed to tell us
the specific computational complexity:
Lemma 6: If the number of offline complex arithmetic

operations is ignored since it is much smaller than the online
ones as the tracking process lasts, then
1) for Algorithm 1 in Quasi-static Case and Algorithm 3

in Dynamic Case II, 45 complex arithmetic operations are
required in each ECC;
2) for Algorithm 2 in Dynamic Case I, 28 complex arith-

metic operations are required in each ECC.
Proof: See Appendix I.

According to Lemma 6, our algorithms can efficiently
work without high complexity.

IX. NUMERICAL RESULTS
In this section, some numerical results will be provided to
verify the performance of our proposed tracking algorithms
for Quasi-static Case, Dynamic Case I and Dynamic Case II.
Based on the model in Section II, the parameters are set as:
M=N=8, the antenna spacing d1=d2= λ

2 , and the transmit

SNR is |s|
2

σ 2z
= 0 dB. The antenna element pattern is based on

the 3GPP model [38]. The vertical cut and the horizontal cut
of the radiation power pattern (normalized with 0 dB at the

central direction) for each element are given below:

ηdB

(
θ, φ =

π

2

)
= −min

{
12
(

θ

θ3 dB

)2

, ηmax

}
(70)

ηdB (θ = 0, φ) = −min

{
12
(
φ − π

2

φ3 dB

)2

, ηmax

}
, (71)

where θ3 dB = 13π
36 is the 3 dB beamwidth in the vertical

direction, φ3 dB = 13π
36 is the 3 dB beamwidth in the horizon-

tal direction and ηmax = 30 dB is the maximum attenuation.
The combined radiation power pattern (normalized) of each
antenna element in [38] is given by

ηdB(θ, φ)=−min
{
−

(
ηdB

(
θ, φ=

π

2

)
+ηdB (θ=0, φ)

)
, ηmax

}
.

(72)

As can be seen in Fig. 8, we define two direction regions:
central direction region (ηdB (θ, φ) ≥ −6 dB) and edge
direction region (ηdB (θ, φ) ≤ −18 dB). We will separately
evaluate the tracking performance in these two direction
regions afterwards.

FIGURE 8. An example of the normalized antenna radiation power
pattern (dB) versus the AoA θ, φ (rad) for each element.

A. REFERENCE ALGORITHMS
Reference algorithms include the compressed sensing algo-
rithm in [14], the 3GPP New Radio (NR) tracking algorithm
in [16], the extended Kalman filter (EKF) algorithm in [15]
and the recursive beam and channel tracking (RBCT) algo-
rithm in [10]. For the compressed sensing algorithm in [14],
we randomly choose phase shifts from {±1,±j} and then use
the sparse recovery algorithm to estimate the DPV, where
a discrete Fourier transform (DFT) dictionary with a size
of 1024 is utilized. As for the 3GPP NR tracking algorithm,
the last estimated beam direction and its adjacent beam
directions are probed, then the system determines whether to
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switch the estimate in current ECC according to the strength
of the received signals. For the EKF algorithm, we extend
the method in [15] to the 2D array and the three exploring
directions used in each ECC form a regular triangle within
half the main lobe of the DPV estimate. The original RBCT
algorithm in [10] is designed for 1D system and cannot
directly support 2D tracking. To compare with our algorithms
in the 2D case, we use two symmetrical explorations to track
each dimension of the 2D beam for the RBCT algorithm.

For the initial beam estimation stage in Fig. 1, an exhaus-
tive beam sweeping is conducted. Then an initial estimate is
obtained by using the orthogonal matching pursuit method
in [39]. This ensures that the initial estimate of the DPV,
i.e., x̂0, is within the main lobe in (10).
In the tracking stage, three explorations are conducted in

each ECC for all the algorithms. For the RBCT algorithm
in [10], we use a buffer to store the received observations and
update the estimate when receiving four new observations.

It is worth pointing out that the compressed sensing algo-
rithm in [14] does not require an initial estimate. To ensure the
fairness of all the algorithms, we compare the tracking perfor-
mance versus the total number of explorations (i.e., assuming
the compressed sensing algorithm uses the same total number
of explorations) used both in the initial beam estimation stage
and the tracking stage.

B. PERFORMANCE BOUND OF THE
TRACKING ALGORITHMS
As revealed in Section V-A and Section VI-B, the CRLB
is a function of the adopted EBMs. Since the EBMs of our
algorithms and the reference algorithms are quite different,
the corresponding achieved CRLBs are also different. In this
subsection, we will compare the CRLBs achieved by the
EBMs of these different algorithms to verify the superiority
of our optimal EBMs.

The fixed AoA (θ ,φ) in Quasi-static Case and Dynamic
Case I is chosen evenly and randomly in θ ∈

[
−
π
6 ,

π
6

]
, φ ∈[

π
3 ,

2π
3

]
. The corresponding antenna gain of each element

varies from -5.2 dB to 0 dB via (72). For Quasi-static case,
the fixed channel gain βc is modeled as Rician fading with a
K-factor κ = 15 dB, according to the channel model in [40].
For Dynamic Case I, the channel gains between different
ECCs are independent of each other and modeled as Rayleigh

fading with
|s|2

(
σ cβ

)2
σ 2z

= 0 dB. All simulation results in this
section are averaged over 1000 random system realizations.

Fig. 9 and Fig. 10 shows the CRLBs achieved by the EBMs
of different algorithms. It can be observed that our optimal
EBMs both in Quasi-static Case and Dynamic Case I can
achieve lower CRLB compared with the EBMs used by the
reference algorithms, which results from the fact that the
EBMs of our algorithms are carefully optimized and proven
to be optimal in theory. Since the CRLB illustrates the perfor-
mance bound, the other four algorithms cannot perform better
than our algorithms in potential tracking accuracy.

FIGURE 9. The CRLBs in Quasi-static Case.

FIGURE 10. The CRLBs in Dynamic Case I.

C. RESULTS OF TRACKING ACCURACY
In this subsection, we will evaluate the tracking performance
of our algorithms in the central direction region. The AoA
(θ ,φ) as defined in Section II is chosen evenly and randomly
in θ ∈

[
−
π
6 ,

π
6

]
, φ ∈

[
π
3 ,

2π
3

]
. The corresponding antenna

gain of each element varies from -5.2 dB to 0 dB via (72).

1) QUASI-STATIC CASE
The channel gain βc is modeled as Rician fading with a
K-factor κ = 15 dB, according to the channel model in [40].
The step-size is set as bS,k = 1

k .

FIGURE 11. MSEh in Quasi-static Case when the AoA is in the central
direction region.

As can be observed in Fig. 11, the tracking accuracy of
the compressed sensing algorithm and the 3GPP NR tracking
algorithm gradually keeps steady with the increasing number
of explorations, as both of the two algorithms are grids-of-
beam based approaches and the performance is restricted
by the codebook resolution. The EKF algorithm in Fig. 11
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also shows a similar feature, which results from the fact
that the original EKF algorithm itself cannot efficiently track
static parameters [41]. Although the tracking error of the
RBCT algorithm gradually reduces as the number of explo-
ration increases, it cannot achieve the corresponding CRLB
in Fig. 9. This is caused by tracking the horizontal and
the vertical directions separately in the RBCT algorithm,
causing loss as against joint tracking. Compared with the
four reference algorithms, our proposed JBCT algorithm can
approach the minimum CRLB quickly and achieve much
lower tracking error.

2) DYNAMIC CASE I
The channel gains between different ECCs are independent of
each other and Rayleigh fading channels are adopted in each

ECC with
|s|2

(
σ cβ

)2
σ 2z

= 0 dB. The step-size is set as bDI ,k = 1
k .

As the RBCT algorithm in [10] does not support fast-fading
channel tracking, it is excluded from the reference algorithms
in Dynamic Case I.

FIGURE 12. MSEx in Dynamic Case I for Rayleigh fading channel when the
AoA is in the central direction region.

Fig. 12 indicates that the DPV MSE of our proposed RBT
algorithm can converge to the minimum CRLB if the antenna
gain can be perfectly known. Even with the estimated antenna
gain for tracking, our algorithm can also converge to the
minimum CRLB and achieve much lower tracking error than
other algorithms. Hence, the estimation error of the antenna
gain has little influence on the tracking performance of our
algorithm when the AoA is in the central direction region.

Further, we evaluate the robustness of the proposed algo-
rithm for other types of time-varying channels. The channel
gains between different ECCs are still independent of each
other while Rician fading channels are adopted in each ECC

with a K-factor κ = 15 dB and
|s|2

(
σ cβ

)2
σ 2z

= 0 dB, where
(
σ cβ

)2
denotes the average energy gain of the Rician fading channel.
The algorithm designed for the Rayleigh fading channel is
adopted to track the Rician fading channel here. It can be
observed in Fig. 13 that our algorithm can still converge and
achieve much lower tracking error than existing algorithms.
These results show that the proposed algorithm in Dynamic
Case I is robust to different time-varying channels as long as
the variance of the channel gain is known.

FIGURE 13. MSEx in Dynamic Case I for Rician fading channel when the
AoA is in the central direction region.

3) DYNAMIC CASE II
In Dynamic Case II, the initial AoA (θ0,φ0) as defined
in Section II is chosen evenly and randomly in θ0 ∈[
−
π
6 ,

π
6

]
, φ0 ∈

[
π
3 ,

2π
3

]
. The AoA (θk ,φk ) is modeled as a

random walk process with return, i.e., θk+1 = θk +$ θ
k 1θk ,

φk+1 = φk + $
φ
k 1φk , where 1θk ,1φk ∼ N (0, δ2A), and

$ θ
k ,$

φ
k ∈ {−1, 1} denote the rotation direction. The rotation

direction $ θ
k ,$

φ
k are chosen such that θk varies in

[
−
π
6 ,

π
6

]
and φk varies in

[
π
3 ,

2π
3

]
. The channel gain is modeled as a

first-order Gaussian-Markov process, i.e., βck+1 = ρβ
c
k + γk ,

where γk ∼ CN (0, 1 − ρ2). We adopt ρ = 0.995 in simu-
lation. As for the step-size, numerical results show that when
bDII ,k = 0.7, the joint beam and channel tracking algorithm
can track beams with higher velocity. Hence, the step-size is
set as a constant bDII ,k = 0.7.

FIGURE 14. MSEhk
in Dynamic Case II when the AoA is in the central

direction region.

Fig. 14 indicates the proposed JBCT algorithm in Dynamic
Case II can achieve higher tracking accuracy than the other
four algorithms. In addition, if we set a tolerance error
in Fig. 14, then our algorithm can support higher angular
velocities.

D. THE IMPACT OF THE ANTENNA PATTERN
In this subsection, we will evaluate the impact of the antenna
pattern by setting the AoA in the edge direction region
in Fig. 8. Other parameters are the same as the setting in
Section IX-C.
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FIGURE 15. MSEh in Quasi-static Case when the AoA is in the edge
direction region.

1) QUASI-STATIC CASE
The AoA (θ ,φ) as defined in Section II is chosen evenly and
randomly in θ ∈

[
π
2 −

π
60 ,

π
2

]
, φ ∈

[
π − π

60 , π
]
. The corre-

sponding antenna gain of each element is −30 dB via (72).
In Fig. 15, it can be seen that our JBCT algorithm still

outperforms existing algorithms when the AoA is in the
edge direction region. Nevertheless, compared with Fig. 11,
the minimum CRLB cannot be achieved any more and the
performance of all algorithms deteriorate if the transmit
power keeps unchanged, i.e., |s|

2

σ 2z
= 0 dB. This can be

explained by the decrease of the equivalent SNR when the
AoA is in the edge direction region. If we compensate the gain
loss in the edge direction region by increasing the transmit
power by 30 dB, i.e., |s|

2

σ 2z
= 30 dB, then Fig. 15 demonstrates

the performance can be greatly improved and the minimum
CRLB can be achieved again. Furthermore, we compare the
tracking performance in two cases: 1) |s|

2

σ 2z
= 30 dB when

θ ∈
[
π
2 −

π
60 ,

π
2

]
, φ ∈

[
π − π

60 , π
]
, where the antenna

gain of each element is −30 dB; 2) |s|
2

σ 2z
= 0 dB when θ ∈[

−
π
120 ,

π
120

]
, φ ∈

[
π
2 −

π
120 ,

π
2 +

π
120

]
, where the antenna

gain of each element can be seen as 0 dB. It can be observed
in Fig. 15 that the performance in these two cases is almost
the same. This shows that the deterioration of the tracking
performance in the edge direction region only results from
the decrease of the equivalent SNR.

2) DYNAMIC CASE I
The AoA (θ ,φ) as defined in Section II is chosen evenly
and randomly in θ ∈

[
π
3 ,

π
2

]
, φ ∈

[
5π
6 , π

]
. The corre-

sponding antenna gain of each element varies from −30 dB
to−20.4 dB via (72). As can be observed in Fig. 16, our RBT
algorithm still outperforms existing algorithms for Rayleigh
fading channel when the AoA is in the edge direction region.
Since the equivalent SNR decreases, the proposed algorithm
cannot converge to the minimum CRLB as before. If we
compensate the gain loss in the edge direction region by
increasing the transmit power by 30 dB, i.e., |s|

2

σ 2z
= 30 dB,

then our algorithm can still converge to the minimum CRLB

FIGURE 16. MSEx in Dynamic Case I for Rayleigh fading channel when the
AoA is in the edge direction region.

and achieve the same performance as that in Fig. 12 with the
perfectly-known antenna gain.

With the estimated antenna gain, our RBT algorithm can-
not converge to the minimum CRLB as before even when
|s|2

σ 2z
= 30dB. This is caused by the larger slope in the edge

direction region compared with the central edge direction
region. Hence, a small estimation error of the AoA can result
in a large deviation of the estimated equivalent channel gain
parameter σ 2

β in (47), leading to the non-convergence when
using estimated antenna gain in Fig. 16.

FIGURE 17. MSEhk
in Dynamic Case II when the AoA is in the edge

direction region.

3) DYNAMIC CASE II
The initial AoA (θ0,φ0) as defined in Section II is chosen
evenly and randomly in θ0 ∈

[
π
3 ,

π
2

]
, φ0 ∈

[
5π
6 , π

]
. The

rotation direction $ θ
k ,$

φ
k are chosen such that θk varies in[

π
3 ,

π
2

]
and φk varies in

[
5π
6 , π

]
. The corresponding antenna

gain of each element varies from −30 dB to -20.4 dB via
(72). As can be seen in Fig. 17, all the algorithms cannot
efficiently track the channels when the AoA varies in the edge
direction region, since the equivalent SNR decreases sharply.
If we compensate the gain loss in the edge direction region
by increasing the transmit power by 30 dB, i.e., |s|

2

σ 2z
= 30 dB,

then our JBCT algorithm can still achieve lower tracking error
and faster tracking speed.

E. COMPUTATIONAL COMPLEXITY
We then evaluate the computational complexity of our
proposed algorithms. As can be seen in TABLE 4, our
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TABLE 4. Number of required complex operations in each ECC.

algorithms require fewer complex operations than other algo-
rithms except 3GPP NR. Compared with 3GPP NR, the pro-
posed algorithms can achieve much more accurate tracking
without greatly increasing the computational complexity.

X. CONCLUSION
This article focuses on fast accurate beam and channel track-
ing for 2D phased antenna arrays. We first give the minimum
exploration overhead of joint 2D tracking in theory. Then
three tracking algorithms are developed according to different
practical time-varying channel models.

In Quasi-static Case, the optimal exploration offsets are
derived which are proved to a) be unrelated to the channel
gain and the beam direction, b) be determined only by the
array size, and c) approach constants as the array size goes to
infinity. Also, a joint beam direction and channel gain track-
ing algorithm is proposed and the tracking error is proved to
converge to the minimum CRLB.

In Dynamic Case I, an algorithm for beam only tracking
is proposed, and it is proved to converge and achieve the
minimum CRLB on the beam direction.

In Dynamic Case II, a joint tracking algorithm of beam
direction and channel gain is proposed with faster and more
accurate performance presented by simulation results.

This work is the first step to beam and channel tracking
with 2D phased antenna arrays. In future work, we will
further study the following problems: i) establishing the cor-
responding theorems in Dynamic Case II; ii) jointly tracking
multipath channels; iii) tracking at both the transmitter and
the receiver.

APPENDIX A
PROOF OF LEMMA 1
If the EBVs are of the steering vector forms, i.e., wk,i =

1
√
MN

a
(
ωk,i

)
, where ωk,i =

[
ωk,i1, ωk,i2

]T denotes the i-th
exploring direction vector in k-th ECC, then the noiseless
complex observation equation for the i-th observation is given

in (73), as shown at the bottom of the page, where Step (a)
follows the definition of ya(1):

ya(1) ,
sin (πδ1)

sin
(
πδ1
M

) sin (πδ2)

sin
(
πδ2
N

) (74)

with 1 , [δ1, δ2]T. In our real tracking problem, the explor-
ing direction vector ωk,i should be ensured within the main
lobe of xk in (10), i.e., |ωk,i1−xk,1| < 1 and |ωk,i2−xk,2| < 1.
Hence, we have that ya

(
ωk,i − xk

)
> 0.

The complex observation equation in (73) contains two
real equations, i.e., an amplitude equation and a phase angle
equation. Therefore, q amplitude equations and q phase angle
equations can be obtained after q observations. If we set the
first observation as a reference, then we can obtain (q − 1)
relative amplitude equations and (q− 1) relative phase angle
equations from the remaining (q−1) observations. However,
these phase angle equations are not independent, as to be
explained below.

From (73), we can obtain the phase angle equation:

6 (yk,i) = 6 β (xk)− π
[
M − 1
M

(ωk,i1 − xk,1)

+
N − 1
N

(ωk,i2 − xk,2)
]
.

Thus the relative phase angle equation of the i-th observa-
tion yk,i regarding the first observation yk,1 (i 6= 1) can be
obtained as below:

6 (yk,i)− 6 (yk,1)

= π

[
M − 1
M

(ωk,11 − ωk,i1)+
N − 1
N

(ωk,12 − ωk,i2)
]
,

(75)

where ωk,11 − ωk,i1 and ωk,12 − ωk,i2 are determined by
the exploring direction vectors and unrelated to the channel
parameter vector ψk . From (75), we can know that once
the exploring directions are determined, the relative phase
angles are known constants unrelated to ψk . In other words,
the relative phase angle equations as revealed in (75) cannot
provide any information for estimating ψk .

Following the conclusion above, we analyze the minimum
exploration overhead in the following two cases:

1) If we want to obtain the unique solution of ψk within
one ECC, at least 4 independent real equations with respect
to ψk are needed since ψk contains four independent real

yk,i=
|s|β (xk)
√
MN

a
(
ωk,i

)H a (xk) =
|s|β (xk)
√
MN

M∑
m=1

N∑
n=1

e
−j2π

[
(m−1)(ωk,i1−xk,1)

M +
(n−1)(ωk,i2−xk,2)

N

]

=
|s|β (xk)
√
MN

sin
[
π (ωk,i1 − xk,1)

]
sin
[
π (ωk,i1−xk,1)

M

] sin
[
π(ωk,i2 − xk,2)

]
sin
[
π (ωk,i2−xk,2)

N

] e
−jπ

[
M−1
M (ωk,i1−xk,1)+N−1

N (ωk,i2−xk,2)
]

(a)
=
|s|β (xk)
√
MN

ya
(
ωk,i − xk

)
e
−jπ

[
M−1
M (ωk,i1−xk,1)+N−1

N (ωk,i2−xk,2)
]
, (73)
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variables (i.e., the real part Re {β (xk)}, the imaginary part
Im {β (xk)} of the equivalent channel gain βk and the two
direction parameters xk,1, xk,2). After q explorations in each
ECC, we can obtain q independent amplitude equations
and only 1 independent phase angle equation, which is
q + 1 independent real equations with respect to ψk in
total. Hence, at least 3 explorations are needed to obtain 4
independent real equations and estimate 4 independent real
variables of ψk .

2) If we onlywant to obtain the unique solution of xk within
one ECC, at least 2 independent real equations with respect
to xk are needed since xk contains two independent real vari-
ables (i.e., two direction parameters xk,1, xk,2). It seems that
fewer explorations are sufficient. However, we cannot obtain
any absolute amplitude and phase information with respect
to xk from one observation in (73) since β (xk) is unknown.
In addition, the relative phase angles are constants unrelated
to xk . Thus, the phase angle equations are useless for estimat-
ing xk . After q explorations in each ECC, we can obtain q−1
independent relative amplitude equations with respect to xk
in total. Hence, at least 3 explorations are needed to obtain 2
independent real equations and estimate 2 independent real
variables of xk .

Therefore, the proof is completed.

APPENDIX B
PROOF OF LEMMA 2
In problem (18), the constraint (14) ensures that ĥk is an
unbiased estimate of h. Consider each element of the channel

vector h, i.e., hmn(ψ) = βe
j2π

(
m−1
M x1+ n−1

N x2
)
. Immediately we

have E
[
hmn(ψ̂k )

]
= hmn(ψ) since E

[
ĥk
]
= h. According

to Section 3.8 of [33], if a function f
(
ψ̂
)
is an unbiased

estimate of f (ψ), i.e., E
[
f (ψ̂)

]
= f (ψ), then we can obtain

that

Var[f (ψ̂)] ≥
∂f (ψ)

∂ψT I(ψ)−1
(
∂f (ψ)

∂ψT

)H

, (76)

where Var[f (ψ̂)] denotes the variance of f (ψ̂) and I(ψ) is the
corresponding Fisher information matrix.

Combining (18) and (76), we have

1
MN

E
[∥∥∥ĥk − h

∥∥∥2
2

]
=

1
MN

M∑
m=1

N∑
n=1

E
[∣∣hmn(ψ̂)− hmn(ψ)∣∣2]

(a)
≥

1
MN

M∑
m=1

N∑
n=1

∂hmn(ψ)
∂ψT

(
k∑
l=1

IS (ψ,Wl)

)−1(
∂hmn(ψ)

∂ψT

)H
=

1
MN

Tr


(

k∑
l=1

IS (ψ,Wl)

)−1M∑
m=1

N∑
n=1

((
∂hmn(ψ)

∂ψT

)H
∂hmn(ψ)

∂ψT

)

=
1
MN

Tr


(

k∑
l=1

IS (ψ,Wl)

)−1 (
∂h

∂ψT

)H
∂h

∂ψT

,
(b)
=

1
MN

Tr


(

k∑
l=1

IS (ψ,Wl)

)−1
VHV

, (77)

where Step (a) is obtained by substituting (76) into (77) and
Step (b) is due to the definition of V in (21).

As for the Fisher information matrix in (22), we can obtain
∂log pS (yl |ψ,Wl )

∂βre
as follows:

∂log pS (yl |ψ,Wl)

∂βre
=−

1
σ 2
z

(
yl−|s|WH

l h
)H(
−|s|WH

l
∂h
∂βre

)
+

1
σ 2
z

(
|s|WH

l
∂h
∂βre

)H (
yl − |s|WH

l h
)

=
2|s|
σ 2
z
Re
{(
yl−|s|WH

l h
)H (

WH
l
∂h
∂βre

)}
=

2|s|
σ 2
z
Re
{
zHl W

H
l
∂h
∂βre

}
. (78)

Similarly, ∂log pS (yl |ψ,Wl )

∂β im
, ∂log pS (yl |ψ,Wl )

∂x1
, and ∂log pS (yl |ψ,Wl )

∂x2
are given as

∂log pS (yl |ψ,Wl)

∂β im
=

2|s|
σ 2
z
Re
{
zHl W

H
l
∂h
∂β im

}
∂log pS (yl |ψ,Wl)

∂x1
=

2|s|
σ 2
z
Re
{
zHl W

H
l
∂h
∂x1

}
∂log pS (yl |ψ,Wl)

∂x2
=

2|s|
σ 2
z
Re
{
zHl W

H
l
∂h
∂x2

}
.

(79)

Hence, the gradient of log pS (yl |ψ,Wl) is obtained as fol-
lows:

∂log pS (yl |ψ,Wl)

∂ψ
=

2|s|
σ 2
z
Re




zHl W

H
l
∂h
∂βre

zHl W
H
l
∂h
∂β im

zHl W
H
l
∂h
∂x1

zHl W
H
l
∂h
∂x2




=

2|s|
σ 2
z
Re
{(

zHl W
H
l V
)T}

. (80)

With the help of (80), we can obtain that

∂log pS (yl |ψ,Wl)

∂ψT =

(
∂log pS (yl |ψ,Wl)

∂ψ

)T

=
2|s|
σ 2
z
Re
{
zHl W

H
l V
}
. (81)

Substituting (80) and (81) into (22), the Fisher information
matrix is given as follows:

IS (ψ,Wl) , E
[
∂log pS (yl |ψ,Wl)

∂ψ
·
∂log pS (yl |ψ,Wl)

∂ψT

]
=

4|s|2

σ 4
z

E
[
Re
{(

zHl W
H
l V
)T}

Re
{
zHl W

H
l V
}]

(c)
=

2|s|2

σ 4
z

E
[
Re
{(

zHl W
H
l V
)T

zHl W
H
l V
}]
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+
2|s|2

σ 4
z

E
[
Re
{(

zHl W
H
l V
)H

zHl W
H
l V
}]

(d)
=

2|s|2

σ 4
z

E
[
Re
{(

zHl W
H
l V
)H

zHl W
H
l V
}]

(e)
=

2|s|2

σ 2
z

Re
{
VHWlWH

l V
}
, (82)

where in Step (c) we have used the following property
of Re {·}:

Re {u}Re
{
vT
}
=

1
2
Re
{
uvT

}
+

1
2
Re
{
ūvT

}
(83)

with u, v denoting column vectors and ū denoting the conju-
gate of u. Step (d) is due to the exchangeability of E [·] and
Re {·}:

E
[
Re
{(

zHl W
H
l V
)T

zHl W
H
l V
}]

= Re
{
E
[(

zHl W
H
l V
)T

zHl W
H
l V
]}

= Re
{(

WH
l V
)T

E
[(

zHl
)T

zHl

]
WH

l V
}

(f )
= 0. (84)

Step (e) is due to the i.i.d. circularly symmetric complex
Gaussian property of each element of zl , which means that
E
[
zlzHl

]
= σ 2

z J3, where J3 is the 3-order identity matrix.
Step (f ) in (84) results from the property of complexGaussian
noise:

E
[(

zHl
)T

zHl

]
= 0. (85)

Therefore, the Fisher information matrix is derived in (82)
and Lemma 2 is proved in the end.

APPENDIX C
PROOF OF LEMMA 3
Lemma 3 is proved in three steps:
Step 1: We prove that Cmin

S (ψ) and
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are

unrelated to the equivalent channel gain β.
The basic method is block matrix inversion. We first

rewrite the Jacobian matrix V in (21) as follows:

V = [V1, βV2], (86)

where V1 and V2 are given byV1 , [a (x) , ja (x)]

V2 ,

[
∂a (x)
∂x1

,
∂a (x)
∂x2

]
.

(87)

It is clear that both V1 and V2 are unrelated to β. Besides,
we can obtain the following properties of V1:{

V1VT
1 = 0

V̄1VH
1 = 0,

(88)

where V̄1 denotes the conjugate of V1.

With the help of the Jacobian matrix V in (86), the Fisher
information matrix in (22) can be divided into four 2 × 2
matrices as follows:

IS (ψ,W) =
2|s|2

σ 2
z

Re
{
VHWWHV

}
=

2|s|2

σ 2
z

Re
{
VH
1WWHV1

}
Re
{
βVH

1WWHV2
}

Re
{
β̄VH

2WWHV1
}
|β|2Re

{
VH
2WWHV2

}


=
2|s|2

σ 2
z

 A Re {βB}

Re
{
β̄BH

}
|β|2D

, (89)

where β̄ denotes the conjugate of β and A, B, D are
defined as:

A , Re
{
VH
1WWHV1

}
=

∥∥∥WHa (x)
∥∥∥2
2
J2

B , VH
1WWHV2.

D , Re
{
VH
2WWHV2

} (90)

with J2 denoting the 2-order identity matrix. By combining
(88) and (90), we can obtain the properties of B:

BHB̄ = 0
BTB = 0
BHVT

1 = V1B̄ = 0
BTVH

1 = V̄1B = 0.

(91)

By using the block matrix inversion method, the inverse of
the Fisher information matrix in (89) is given by

IS (ψ,W)−1 =
σ 2
z

2|s|2
{
Iip1 + Iip2 (β)

}
, (92)

where Iip1 and Iip2 (β) are defined in (93) and (94) [as shown
at the bottom of the next page]:

Iip1 ,

A−1 0

0 0

, (93)

The middle part of Iip2 , i.e., (|β|2D − Re
{
β̄BH

}
A−1

Re {βB}), can be rewritten as follows:

|β|2D− Re
{
β̄BH

}
A−1Re {βB}

= |β|2D−
β̄BH
+ βBT

2
A−1

βB+ β̄B̄
2

(a)
= |β|2D−

β̄BHA−1βB+ βBTA−1β̄B̄
4

(b)
= |β|2D−

Re
{
β̄BHA−1βB

}
2

= |β|2

(
D−

Re
{
BHA−1B

}
2

)
(c)
= |β|2Is, (95)
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where Step (a) results from the properties of B in (91) and the
definition of A in (90), Step (b) is due to the fact that A is a
real matrix and Step (c) is due to the definition of Is:

Is , D−
Re
{
BHA−1B

}
2

. (96)

Therefore, we can rewrite Iip2 in (94) as follows:

Iip2(β)=

A−1Re {βB}
−J2

(|β|2Is)−1 [Re {β̄BH
}
A−1−J2

]
.

(97)

By combining (26) and (92), we can obtain that

CS (ψ,W) =
1
MN

Tr
{
(IS (ψ,W))−1VHV

}
=

1
MN

σ 2
z

2|s|2

(
Tr
{
Iip1V

HV
}
+ Tr

{
Iip2 (β)V

HV
})

(d)
=

1
MN

σ 2
z

2|s|2

(
Tr
{
A−1VH

1 V1

}
+ Tr

{
Iip2 (β)V

HV
})
,

(98)

where Step (d) is by substituting (86) and (93) into (98). Since
both V1 in (87) and A in (90) are unrelated to the equivalent
channel gain β, the first part of (98), i.e., Tr

{
A−1VH

1 V1
}
are

unrelated to β. By substituting (86) and (97), we can obtain
the second part of (98), i.e., Tr

{
Iip2 (β)V

HV
}
in (99), as

shown at the next page, where Step (e) and Step (f ) follow
the properties of the B in (91) and the definition of A in
(90). It is clear that Tr

{
Iip2 (β)V

HV
}
is also unrelated to

β because none of the matrix A,B,V1,V2 is related to β.
Hence, CS (ψ,W) is unrelated to β.
Since CS (ψ,W) is unrelated to β, the minimum CRLB

Cmin
S (ψ) in (27) and the optimal EBM W∗S are also unre-

lated to β. Hence, the optimal set of exploration offsets{
1∗S,1,1

∗

S,2,1
∗

S,3

}
is unrelated to the equivalent channel gain

β.
Step 2: We prove that Cmin

S (ψ) and
{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are

unrelated to the DPV x.
Consider the CRLB in (26). we will first prove that the

Fisher information matrix IS (ψ,W) is unrelated to the DPV
x. Next, we will prove that VHV is also unrelated to x. Then
it is clear that the minimum CRLB and the optimal set of
exploration offsets

{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are unrelated to x.

The Fisher information matrix in (89) tells us that only
WHV may be related to x, which is given by

WHV=
[
WHa(x), jWHa(x), βWH ∂a(x)

∂x1
, βWH ∂a(x)

∂x2

]
(100)

with WHa (x), WH ∂a(x)
∂x1

and WH ∂a(x)
∂x2

expanded
as follows:

WHa (x) =
[
wH
1 a (x) ,w

H
2 a (x) ,w

H
3 a (x)

]T
WH ∂a (x)

∂x1
=

[
wH
1
∂a (x)
∂x1

,wH
2
∂a (x)
∂x1

,wH
3
∂a (x)
∂x1

]T
WH ∂a (x)

∂x2
=

[
wH
1
∂a (x)
∂x2

,wH
2
∂a (x)
∂x2

,wH
3
∂a (x)
∂x2

]T
.

(101)

Since the EBVs are of the steering vector forms, i.e., wi =
1
√
MN

a (x+1i), where 1i = [δi1, δi2]T denotes the i-th

exploration offset, the elements of WHa (x) and WH ∂a(x)
∂x1

can be written in (102) and (103) [as shown at the next
page].

wH
i a (x) =

1
√
MN

a (x+1i)
H a (x)

=
1
√
MN

M∑
m=1

N∑
n=1

e
−j2π

[
(m−1)δi1

M +
(n−1)δi2

N

]

=
1
√
MN

sin(πδi1)

sin
(
πδi1
M

) sin(πδi2)

sin
(
πδi2
N

)e−jπ(M−1M δi1+
N−1
N δi2

)
,

(102)

As shown in (102) and (103), both wH
i a (x) and wH

i
∂a(x)
∂x1

are unrelated to the DPV x. Similarly, wH
i
∂a(x)
∂x2

is also
unrelated to x. Therefore, WHV in (100) is unrelated to
x. Hence, the whole Fisher information matrix in (89) is
invariant to x.

As forVHV, we write it in (104), as shown at the next page,
which indicates that VHV is unrelated to x.

Now it is clear that the CRLB in (26), i.e., CS (ψ,W),
is unrelated to x because both the Fisher information matrix
IS (ψ,W) and VHV are unrelated to x. Therefore, the mini-
mum CRLB in (27) and the optimal set of exploration offsets{
1∗S,1,1

∗

S,2,1
∗

S,3

}
are invariant to the DPV x.

Step 3: We prove that Cmin
S (ψ) converges as M, N→+∞

and

lim
M ,N→+∞

CS (ψ, W̃∗S ) = lim
M ,N→+∞

Cmin
S (ψ),

Let us go into the asymptotic features of (26). According
to (102) and (103), when the antenna number M,N→ +∞,
the limit of the i-th (i = 1, 2, 3) element ofWHa (x),WH ∂a(x)

∂x1

Iip2 (β) ,

A−1Re {βB}
−J2

(|β|2D− Re
{
β̄BH

}
A−1Re {βB}

)−1 [
Re
{
β̄BH

}
A−1 −J2

]
. (94)
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Tr
{
Iip2 (β)V

HV
}
= Tr

{[
A−1Re {βB}

−J2

](
|β|2Is

)−1 [
Re
{
β̄BH

}
A−1 −J2

] [ VH
1 V1 βVH

1 V2

β̄VH
2 V1 |β|2VH

2 V2

]}

= Tr
{
A−1Re {βB}

(
|β|2Is

)−1 (
Re
{
β̄BH

}
A−1VH

1 V1 − β̄VH
2 V1

)}
+ Tr

{(
|β|2Is

)−1 (
|β|2VH

2 V2 − Re
{
β̄BH

}
A−1βVH

1 V2

)}
= Tr

{
A−1

βB+ β̄B̄
2

(
|β|2Is

)−1 ( β̄BH
+ βBT

2
A−1VH

1 V1 − β̄VH
2 V1

)}

+ Tr
{(
|β|2Is

)−1 (
|β|2VH

2 V2 −
β̄BH
+ βBT

2
A−1βVH

1 V2

)}
(e)
= Tr

{
A−1

βB+ β̄B̄
2

(
|β|2Is

)−1 ( β̄BH

2
A−1VH

1 V1 − β̄VH
2 V1

)}

+ Tr
{(
|β|2Is

)−1 (
|β|2VH

2 V2 −
β̄BH

2
A−1βVH

1 V2

)}
= Tr

{(
β̄BH

2
A−1VH

1 V1 − β̄VH
2 V1

)
A−1

βB+ β̄B̄
2

(
|β|2Is

)−1}

+ Tr

{
I−1s

(
VH
2 V2 −

BHA−1VH
1 V2

2

)}
(f )
= Tr

{(
β̄BH

2
A−1VH

1 V1 − β̄VH
2 V1

)
A−1

βB
2

(
|β|2Is

)−1}
+ Tr

{
I−1s

(
VH
2 V2 −

BHA−1VH
1 V2

2

)}

= Tr
{(

BH

2
A−1VH

1 V1 − VH
2 V1

)
A−1

B
2
I−1s

}
+ Tr

{
I−1s

(
VH
2 V2 −

BHA−1VH
1 V2

2

)}

= Tr

{
I−1s

(
BHA−1VH

1 V1A−1B
4

+ VH
2 V2 −

BHA−1VH
1 V2 + VH

2 V1A−1B
2

)}
, (99)

wH
i
∂a (x)
∂x1

=
1
√
MN

a (x+1i)
H ∂a(x)
∂x1

=
1
√
MN

(
M∑
m=1

N∑
n=1

j2π
m− 1
M

e
−j2π

[
(m−1)δi1

M +
(n−1)δi2

N

])

=
j2π

M
√
MN

 sin(πδi2)

sin
(
πδi2
N

)e−jπ N−1
N δi2

(M − 1)e−j2πδi1 −Me−j2π
M−1
M δi1 + 1[

1− e−j2π
δi1
M

]2 e−j2π
δi1
M

 . (103)

VHV =


a (x)H

−ja (x)H

β̄
∂a(x)H
∂x1

β̄
∂a(x)H
∂x2


[
a (x) , ja (x) , β

∂a (x)
∂x1

, β
∂a (x)
∂x2

]

= MN


1 j jπβ M−1M jπβ N−1N

−j 1 πβM−1M πβ N−1N

−jπβ̄ M−1M πβ̄ M−1M
2
3π

2|β|2
(M−1)(2M−1)

M2 π2|β|2
(M−1)(N−1)

MN

−jπβ̄ N−1N πβ̄ N−1N π2|β|2
(M−1)(N−1)

MN
2
3π

2|β|2M (N−1)(2N−1)
N 2

, (104)
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andWH ∂a(x)
∂x2

in (101) are given as follows:

lim
M .N→+∞

wH
i a (x)
√
MN

= Sa [πδi1] Sa[πδi2]e−jπ(δi1+δi2)

lim
M ,N→+∞

wH
i
∂a(x)
∂x1

√
MN

= j2π Sa[πδi2]

× e−jπδi2
e−j2πδi1 (1+j2πδi1)− 1

(2πδi1)2

lim
M ,N→+∞

wH
i
∂a(x)
∂x2

√
MN

= j2π Sa[πδi1]

× e−jπδi1
e−j2πδi2 (1+j2πδi2)− 1

(2πδi2)2

(105)

where Sa [t] , sin t
t . Hence, each element of WHV/

√
MN in

(100) converges when M , N → +∞, which results in that
IS (ψ,W)/MN in (89) also converges. The limit is defined as
follows:

Il(ψ,W) , lim
M ,N→+∞

1
MN

IS (ψ,W). (106)

The limit of VHV in (104) is given by

lim
M ,N→+∞

1
MN

VHV

=


1 j jπβ jπβ

−j 1 πβ πβ

−jπβ̄ πβ̄ 4
3π

2|β|2 π2|β|2

−jπβ̄ πβ̄ π2|β|2 4
3π

2|β|2


, Hl . (107)

By combining (106) and (107), we obtain the limit of
CS (ψ,W) in (26) asM , N →+∞:

lim
M ,N→+∞

(MN × CS (ψ,W))

= lim
M ,N→+∞

Tr
{
(IS (ψ,W))−1VHV

}
= lim

M ,N→+∞
Tr
{
(MN Il(ψ,W))−1VHV

}
= lim

M ,N→+∞
Tr
{
(Il(ψ,W))−1

1
MN

VHV
}

= Tr
{
(Il(ψ,W))−1Hl

}
, (108)

which reveals that the CRLB in (27), i.e., CS (ψ,W), con-
verges. Hence, the minimum CRLB Cmin

S (ψ) also converges.
Let

W̃∗S = argmin
W

(
lim

M ,N→+∞
CS (ψ,W)

)
. (109)

Then we have

lim
M ,N→+∞

Cmin
S (ψ) = lim

M ,N→+∞
CS (ψ,W∗) (110)

(g)
≥ lim

M ,N→+∞
CS (ψ, W̃∗S ), (111)

where Step (g) results from (109). On the other hand,
we have

lim
M ,N→+∞

Cmin
S (ψ)

(h)
≤ lim

M ,N→+∞

(
CS (ψ, W̃∗S )

)
, (112)

where Step (h) results from (27). Hence, we can obtain that

lim
M ,N→+∞

Cmin
S (ψ) = lim

M ,N→+∞
CS (ψ, W̃∗S ),

Therefore, Lemma 3 gets proved.

APPENDIX D
PROOF OF THEOREM 1
According to (32) and (39), the tracking procedure can be
rewritten as

ψ̂k = ψ̂k−1 + bS,k
(
fψ
(
ψ̂k−1

)
+ ẑk

)
. (113)

And it can be derived in (41) that

ẑk =
2|s|
σ 2
z
IS
(
ψ̂k−1,Wk

)−1

Re
{
eHk zk

}
Im
{
eHk zk

}
Re
{
ẽHk1zk

}
Re
{
ẽHk2zk

}

. (114)

Since ẑk ,
[
ẑk,1, ẑk,2, ẑk,3

]
in (114) is composed of three

i.i.d. circularly symmetric complex Gaussian random vari-
ables, the expectation of ẑk is E

[
ẑk
]
= 0 and the covariance

matrix is given in (115), as shown at the bottom of the next
page, where Step (a) is the result of (80) and Step (b) follows
the definition of the Fisher information matrix in (22).

Assume {Gk : k ≥ 0} is an increasing sequence of σ -
fields of {ψ̂0, ψ̂1, ψ̂2, . . .}, i.e.,Gk−1⊂Gk , whereG0

1
=σ (ψ̂0)

and Gk
1
= σ (ψ̂0, ẑ1, . . . , ẑk ) for k ≥ 1. Because the ẑk ’s are

composed of i.i.d. circularly symmetric complex Gaussian
random variables with zero mean, ẑk is independent of Gk−1,
and ψ̂k−1∈Gk−1. Hence, we have

E
[
fψ
(
ψ̂k−1

)
+ ẑk

∣∣∣Gk−1]
= E

[
fψ
(
ψ̂k−1

)∣∣∣Gk−1]+ E
[
ẑk
∣∣Gk−1]

= fψ
(
ψ̂k−1

)
, (116)

for k ≥ 1 and ςk = fψ
(
ψ̂k−1

)
+ ẑk is also independent of

Gk−1.
Theorem 5.2.1 in [37, Section 5.2.1] gives the conditions

that ensure ψ̂k converges to a unique point with probability
one when there are several stable points. Next, we will prove
that if the step-size bS,k is given by (42) with any εS > 0 and
KS,0 ≥ 0, then the joint beam and channel tracking algorithm
in (38) satisfies the corresponding conditions below:
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1) Step-size requirements:

bS,k =
εS

k + KS,0
→ 0,

+∞∑
k=1

bS,k =
+∞∑
k=1

εS

k + KS,0
= +∞,

+∞∑
k=1

b2S,k =
+∞∑
k=1

ε2S

(k + KS,0)2
≤

+∞∑
l=1

ε2S

l2
< +∞.

(117)

2) It is necessary to prove that

supk E
[∥∥∥fψ (ψ̂k−1

)
+ ẑk

∥∥∥2
2

]
< +∞.

From (113) and (115), we have

E
[∥∥∥fψ (ψ̂k−1

)
+ ẑk

∥∥∥2
2

]
= E

[∥∥∥fψ (ψ̂k−1

)∥∥∥2
2
+ 2fψ

(
ψ̂k−1

)H
ẑk +

∥∥ẑk∥∥22]
(c)
= E

[∥∥∥fψ (ψ̂k−1

)∥∥∥2
2

]
+ Tr

{
IS (ψ̂k−1,Wk )−1

}
,

(118)

where Step (c) is due to (115) and that ẑk is independent
of fψ

(
ψ̂k−1

)
.

From (44), we have∥∥∥fψ (ψ̂k−1

)∥∥∥2
2

≤

∥∥∥IS (ψ̂k−1,Wk )−1
∥∥∥2
F

·

∥∥∥∥∥∥∥∥∥∥∥∥
2|s|2

σ 2
z


Re
{
eHk
(
βWH

k a (x)− β̂k−1ek
)}

Im
{
eHk
(
βWH

k a (x)− β̂k−1ek
)}

Re
{
ẽHk1

(
βWH

k a (x)− β̂k−1ek
)}

Re
{
ẽHk2

(
βWH

k a (x)− β̂k−1ek
)}



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

(119)

As the Fisher information matrix is invertible, we get∥∥∥IS (ψ̂k−1,Wk )−1
∥∥∥2
F
< +∞. (120)

Besides, Wk =
[
wk,1,wk,2,wk,3

]
, ek = WH

k a(x̂k−1),

ẽk1 = β̂k−1WH
k
∂a(x̂k−1)
∂x1

, ẽk2 = β̂k−1WH
k
∂a(x̂k−1)
∂x2

, hence
we have∣∣∣wH
k,ia(x)

∣∣∣
=

∣∣∣∣∣ 1
√
MN

M∑
m=1

N∑
n=1

e
−j2π

( (m−1)δk,i1
M +

(n−1)δk,i2
N

)∣∣∣∣∣
≤

1
√
MN

M∑
m=1

N∑
n=1

∣∣∣∣e−j2π( (m−1)δk,i1
M +

(n−1)δk,i2
N

)∣∣∣∣
=
√
MN < +∞, (121)∣∣∣∣wH

k,i
∂a(x)
∂x1

∣∣∣∣
=

∣∣∣∣∣ 1
√
MN

M∑
m=1

N∑
n=1

j2π
m− 1
M

e
−j2π

((m−1)δk,i1
M +

(n−1)δk,i2
N

)∣∣∣∣∣
E
[(
ẑk − E

[
ẑk
]) (

ẑk − E
[
ẑk
])T]

=
4|s|2

σ 4
z

IS
(
ψ̂k−1,Wk

)−1
E




Re{eHk zk}

Im{eHk zk}

Re{ẽHk1zk}

Re{ẽHk2zk}

·

Re{eHk zk}

Im{eHk zk}

Re{ẽHk1zk}

Re{ẽHk2zk}


T

IS
(
ψ̂k−1,Wk

)−1

=
4|s|2

σ 4
z

IS
(
ψ̂k−1,Wk

)−1
E


Re





zHk W
H
k
∂ĥk−1
∂β̂rek−1

zHk W
H
k
∂ĥk−1
∂β̂ imk−1

zHk W
H
k
∂ĥk−1
∂ x̂k−1,1

zHk W
H
k
∂ĥk−1
∂ x̂k−1,2




Re





zHk W
H
k
∂ĥk−1
∂β̂rek−1

zHk W
H
k
∂ĥk−1
∂β̂ imk−1

zHk W
H
k
∂ĥk−1
∂ x̂k−1,1

zHk W
H
k
∂ĥk−1
∂ x̂k−1,2



T



IS
(
ψ̂k−1,Wk

)−1

(a)
=

4|s|2

σ 4
z

IS
(
ψ̂k−1,Wk

)−1
E

 σ 2
z

2|s|

∂log pS
(
yk |ψ̂k−1,Wk

)
∂ψ̂k−1

σ 2
z

2|s|

∂log pS
(
yk |ψ̂k−1,Wk

)
∂ψ̂

T
k−1

 IS
(
ψ̂k−1,Wk

)−1
(b)
= IS

(
ψ̂k−1,Wk

)−1
IS
(
ψ̂k−1,Wk

)
IS
(
ψ̂k−1,Wk

)−1
= IS

(
ψ̂k−1,Wk

)−1
, (115)
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≤
2π

M
√
MN

M∑
m=1

N∑
n=1

(m−1)

∣∣∣∣e−j2π((m−1)δk,i1M +
(n−1)δk,i2

N

)∣∣∣∣
=
√
MN (M − 1) < +∞, (122)

and∣∣∣∣wH
k,i
∂a(x)
∂x2

∣∣∣∣
=

∣∣∣∣∣ 1
√
MN

M∑
m=1

N∑
n=1

j2π
n−1
N

e
−j2π

( (m−1)δk,i1
M +

(n−1)δk,i2
N

)∣∣∣∣∣
≤

2π

N
√
MN

M∑
m=1

N∑
n=1

(n− 1)

∣∣∣∣e−j2π( (m−1)δk,i1
M +

(n−1)δk,i2
N

)∣∣∣∣
=
√
MN (N − 1) < +∞, (123)

for i = 1, 2, 3 and all possible wk,i and x, where[
δk,i1, δk,i2

]T
= ωk,i − x. Thus we can get∥∥∥∥∥∥∥∥∥∥∥∥∥

2|s|2

σ 2
z



Re
{
eHk
(
βWH

k a (x)− β̂k−1ek
)}

Im
{
eHk
(
βWH

k a (x)− β̂k−1ek
)}

Re
{
ẽHk1

(
βWH

k a (x)− β̂k−1ek
)}

Re
{
ẽHk2

(
βWH

k a (x)− β̂k−1ek
)}



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

< +∞.

(124)

Combining (120) and (124), we have

E
[∥∥∥fψ (ψ̂k−1

)∥∥∥2
2

]
< +∞. (125)

According to (120), it is clear that Tr
{
I(ψ̂k−1,Wk )−1

}
< +∞. Then, we can get that

supk E
[∥∥∥fψ (ψ̂k−1

)
+ ẑk

∥∥∥2
2

]
< +∞. (126)

3) The function fψ
(
ψ̂k−1

)
should be continuous with

respect to ψ̂k−1.
By using (44), we know that each element of
fψ
(
ψ̂k−1

)
is continuous with respect to ψ̂k−1 =[

β̂rek−1, β̂
im
k−1, x̂k−1,1, x̂k−1,2

]T
. Therefore, fψ

(
ψ̂k−1

)
is

continuous with respect to ψ̂k−1.

4) Let µk = E
[
fψ
(
ψ̂k−1

)
+ ẑk

∣∣∣Gk−1] − f
(
ψ̂k−1,ψ

)
.

We need to prove that
∑
+∞

k=1

∥∥bS,kµk∥∥2 < +∞ with
probability one.
From (116), we get µk = 0 for all k ≥ 1. So we have∑
+∞

k=1

∥∥bS,kµk∥∥2 = 0 < +∞ with probability one.

By Theorem 5.2.1 in [37], ψ̂k converges to a unique stable
point within the stable points set with probability one.

APPENDIX E
PROOF OF THEOREM 2
Theorem 2 is proven in three steps:
Step 1: Two continuous processes based on the dis-

crete process ψ̂k = [β̂rek , β̂
im
k , x̂k,1, x̂k,2]

T are established,

i.e., ψ̄(t) 1
= [β̄re(t), β̄ im(t), x̄1(t), x̄2(t)]T and ψ̃

k
(t) 1
=

[β̃re,k (t), β̃ im,k (t), x̃k1 (t), x̃
k
2 (t)]

T.

The discrete time parameters are defined as: t0
1
= 0, tk

1
=∑k

l=1 bS,l , k ≥ 1. The first continuous process ψ̄(t), t ≥
0 is constructed as the linear interpolation of the sequence
ψ̂k , k ≥ 0, where ψ̄(tk ) = ψ̂k , k ≥ 0. Therefore, ψ̄(t) is
given by

ψ̄(t)= ψ̄(tk )+
(t−tk )
bS,k+1

[
ψ̄(tk+1)−ψ̄(tk )

]
, t ∈ [tk , tk+1].

(127)

The second continuous process ψ̃
k
(t) is the solution of the

following ordinary differential equation (ODE):

dψ̃
k
(t)

dt
= fψ

(
ψ̃
k
(t)
)
, (128)

for t ∈ [tk ,∞), where ψ̃
k
(tk ) = ψ̄(tk ) = ψ̂k , k ≥ 0. Thus,

ψ̃
k
(t) can be given as

ψ̃
k
(t) = ψ̄(tk )+

∫ t
tk
fψ
(
ψ̃
k
(v)
)
dv, t ≥ tk . (129)

Step 2: By using the two continuous processes ψ̄(t)
and ψ̃

k
(t) constructed in Step 1, a sufficient condition

for the convergence of the discrete process x̂k is provided
here.

We first construct a time-invariant set I that includes the
DPV x within the main lobe, i.e., x ∈ I ⊂ B(x). Define
x̃0(t) ,

[
x̃01 (t), x̃

0
2 (t)

]T
and denote x̂b = x̃0(tb) as the beam

direction of the process ψ̃
0
(t) that is closest to the boundary

of the main lobe, which is given by3

inf
v∈∂B(x),t≥0

∥∥∥v−x̃0(t)∥∥∥
2
= inf

v∈∂B(x)

∥∥v− x̂b
∥∥
2 > 0. (130)

Then we pick δ such that

min
{

inf
v∈∂B(x)

∥∥v−x̂b∥∥−∞ , ∥∥x̂b − x
∥∥
−∞

}
> δ > 0, (131)

where ‖u‖−∞ = min
l=1,2

[u]l denotes the minimum element

of u. Note that when t ≥ tb, the solution ψ̃
0
(t) of the

ODE (128) will approach the real equivalent channel gain
β and DPV x monotonically as time t increases. Hence,
we construct the invariant set I in (132), as shown at the
bottom of the page. An example of the invariant set I is shown
in Fig. 18.

3The boundary of the set B(x) is denoted by ∂B(x).

I =
(
x1 − |x1 − x̂1,b| − δ, x1 + |x1 − x̂1,b| + δ

)
×

(
x2 − |x2 − x̂2,b| − δ, x2 + |x2 − x̂2,b| + δ

)
⊂ B(x). (132)
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FIGURE 18. An illustration of the invariant set I.

Then, a sufficient condition will be established in Lemma 7
that ensures x̂k ∈ I for k ≥ 0, and hence from
Corollary 2.5 in [36], we can obtain that x̂k converges to x.
Before giving Lemma 7, let us provide some definitions
first:

• Pick T > 0 such that the solution ψ̃
0
(t), t ≥ 0 of the

ODE (128) with ψ̃
0
(0) =

[
β̂re0 , β̂

im
0 , x̂0,1, x̂0,2

]T satisfies
infv∈∂B

∣∣v−x̃0(t)∣∣ ≥ 2δ for t ≥ T . Since when t ≥ tb,
x̃0(t) will approach the DPV x monotonically as time t
increases, one possible T is given by

T = arg min
t∈[tb,+∞)

∣∣∣∣∣∣∣∣[∫ t

tb
fψ
(
ψ̃

0
(v)
)
dv
]
3

∣∣∣∣− δ∣∣∣∣,
(133)

where [·]i denotes the i-th element of the vector.
• Let T0

1
= 0 and Tl+1

1
= min {ti : ti ≥ Tl + T , i ≥ 0} for

l ≥ 0. Then Tl+1− Tl ∈ [T ,T + bS,1] and Tl = tk̃(l) for

some k̃(l) ↑ +∞, where k̃(0) = 0. Let ψ̃
k̃(l)

(t) denote
the solution of ODE (128) for t ∈ Il

1
= [Tl,Tl+1] with

ψ̃
k̃(l)

(Tl) = ψ̄(Tl), l ≥ 0.

Hence, we can obtain the following lemma:
Lemma 7: If sup

t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥
2
≤ δ for all l ≥ 0, then

x̂k ∈ I for all k ≥ 0.
Proof: If sup

t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥
2
≤ δ for all l ≥ 0, then

sup
t∈Il

∣∣∣x̄1(t)− x̃ k̃(l)1 (t)
∣∣∣ ≤ δ and sup

t∈Il

∣∣∣x̄2(t)− x̃ k̃(l)2 (t)
∣∣∣ ≤ δ.

According to Lemma 1 in [42], x̂k,1 ∈ I for all k ≥ 0 and
x̂k,2 ∈ I for all k ≥ 0. Hence, x̂k ∈ I for all k ≥ 0.
Step 3: We will derive the probability lower bound for

the condition in Lemma 7, which is also a lower bound for
P
(
x̂k→x

∣∣ x̂0∈B (x)).

We will derive the probability lower bound for the
condition in Lemma 7, which results in the following
lemma:
Lemma 8: If (i) the initial point satisfies x̂0 ∈ B(x),

(ii) bS,k is given by (42) with any εS > 0, then there exist
KS,0 ≥ 0 and R > 0 such that

P
(
x̂k ∈ I,∀k ≥ 0

)
≥ 1− 8e

−
R|s|2

ε2Sσ
2
z . (134)

Proof: See Appendix J.
Finally, by applying Lemma 8 and Corollary 2.5 in [36],

we can obtain

P
(
x̂k → x

∣∣ x̂0 ∈ B
)
≥ P

(
x̂k ∈ I,∀k ≥ 0

)
≥ 1− 8e

−
R|s|2

ε2Sσ
2
z ,

which completes the proof of Theorem 2.

APPENDIX F
PROOF OF THEOREM 3
If the step-size bS,k is given by (42) with any εS > 0 and
KS,0 ≥ 0, the sufficient conditions are provided by Theo-
rem 6.6.1 [34, Section 6.6] to prove the asymptotic normality

of
√
k
(
x̂k − x

)
, i.e.,

√
k
(
x̂k − x

) d
→ N (0, 6x). With the

condition that ψ̂k → ψ , we can prove that the beam and
channel tracking algorithm satisfies the conditions above and
obtain the variance 6x as follows:
1) Equation (113) is supposed to satisfy: (i) there exists

an increasing sequence of σ -fields {Fk : k ≥ 0} such
that Fl ⊂Fk for l < k , and (ii) the random noise ẑk is
Fk -measurable and independent of Fk−1.
As is shown in Appendix X, there exists an increasing
sequence of σ -fields {Gk : k ≥ 0}, where ςk is
measurable with respect to Gk−1 and independent of
Gk−1.

2) x̂k should converge to x almost surely as k →+∞.
We assume that ψ̂k → ψ , hence x̂k converges to x
almost surely when k →+∞.

3) The stable condition:
In (44), we rewrite fψ

(
ψ̂k−1

)
as follows:

fψ
(
ψ̂k−1

)
=D1

(
ψ̂k−1−ψ

)
+


o(‖ψ̂k−1 − ψ‖2)

o(‖ψ̂k−1 − ψ‖2)

o(‖ψ̂k−1 − ψ‖2)

o(‖ψ̂k−1 − ψ‖2)

,
(135)

where D1 is given by

D1=
∂fψ

(
ψ̂k−1

)
∂ψ̂

T
k−1

∣∣∣∣∣∣
ψ̂k−1=ψ

=−


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

.
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(136)

Then the stable condition is obtained that:

E = D1 · εS +
1
2

=



1
2
− εS 0 0 0

0
1
2
− εS 0 0

0 0
1
2
− εS 0

0 0 0
1
2
− εS


≺ 0,

which leads to εS > 1
2 .

4) The noise vector ẑk satisfies:

E
[∥∥ẑk∥∥22] = tr

{
IS (ψ̂k−1,Wk )−1

}
< +∞,

(137)

and

lim
v→+∞

sup
k≥1

∫
‖ẑk‖2>v

∥∥ẑk∥∥22 p(ẑk )d ẑk = 0. (138)

Let

F = lim
k →+∞

ψ̂k → ψ

E
[
ẑk ẑTk

]
(a)
= lim
k →+∞

ψ̂k → ψ

IS (ψ̂k−1,Wk )−1

= IS (ψ, W̃∗S )
−1, (139)

where Step (a) is obtained from (115).
By Theorem 6.6.1 [34, Section 6.6], we have√

k + KS,0
(
ψ̂k − ψ

)
d
→ N (0,6x),

where

6x=ε
2
S ·

∫
∞

0
eEvFeE

Hvdv=
ε2S

2εS−1
IS (ψ, W̃∗)−1. (140)

Due to that limk→+∞
√
(k + KS,0)/k = 1, we have

√
k
(
ψ̂k−ψ

)
→
√
k ·

√
k+KS,0

k

(
ψ̂k−ψ

)
d
→ N (0,6x),

if k →+∞. Thus, we can get
√
k
(
ψ̂k − ψ

)
d
→ N (0,6x). (141)

By adopting εS = 1 in (140), we can obtain
√
k
(
ψ̂k − ψ

)
d
→ N

(
0, IS (ψ, W̃∗)−1

)
. (142)

Since ψ̂k → ψ as k → +∞, ĥk − h is linear to ψ̂k − ψ .
Hence, ĥk − h is also asymptotically Gaussian.

Combining (76), (142) and (27), we can conclude that

lim
k→+∞

k
MN

E
[∥∥∥ĥk − h

∥∥∥2
2

∣∣∣∣ψ̂k → ψ

]
= Cmin

S (ψ). (143)

APPENDIX G
PROOF OF LEMMA 4
In problem (52), the constraint (53) ensures that x̂k is an
unbiased estimate of x. According to Section 3.7 of [33], if x̂
is an unbiased estimate of x, then we can obtain that

Cov
(
x̂
)
− I−1 (x) � 0, (144)

where Cov
(
x̂
)
denotes the covariance matrix of x̂, I (x) is the

corresponding Fisher information matrix and A � 0 means
that the matrix A is nonnegative definite. From (144), we can
get that

Cov
(
x̂k
)
−

(
k∑
l=1

IDI (x,Wl)

)
� 0, (145)

which implies that the diagonal elements of the matrix on the
left side of ’�’ are nonnegative because all matrices are 2×2
in (145). Therefore, we obtain that

Tr
{
Cov

(
x̂k
)}
− Tr

{(
k∑
l=1

I (x,Wl)

)}
≥ 0, (146)

i.e.,

E
[∥∥x̂k − x

∥∥2
2

]
− Tr

{(
k∑
l=1

IDI (x,Wl)

)}
≥ 0, (147)

which yields the result of (54).
Nowwe try to obtain the Fisher information matrix in (55).

According to (48), the determinant and the inverse of the
covariance matrix can be written as follows:
|6y,k |=σ

4
z

(
|s|2σ 2

β

(
WH

k a (x)
)H

WH
k a (x)+σ

2
z

)
6−1y,k=

J3
σ 2
z
−
σ 2
z |s|

2σ 2
βW

H
k a (x)

(
WH

k a (x)
)H

|6y,k |
.

(148)

Based on the definition in (57), the determinant and the
inverse of the covariance matrix in (148) can be rewritten as

|6y,k | = σ
4
z

(
|s|2σ 2

βg
H
k gk + σ

2
z

)
6−1y,k =

J3
σ 2
z
−
σ 2
z |s|

2σ 2
βgkg

H
k

|6y,k |
.

(149)

In addition, with the help of (50), we can obtain that

∂log pDI (yk |x,Wk )
∂xp

=−
1
|6y,k |

∂|6y,k |

∂xp
−yHk

∂6−1y,k

∂xp
yk ,

(150)

where |6y,k |

∂xp
and

∂6−1y,k
∂xp

are given by (151) according to (149):
∂|6y,k |

∂xp
= σ 4

z |s|
2σ 2
β

∂gHk gk
∂xp

∂6−1y,k

∂xp
=−σ 2

z |s|
2σ 2
β

∂gkgHk
∂xp
|6y,k |−gkgHk

|6y,k |

∂xp

|6y,k |2
.

(151)

209870 VOLUME 8, 2020



Y. Liu et al.: Fast Accurate Beam and Channel Tracking for 2D Phased Antenna Arrays

By combining (48), (50), (55) and (150), we can obtain
the p-th row, j-th column element of the Fisher information
below:

[IDI (x,Wk)]p,j

=E
[
∂log pDI (yk |x,Wk )

∂xp

∂log pDI (yk |x,Wk )
∂xj

]
=−

1
|6y,k |

∂|6y,k |

∂xp

∂|6y,k |

∂xj
+2|s|4σ 4

βg
H
k

∂6−1y,k

∂xp
gkgHk

∂6−1y,k

∂xj
gk

+ σ 2
z |s|

2σ 2
βg

H
k

∂6−1y,k

∂xp
gk Tr

{
∂6−1y,k

∂xj

}

+ σ 2
z |s|

2σ 2
βg

H
k

∂6−1y,k

∂xj
gk Tr

{
∂6−1y,k

∂xp

}

+ σ 4
z Tr

{
∂6−1y,k

∂xp

}
Tr

{
∂6−1y,k

∂xj

}
+ σ 4

z Tr

{
∂6−1y,k

∂xp

∂6−1y,k

∂xj

}

+ σ 2
z |s|

2σ 2
βg

H
k

(
∂6−1y,k

∂xp

∂6−1y,k

∂xj
+
∂6−1y,k

∂xj

∂6−1y,k

∂xp

)
gk .

(152)

Then we substitute (48), (49), (57), (149), (151) into (152),
which yields the result of (56).

Finally, the proof of Lemma 4 is completed.

APPENDIX H
PROOF OF LEMMA 5
The proof of property 1) in Lemma 5 is similar to the proof of
that in Lemma 3. Hence, we focus on the proof of property 2)
and property 3) in Lemma 5.

Consider the p-th row, j-th column element of the Fisher
information matrix IDI (x,Wk) in (56). We can rewrite it in
(153), as shown at the bottom of the page, where Step (a)

is obtained by substituting (148) into (153). When
|s|2σ 2β
σ 2z
→

+∞, we can obtain the element of IDI (x,Wk) in (154),
as shown at the bottom of the page, which reveals that
σ 2z

|s|2σ 2β
IDI (x,Wk) converges as

|s|2σ 2β
σ 2z

→ +∞. Then the

property 2) of Lemma 5 is proved.
Let us see the property 3) in Lemma 5. Similar to Step

3 in Appendix X, we can obtain that Cmin
DI (ψ) converge as

M ,N →+∞ and

lim
M ,N→+∞

CDI (ψ, W̃∗DI ) = lim
M ,N→+∞

Cmin
DI (ψ). (155)

According to (57) and (105), gk is2
(√

MN
)
while g̃k,p and

Gk,p are 2(MN ). Hence, σ 2
z Tr

{
Gk,pGk,j

}
can be omitted

since it is2
(
(MN )2

)
while other parts are2

(
(MN )

5
2

)
. Then

the p-th row, j-th column element of the Fisher information
matrix in (153) can be rewritten in (156), as shown at the bot-
tom of the page, which reveals that

{
1̃
∗

DI ,1, 1̃
∗

DI ,2, 1̃
∗

DI ,3

}
is

unrelated to
|s|2σ 2β
σ 2z

.
Finally, the proof is completed.

APPENDIX I
PROOF OF LEMMA 6
We first analyze the computational complexity of
Algorithm 1, which is composed of three steps:

[IDI (x,Wk)]p,j =
σ 6
z |s|

6σ 6
β

|6y,k |
2

{
−2|gk |2g̃k,pg̃k,j +

σ 2
z

|s|2σ 2
β

Tr
{
Gk,pGk,j

}
+ gHk

(
Gk,pGk,j +Gk,jGk,p

)
gk

}
(a)
=

σ 6
z |s|

6σ 6
β

σ 8
z

(
|s|2σ 2

βg
H
k gk + σ

2
z

)2
{
−2|gk |2g̃k,pg̃k,j +

σ 2
z

|s|2σ 2
β

Tr
{
Gk,pGk,j

}
+ gHk

(
Gk,pGk,j +Gk,jGk,p

)
gk

}

=
|s|2σ 2

β

σ 2
z

(
gHk gk +

σ 2z

|s|2σ 2β

)2

{
−2|gk |2g̃k,pg̃k,j +

σ 2
z

|s|2σ 2
β

Tr
{
Gk,pGk,j

}
+ gHk

(
Gk,pGk,j +Gk,jGk,p

)
gk

}
,

(153)

lim
|s|2σ2

β

σ2z
→+∞

σ 2
z

|s|2σ 2
β

[IDI (x,Wk)]p,j =
1(

gHk gk
)2 {−2|gk |2g̃k,pg̃k,j + gHk

(
Gk,pGk,j +Gk,jGk,p

)
gk
}
, (154)

lim
M ,N→+∞

[IDI (x,Wk)]p,j
(MN )5/2

=
σ 6
z |s|

4σ 4
β

|6y,k |
2

{
−2|s|2σ 2

β

|gk |2g̃k,pg̃k,j
(MN )5/2

+ |s|2σ 2
β

gHk
(
Gk,pGk,j +Gk,jGk,p

)
gk

(MN )5/2

}

=
σ 6
z |s|

6σ 6
β

|6y,k |
2

{
−2
|gk |2g̃k,pg̃k,j
(MN )5/2

+
gHk
(
Gk,pGk,j +Gk,jGk,p

)
gk

(MN )5/2

}
, (156)
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Step 1: We evaluate the computational arithmetic opera-
tions of the Fisher information matrix inversion.

The Fisher information matrix is obtained as follows:

IS
(
ψ̂k−1,Wk

)
=

2|s|2

σ 2
z

Re
{
VH
k WkWH

k Vk

}
, (157)

where Vk is given by

Vk =

[
a
(
x̂k−1

)
, ja

(
x̂k−1

)
, β̂k−1

∂a
(
x̂k−1

)
∂x1

, β̂k−1
∂a
(
x̂k−1

)
∂x2

]
(a)
=

[
V1
k , β̂k−1V

2
k

]
(158)

with Step (a) resulting from the definition of V1
k and V

2
k :

V1
k ,

[
a
(
x̂k−1

)
, ja

(
x̂k−1

)]
(159)

V2
k ,

[
∂a
(
x̂k−1

)
∂x1

,
∂a
(
x̂k−1

)
∂x2

]
. (160)

By combining (37), (102) and (103), we can obtain that
WH

k V
1
k and WH

k V
2
k are determined matrices that remain

unchanged for different ECCs, given by

U1 = WH
k V

1
k (161)

U2 = WH
k V

2
k , (162)

where both U1 and U2 can be obtained by offline calcula-
tion. Hence, we can rewrite the Fisher information matrix
in (157) as:

IS
(
ψ̂k−1,Wk

)
=

2|s|2

σ 2
z

 Re
{
UH
1 U1

}
Re
{
β̃k−1UH

1 U2
}

Re
{
β̄k−1UH

2 U1
}
|β̃k−1|

2Re
{
UH
2 U2

}


=
2|s|2

σ 2
z

 Ã Re
{
β̃k−1B̃

}
Re
{
β̄k−1B̃H

}
|β̃k−1|

2D̃

, (163)

where β̄k−1 denotes the conjugate of β̂k−1 and Ã, B̃, D̃ are
defined as: 

Ã , Re
{
UH
1 U1

}
B̃ , UH

1 U2.

D̃ , Re
{
UH
2 U2

} (164)

Note that Ã is a diagonal matrix with the same diagonal
elements and the block matrices Ã, B̃, D̃ can all be obtained
by offline calculation.

Similar to the derivation in (92), the inverse of the Fisher
information matrix in (163) can be calculated by using the
block matrix inversion method, given by

IS
(
ψ̂k−1,Wk

)−1
=

σ 2
z

2|s|2

{̃
Iip1 + Ĩip2

(
β̂k−1

)}
, (165)

where Ĩip1 and Ĩip2
(
β̂k−1

)
are defined in (166) and (167) [as

shown at the bottom of the page]

Ĩip1 ,

Ã−1 0

0 0

, (166)

with Ĩs defined as follows:

Ĩs , D̃−
Re
{
B̃HÃ−1B̃

}
2

. (168)

Since Ã−1 in (166) can be obtained by offline calculation, Ĩip1
requires none online complex arithmetic operations.

As for Ĩip2 , we can further rewrite it as a block matrix:

Ĩip2
(
β̂k−1

)
=

̃I11ip2 (β̂k−1) Ĩ12ip2

(
β̂k−1

)
Ĩ21ip2

(
β̂k−1

)
Ĩ22ip2

(
β̂k−1

), (169)

where the four block matrices are given by (170), as shown
at the bottom of the page.

Ĩip2
(
β̂k−1

)
,

Ã−1Re {β̂k−1B̃}
−J2

(|β̂k−1|2̃Is)−1 [Re {β̄k−1B̃H
}
Ã−1 −J2

]
(167)



Ĩ11ip2

(
β̂k−1

)
= Ã−1Re

{
β̂k−1B̃

}(
|β̂k−1|

2̃Is
)−1

Re
{
β̄k−1B̃H

}
Ã−1

Ĩ12ip2

(
β̂k−1

)
= −Re

{
β̂k−1|β̂k−1|

−2Ã−1B̃̃I−1s
}

Ĩ21ip2

(
β̂k−1

)
= −Re

{
β̄k−1|β̂k−1|

−2̃I−1s B̃HÃ−1
}
=

(̃
I12ip2

(
β̂k−1

))H
Ĩ22ip2

(
β̂k−1

)
=

(
|β̂k−1|

−2
)̃
I−1s .

(170)

Ĩ11ip2

(
β̂k−1

)
, Ã−1Re

{
β̂k−1B̃

}(
|β̂k−1|

2̃Is
)−1

Re
{
β̄k−1B̃H

}
Ã−1

= Ã−1
{
β̂k−1B̃+ β̄k−1B̄

2

(
|β̂k−1|

2̃Is
)−1 β̄k−1B̃H

+ β̂k−1B̃T

2

}
Ã−1

= Ã−1
Re
{
B̃̃I−1s B̃H

}
2

Ã−1. (171)
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Since Ã, B̃, D̃, Ĩs can all be obtained by offline calculation,
Ĩ12ip2

(
β̂k−1

)
and Ĩ22ip2

(
β̂k−1

)
only require 6 online complex

arithmetic operations. In addition, Ĩ21ip2

(
β̂k−1

)
requires none

online complex arithmetic operations as it can be obtained
directly from Ĩ12ip2

(
β̂k−1

)
. As for Ĩ11ip2

(
β̂k−1

)
, we can con-

vert it to (171), as shown at the bottom of the previous
page. Finally, Ĩ11ip2

(
β̂k−1

)
requires none online complex arith-

metic operations. Hence, the calculation of Ĩip2
(
β̂k−1

)
in

(170) requires none online complex arithmetic operations for
Ĩ11ip2

(
β̂k−1

)
, 6 online complex arithmetic operations for Ĩ12ip2 ,

none online complex arithmetic operations for Ĩ21ip2

(
β̂k−1

)
,

and 5 online complex arithmetic operations for Ĩ11ip2

(
β̂k−1

)
,

which are 11 complex arithmetic operations in total.

In the end, the calculation of IS
(
ψ̂k−1,Wk

)−1
in (165)

requires 11 online complex arithmetic operations.
Step 2: We evaluate the computational arithmetic opera-

tions of ∂log pS (yk |ψ,Wk )
∂ψ

∣∣∣∣
ψ=ψ̂k−1

.

We write the ∂log pS (yk |ψ,Wk )
∂ψ

∣∣∣∣
ψ=ψ̂k−1

as follows:

∂log pS (yk |ψ,Wk)

∂ψ

∣∣∣∣
ψ=ψ̂k−1

=


Re
{
eHk
(
yk − ŷk

)}
Im
{
eHk
(
yk − ŷk

)}
Re
{
ẽHk1

(
yk − ŷk

)}
Re
{
ẽHk2

(
yk − ŷk

)}

,
(172)

where ek = WH
k a
(
x̂k−1

)
, ŷk = |s|β̂k−1WH

k a
(
x̂k−1

)
,

ẽk1 = β̂k−1WH
k
∂a(x̂k−1)
∂x1

, ẽk2 = β̂k−1WH
k
∂a(x̂k−1)
∂x2

. Since

WH
k a
(
x̂k−1

)
, WH

k
∂a(x̂k−1)
∂x1

, WH
k
∂a(x̂k−1)
∂x2

can all be obtained
by offline calculation, ŷk requires 3 online complex arith-
metic operations, yk − ŷk requires none complex arithmetic
operations and ẽk1, ẽk2 both require 3 complex arithmetic
operations. Together with the inner-product calculation in
(172), the final number of online complex arithmetic oper-
ations is 18.
Step 3: We evaluate the total computational arithmetic

operations.

Considering the multiplication of IS
(
ψ̂k−1,Wk

)−1
and

∂log pS (yk |ψ,Wk )
∂ψ

∣∣∣∣
ψ=ψ̂k−1

(16 complex arithmetic operations),

and the updating direction vector plus the previous esti-
mate (none complex arithmetic operation), the final num-
ber of online complex arithmetic operations is 45 in
each ECC.

By using a similar method, the total number of com-
plex computational arithmetic operations for Algorithm 2
(Algorithm 3) is 28 (45) in each ECC.
Therefore, Lemma 6 gets proved.

APPENDIX J
PROOF OF LEMMA 8
The following lemmas are introduced to prove Lemma 8.
Lemma 9 (Lemma 3 [42]): Given T by (133) and

kT
1
= inf {i ∈ Z : tk+i ≥ tk + T }. (173)

If there exists a constant C > 0, which satisfies∥∥∥ψ̄(tk+l)− ψ̃k
(tk+l)

∥∥∥
2

≤ L
l∑
i=1

bS,k+i
∥∥∥ψ̄(tk+i−1)− ψ̃k

(tk+i−1)
∥∥∥
2
+ C, (174)

for all k ≥ 0 and 1 ≤ l ≤ kT , then

sup
t∈
[
tk ,tk+kT

]
∥∥∥ψ̄(t)−ψ̃k

(t)
∥∥∥
2
≤
CfbS,k+1

2
+CeL(T+bS,1),

(175)

where L and Cf are defined in (180) and (181) separately.
Lemma 10 (Lemma 4 [43]): If {Mi : i = 1, 2, . . .} satis-

fies that: (i) Mi is Gaussian distributed with zero mean, and
(ii) Mi is a martingale in i, then

P

(
sup
0≤i≤k

|Mi| > η

)
≤ 2 exp

{
−

η2

2Var [Mk ]

}
, (176)

for any η > 0.
Lemma 11 (Lemma 5 [43]): If given a constant C > 0,

then

G(v) =
1
v
exp

[
−
C
v

]
, (177)

is increasing for all 0 < v < C .
Let ξ0

1
= 0 and ξ k

1
=
∑k

l=1 bS,l ẑl , k ≥ 1, where ẑl is given
in (114). With (127) and (129), we have for tk+l, 1 ≤ l ≤ kT ,

ψ̄(tk+l)= ψ̄(tk )+
l∑
i=1

bS,k+ifψ
(
ψ̄(tn+i−1)

)
+(ξ k+l − ξ k ),

(178)

and

ψ̃
n
(tk+l) = ψ̃

k
(tk )+

∫ tk+l

tk
fψ
(
ψ̃
k
(v)
)
dv

= ψ̃
k
(tk )+

l∑
i=1

bS,k+ifψ
(
ψ̃
k
(tk+i−1)

)
+

∫ tk+l

tk

[
fψ
(
ψ̃
k
(v)
)
− fψ

(
ψ̃
k
(v)
)]
dv, (179)

where v 1= max {tk : tk ≤ v, k ≥ 0} for v ≥ 0.

To bound
∫ tk+l
tk

[
fψ
(
ψ̃
k
(v)
)
− fψ

(
ψ̃
k
(v)
)]
dv on the RHS

of (179), we obtain the Lipschitz constant of function fψ (v)
considering the first variable v, given by

L 1
= sup

v1 6=v2

∥∥fψ (v1)− fψ (v2)
∥∥
2

‖v1 − v2‖2
. (180)

VOLUME 8, 2020 209873



Y. Liu et al.: Fast Accurate Beam and Channel Tracking for 2D Phased Antenna Arrays

Similar to (119), for any t ≥ tk , we can obtain that there exists
a constant 0 < Cf < +∞ such that∥∥∥fψ (ψ̃k

(t)
)∥∥∥

2
≤ Cf. (181)

Hence, we have∥∥∥∥∫ tk+m

tk

[
fψ
(
ψ̃
k
(v)
)
− fψ

(
ψ̃
k
(v)
)]
dv

∥∥∥∥
2

≤

∫ tk+l

tk

∥∥∥fψ (ψ̃k
(v)
)
− fψ

(
ψ̃
k
(v)
)∥∥∥

2
dv

(a)
≤

∫ tk+l

tk
L
∥∥∥ψ̃k

(v)− ψ̃
k
(v)
∥∥∥
2
dv

(b)
≤

∫ tk+l

tk
L

∥∥∥∥∥
∫ v

v
fψ
(
ψ̃
k
(s)
)
ds

∥∥∥∥∥
2

dv

≤

∫ tk+l

tk

∫ v

v
L
∥∥∥fψ (ψ̃k

(s)
)∥∥∥

2
dsdv

(c)
≤

∫ tk+l

tk

∫ v

v
CfLdsdv =

∫ tk+l

tk
CfL(v− v)dv

=

l∑
i=1

∫ tk+i

tk+i−1
CfL(v− tk+i−1)dv

=

l∑
i=1

CfL(tk+i − tk+i−1)2

2
=
CfL
2

l∑
i=1

b2S,k+i, (182)

where Step (a) is due to (180), Step (b) is due to the definition
in (129), and Step (c) is due to (181). Then, by subtracting
ψ̃
k
(tk+l) in (179) from ψ̄(tk+l) in (178) and taking norms,

the following inequality can be obtained from (180) and (182)
for k ≥ 0, 1 ≤ l ≤ kT :∥∥∥ψ̄(tk+l)− ψ̃k

(tk+l)
∥∥∥
2

≤ L
l∑
i=1

bS,k+i
∥∥∥ψ̄(tk+i−1)− ψ̃k

(tk+i−1)
∥∥∥
2

+
CfL
2

l∑
i=1

b2S,k+i +
∥∥ξ k+l − ξ k∥∥2

≤ L
l∑
i=1

bS,k+i
∥∥∥ψ̄(tk+i−1)− ψ̃k

(tk+i−1)
∥∥∥
2

+
CfL
2

kT∑
i=1

b2S,k+i + sup
1≤l≤kT

∥∥ξ k+l − ξ k∥∥2 . (183)

Applying Lemma 9 to (183) and letting

C =
CfL
2

kT∑
i=1

b2S,k+i + sup
1≤l≤kT

∥∥ξ k+l − ξ k∥∥2 ,
yields

sup
t∈
[
tk ,tk+kT

]
∥∥∥ψ̄(t)− ψ̃k

(t)
∥∥∥
2

≤ Ce

{
CfL
2

[
c(k)− c(k + kT )

]
+ sup

1≤l≤kT

∥∥ξ k+l − ξ k∥∥2
}

+
Cfck+1

2
, (184)

where Ce
1
= eL(T+bS,1), and c(k) 1

=
∑

i>k b
2
S,i. Letting k =

k̃(l) in (184), we have k + kT = k̃(l+ 1) due to the definition
of Tl+1 = tk̃(l+1) in Step 2 of Appendix X and

sup
t∈Il

∥∥∥∥ψ̄(t)− ψ̃ k̃(l)
(t)

∥∥∥∥
2

≤Ce

{
CfL
2

[
c(k̃(l))−c(k̃(l + 1))

]
+ sup
k̃(l)≤p≤k̃(l+1)

∥∥∥ξp−ξ k̃(l)∥∥∥2
}

+
CfbS,k̃(l)+1

2
. (185)

Suppose that the step size {bS,k : k > 0} satisfies

Ce
CfL
2

[
c(k̃(l))− c(k̃(l + 1))

]
+
CfbS,k̃(l)+1

2
<
δ

2
, (186)

for l ≥ 0. Given sup
t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥>δ, we can obtain from

(185) and (186) that

sup
k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥2
≥

1
Ce

(
sup
t∈Il

∥∥∥∥ψ̄(t)− ψ̃ k̃(l)
(t)

∥∥∥∥
2

−
CfL
2

[
c(k̃(l)) −c(k̃(l + 1))

]
−
CfbS,k̃(l)+1

2

)
>

1
Ce

(
sup
t∈Il

∣∣∣x̄(t)− x̃k̃(l)(t)
∣∣∣− δ

2

)
>

δ

2Ce
.

Then, we get

P

(
sup
t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥ > δ

∣∣∣∣∣
× sup

t∈Ii

∥∥∥x̄(t)− x̃k̃(i)(t)
∥∥∥ ≤ δ, 0 ≤ i < l

)

≤ P

(
sup

k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥2 > δ

2Ce

∣∣∣∣∣
× sup

t∈Ii

∥∥∥x̄(t)− x̃k̃(i)(t)
∥∥∥ ≤ δ, 0 ≤ i < l

)
(d)
= P

(
sup

k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥2 > δ

2Ce

)
, (187)

where Step (d) is due to the independence of noise, i.e., ξp−
ξ k̃(l), k̃(l) ≤ p ≤ k̃(l+1) are independent of x̂k , 0 ≤ k ≤ k̃(l).
The lower bound of the probability that the sequence {x̂k :

k ≥ 0} remains in the invariant set I is given by

P
(
x̂k ∈ I,∀k ≥ 0

)
(e)
≥ P

(
sup
t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥ ≤ δ,∀l ≥ 0

)
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(f )
≥ 1−

∑
l≥0

P

(
sup
t∈Il

∥∥∥x̄(t)− x̃k̃(l)(t)
∥∥∥ > δ

∣∣∣∣
× sup

t∈Ii

∥∥∥x̄(t)− x̃k̃(i)(t)
∥∥∥ ≤ δ, 0 ≤ i < l

)
(g)
≥ 1−

∑
l≥0

P
(

sup
k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥2 > δ

2Ce

)
,

(188)

where Step (e) is due to Lemma 7, Step (f ) is due to
Lemma 4.2 in [36], and Step (g) is due to (187). Let ‖·‖∞
denote the max-norm, i.e., ‖u‖∞ = maxl |[u]l |. Note that for
u ∈ RD, ‖u‖2 ≤

√
D ‖u‖∞. Hence we have

P

(
sup

k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥2 > δ

2Ce

)

≤ P

(
sup

k̃(l)≤p≤k̃(l+1)

∥∥∥ξp − ξ k̃(l)∥∥∥
∞

>
δ

4Ce

)

= P

(
sup

k̃(l)≤p≤k̃(l+1)
max
1≤j≤4

∣∣∣[ξp]j − [ξ k̃(l)]j∣∣∣ > δ

4Ce

)

= P

(
max
1≤j≤4

sup
k̃(l)≤p≤k̃(l+1)

∣∣∣[ξp]j − [ξ k̃(l)]j∣∣∣ > δ

4Ce

)

≤

4∑
j=1

P

(
sup

k̃(l)≤p≤k̃(l+1)

∣∣∣[ξp]j − [ξ k̃(l)]j∣∣∣ > δ

4Ce

)
.

(189)

With the increasing σ -fields {Gk : k ≥ 0} defined in
Appendix X, we have for k ≥ 0,

1) ξ k=
∑k

l=1 bS,l ẑl ∼ N (0,
∑k

l=1 b
2
S,kIS (ψ̂ l−1,Wl)−1),

2) ξ k is Gk -measurable, i.e., E
[
ξ k
∣∣Gk] = ξ k ,

3) E
[∥∥ξ k∥∥22] =∑k

l=1 b
2
S,k tr

{
IS (ψ̂ l−1,Wl)−1

}
< +∞,

4) E
[
ξ k
∣∣Gl] = ξ l for all 0 ≤ l < k .

Therefore,
[
ξ k
]
j , j = 1, 2, 3, 4 is a Gaussian martingale with

respect to Gk , and satisfies

Var
[[
ξ k+l

]
j −

[
ξ k
]
j

]
=

k+l∑
i=k+1

b2S,i
[
IS (ψ̂ i−1,Wi)−1

]
j,j

≤

k+l∑
i=k+1

b2S,i
CIσ

2
z

|s|2

=
CIσ

2
z

|s|2
[
c(k)− c(k + l)

]
, (190)

where CI
1
= maxsmaxi≥1

|s|2

σ 2z

[
I(ψ̂ i−1,Wi)−1

]
j,j. Let η =

δ
4Ce

, Mi =
[
ξ k̃(l)+i

]
j −

[
ξ k̃(l)

]
j, j = 1, 2, 3, 4 and p =

k̃(l + 1)− k̃(l) in Lemma 10, then from (189) and (190), we

can obtain

P

(
sup

k̃(l)≤p≤k̃(l+1)

∣∣∣[ξp]j − [ξ k̃(l)]j∣∣∣ > δ

4Ce

)

≤ 2 exp

− δ2

32C2
e Var

[[
ξ k̃(l)+i

]
j −

[
ξ k̃(l)

]
j

]


≤ 2 exp

{
−

δ2|s|2

32CIC2
e
[
c(k̃(l))− c(k̃(l + 1))

]
σ 2
z

}
.

(191)

Combining (188), (189) and (191), we have

P
(
x̂k ∈ I,∀k ≥ 0

)
≥ 1− 8

∑
l≥0

exp

{
−

δ2|s|2

32CIC2
e
[
c(k̃(l))− c(k̃(l + 1))

]
σ 2
z

}
.

(192)

To use Lemma 11, we assume that the step-size bS,k
satisfies

c(0) =
∑
i>0

b2S,i ≤
δ2|s|2

32CIC2
e σ

2
z
. (193)

Then, from Lemma 11, we can obtain

exp
{
−

δ2|s|2

32CIC2
e

[
c(k̃(l))−c(k̃(l+1))

]
σ 2z

}
c(k̃(l))− c(k̃(l + 1))

≤

exp
{
−

δ2|s|2

32CIC2
e c(0)σ 2z

}
c(0)

for c(k̃(l))− c(k̃(l + 1)) < c(k̃(l)) ≤ c(0). Hence, we have∑
l≥0

exp

{
−

δ2|s|2

32CIC2
e
[
c(k̃(l))− c(k̃(l + 1))

]
σ 2
z

}

≤

∑
l≥0

[
c(k̃(l))− c(k̃(l + 1))

]
·

exp
{
−

δ2|s|2

32CIC2
e c(0)σ 2z

}
c(0)

= c(0)·
exp

{
−

δ2|s|2

32CIC2
e c(0)σ 2z

}
c(0)

=exp
{
−

δ2|s|2

32CIC2
e c(0)σ 2

z

}
.

(194)

As Ce = eL(T+bS,1), c(0) =
∑

i>0 b
2
S,i, and bS,k ,T ,L are

given by (42), (133), (180) respectively, we can obtain

δ2|s|2

32CIC2
e c(0)σ 2

z
=

δ2|s|2

32CIe
2L(T+ εS

KS,0+1
)
σ 2
z
∑
i≥1

ε2S
(i+KS,0|)2

=
δ2∑

i≥1

32CIe
2L(T+

εS
KS,0+1

)

(i+KS,0)2

·
|s|2

ε2Sσ
2
z
. (195)

In (195), 0 < δ < infv∈∂B
∥∥v− x̂b

∥∥, (186) and (193) should
be satisfied, where a sufficiently large KS,0 ≥ 0 can make
both (186) and (193) true.
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To ensure that x̂0 + bS,1
[
fψ
(
ψ̂0

)]
3,4

does not exceed the

main lobe B(x), i.e., the first step-size bS,1 satisfies∣∣∣x̂0,1 + bS,1 [fψ (ψ̂0

)]
3
− x1

∣∣∣ < 1∣∣∣x̂0,2 + bS,1 [fψ (ψ̂0

)]
4
− x2

∣∣∣ < 1,

we can obtain the maximum εS as follows

εS,max = min
(KS,0 + 1)∣∣∣[fψ (ψ̂0

)]
3

∣∣∣
{
1−|x1−x̂0,1|, 1−|x2−x̂0,2|

}
≤

(KS,0 + 1)∣∣∣[fψ (ψ̂0

)]
3

∣∣∣ , εb. (196)

Hence, from (195), we have

δ2|s|2

32CIC2
e c(0)σ 2

z
·
ε2Sσ

2
z

|s|2
≥

δ2∑
i≥1

32CIe
2L(T+

εb
KS,0+1

)

(i+KS,0)2

1
= R. (197)

Combining (192), (194) and (197), yields

P
(
x̂k ∈ I,∀k ≥ 0

)
≥ 1− 8e

−
R|s|2

ε2Sσ
2
z ,

which completes the proof.
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