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ABSTRACT In recent years, the huge expansion of digital technologies has vastly increased the vol-
ume of data to be explored, such that reducing the dimensionality of data is an essential step in data
exploration. The integrity of a dimensionality reduction technique relates to the goodness of maintaining
the data structure. Dimensionality reduction techniques such as Principal Component Analyses (PCA)
and Multidimensional Scaling (MDS) globally preserve the distance ranking at the expense of neglecting
small-distance preservation. Conversely, the structure capturing of some other methods such as Isomap,
Locally Linear Embedding (LLE), Laplacian Eigenmaps t-Stochastic Neighbour Embedding (t-SNE),
Uniform Manifold Approximation and Projection (UMAP), and TriMap rely on the number of neighbours
considered. This paper presents a dimensionality reduction technique, Same Degree Distribution (SDD)
that does not rely on the number of neighbours, thanks to using degree-distributions in both high and
low dimensional spaces. Degree-distribution is similar to Student-t distribution and is less expensive than
Gaussian distribution. As such, it enables better global data preservation in less processing time. Moreover,
to improve the data structure capturing, SDD has been extended to Multi-SDDs (MSDD), which employs
various degree-distributions on top of SDD. The proposed approach and its extension demonstrated a greater
performance compared with eight other benchmark methods, tested in several popular synthetics and real
datasets such as Iris, Breast Cancer, Swiss Roll, MNIST, and Make Blob evaluated by the co-ranking matrix
and Kendall’s Tau coefficient. For further work, we aim to approximate the number of distributions and
their degrees in relation to the given dataset. Reducing the computational complexity is another objective for
further work.

INDEX TERMS Dimensionality reduction, global structure, local structure, visualization, structure captur-
ing, manifold learning.

I. INTRODUCTION
High dimensional data are prone to the curse of dimension-
ality problem, and analysing them can be computationally
expensive. Curse of dimensionality occurs when the dimen-
sionality of data increases and the available data become
sparse. Conversely, sparse data can be a problem if a machine
learning/data mining algorithm to be applied requires that
the number of samples be much larger than the data dimen-
sionality to ensure reliable results. To solve this problem,
two options could be considered: 1) increase data samples,
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approving it for publication was Nilanjan Dey.

or 2) reduce the data dimensionality. Increasing the data
samples may not always be possible, and as a result, reducing
the data dimensionality could be a crucial choice.

Dimensionality reduction is a process of converting data
from a high dimensional space to a lower dimensional space
with the aim of preserving meaningful information from the
original data. Dimensionality reduction can be applied in
any field that has high dimensional data (a large number
of variables) such as signal processing [1], speech recogni-
tion [2], [3], neuroinformatics [4], [5], bioinformatics [6], [7],
social media [8], [9], telecoms [10], and computer vision [11],
for data visualization, data exploration, noise reduction or as
a pre-processing step to support classification models.
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An appropriate dimensionality reduction technique is
related to the goodness of preserving the geometry (structure)
of the data of interest. Maintaining the data structure means
that close (far away) points in the original space are embedded
closely (far away) in the low dimensional space. Additionally,
dimensionality reduction techniques favour either local struc-
ture, that means capturing the distances of close points, or the
global structure, that means the preservation of the distances
of far away points. In general, Principal Component Analyses
(PCA) [12] and Multidimensional Scaling (MDS) [13] are
linear dimensionality reduction techniques that favour cap-
turing the global structure of the data. By contrast, Sammon
mapping [14] is nonlinear dimensionality reduction tech-
nique that favour the preservation of the local data structure.
Conversely, the scale of data structure to be captured by
nonlinear manifold learning methods1 such as, Isomap [16],
Locally Linear Embedding (LLE) [17], Laplacian Eigen-
maps (LE) [18], [19], t-Stochastic Neighbour Embedding
(t-SNE) [20], Uniform Manifold Approximation and Projec-
tion (UMAP) [21], and TriMap [22] relates to the number
of neighbours considered by each method. The smaller the
number of neighbours selected means a more local data struc-
ture is captured by the method, at the expense of neglecting
some global information. Conversely, the higher the number
of selected neighbours, the greater the improvement in cap-
turing global structure but at the possible expense of losing
local information. Additionally, when tuning the number of
neighbours k , where k : N − 1 and N represents the number
of samples, the user must consider the computational time
of each algorithm, as the algorithm needs run N − 1 times
with the different number of neighbours, to generate the best
embedding in terms of structure capturing.

This research aims to present a nonlinear dimensionality
reduction (manifold learning) approach, named Same Degree
Distribution (SDD), and its extension Multi-Same Degree
Distributions (MSDD), to better preserve the data structure
using less computational time compared to the other man-
ifold learning methods. SDD and MSDD do not rely on
the number of neighbours to tune the scale of the struc-
ture to be preserved; but instead, they tune the degree of
degree-distribution. The degree of the degree-distribution is
responsible for the scale of the data structure to be main-
tained. By using degree-distribution(s), SDD and MSDD
give priority to the local structure of the data. However,
a degree-distribution with a low degree is more sensitive
to large distances than a degree-distribution with a high
degree. In other words, a degree-distribution with a low
degree can capture more global structure of data than a
degree-distribution with a high degree, but at the expense of
losing some local information. Note that a degree-distribution
with a high degree can improve the maintenance of the local
data structure (small distances); however, it will fail to main-
tain the global data structure (large distances). As such, to find

1Manifold learningmethods are the dimensionality reductionmethods that
try to learn the manifold hidden in high dimensional data [15].

the best low dimensional data representation in terms of local
and global structure capturing, we need to tune the degree of
degree-distribution.

There does not exist an upper limit for the degree of
the degree-distribution; however, a degree-distribution with
degree 15 is acceptable sharp to capture the structure of the
data having a large fraction of short distances. Note that
the data distances will be scaled by their maximum value,
as such, the scaled distance will range between 0 and 1.
Because of this, tuning the degree of degree-distribution in
the range from 1 to 15 will be sufficient to capture the best
structure of data. Therefore, SDD and MSDD require fewer
iterations than other manifold learning methods to find the
best representation in a low dimensional space in relation to
the maintained data structure.

Additionally, as a nonlinear method, SDD (MSDD) is
expected to better capture the structure of nonlinear data
than linear methods since the low dimensional representation
of nonlinear data is located in nonlinear manifolds.2 Fur-
thermore, SDD employs degree-distribution, which is less
expensive than Gaussian distribution, and as a consequence,
the proposed approach is expected to be faster than the three
other Gaussian distribution-based methods: t-SNE, UMAP,
and TriMap.

The proposed SDD (MSDD) method has been tested
with different datasets to demonstrate its ability to usefully
maintain the data structure. It has been shown to outper-
form eight other dimensionality reduction methods including
MDS, PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap in
terms of structure maintain once discovery the best structure
within a superior computational time compared with t-SNE,
UMAP, and TriMap. In datasets with a large number of
samples, MSDD better captures the data structure using less
computational time compared to all the considered manifold
learning methods such as t-SNE, UMAP, TriMap, LE, LLE,
and Isomap.

In this paper, a high dimensional dataset X is considered
with a table of N observations and D attribute (columns).
The embedding process requires embedding the dataset XNxD

into a new dataset YNxd , where d � D. The ith observation
in the high and the low dimensional spaces are represented
by xi and yi, respectively. dis(xi, xj) and dis(yi, yj) denote the
Euclidean distance between xi and xj in the high dimensional
space and the Euclidean distance between yi and yj in the low
dimensional space. Additionally, the term distance indicates
the Euclidean distance, n indicates the number of distribu-
tions employed, deg denotes the degree-distribution degree,
and pr denotes the perplexity used in t-SNE.

The remainder of this paper is organized as follows;
Section II presents the related works and offers a detailed
discussion on their strengths and limitations with the case
identified. The proposed approach is presented in Section III,
followed by implementation in Section IV, experimental

2Manifold can be considered as the surface of objects such as a sphere,
plane.
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settings and results in Section V. Conclusions and further
work are provided in Section VI.

II. RELATED WORKS
In this section, we briefly discuss some of the dimensionality
reduction methods and underlying causes in terms of data
structure capturing.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a standard dimensionality reduction method widely
applied in data analysis. Its aims to approximate the data by
projecting them on a subspace formed by the largest eigen-
vectors. PCAmakes use ofmatrix factorization to determine a
linear mapping matrixM ∈ RNxd (formed by d eigenvectors)
to maximize the cost function:

max trace(MT cov(X )M ) (1)

where cov(x) ∈ RNxN is the covariance matrix of the data X .
The low dimensional representation of the data is calculated
using linear mappingM ∈ RNxd and the original data through
the formula Y = XM . PCA can capture the global structure
(i.e., maintain large distances); however, if the fraction of
large distances is much higher than small distances, the cost
function will maintain the large distances at the expense of
the small distance preservation. Furthermore, PCA assumes
that the low dimensional representation of high dimensional
data lies on a linear submanifold. As a result, PCA does not
effectively capture the structure of nonlinear data.

B. MULTIDIMENSIONAL SCALING (MDS)
MDS is also a widely applied dimensionality reduction tech-
nique that minimizes the cost function as expressed in (2),

min

√√√√√√
∑
i,j
((dis(xi, xj)− dis(yi, yj))2∑

i,j
(dis(xi, xj))

(2)

where B = XX ′ = − 1
2JD

2J and J = I − 1
N 11 and

D2
= [dis2ij]. Determine with d the largest eigenvalues and

with B the corresponding eigenvectors. Ed is the matrix of d

eigenvectors and V
1
2
d is the diagonal matrix of d eigenvalues,

whereas the new space calculates through Y = EdV
1
2
d . MDS

is an excellent method in maintaining global data structure;
however, like PCA, it is also prone to neglecting the mainte-
nance of small distances and it is less useful in capturing the
structure of nonlinear data.

C. SAMMON MAPPING
The problem caused by MDS has been addressed by the
Sammon mapping method, which adapts weight scaling to
the classical cost function as in (3).

min(
1∑

i,j
dis(xi, xj)

√√√√√√
∑
ij
((dis(xi, xj)− dis(yi, yj))2∑

i,j
(dis(xi, xj))

) (3)

The main weakness of Sammon mapping is that it boosts
the contribution of very close points of the cost function
in (3)) [20]. Thus, PCA and MDS are expected to perform
better in a dataset with a relevant fraction of large dis-
tances among data points. By contrast, Sammon mapping is
expected to perform well in datasets with a large fraction of
small distances.

D. ISOMAP
Isomap is a method which aims to exploit the geometry of
nonlinear data by employing the Geodesic distance, com-
puted as the sum of the shortest path between two data
points in the neighbourhood graph [16]. In theory, Isomap
has been designed to discover the global structure of the data;
however, it requires tuning the number of neighbours, and this
exponentially increases the computational time. Additionally,
Isomap is prone to produce embedding errors evenwhen there
exists a small short-circuit 3 error in the data.

E. LOCALLY LINEAR EMBEDDING (LLE)
LLE is a nonlinear dimensionality reduction method, which
embeds high dimensional data points into a lower dimen-
sional space by assuming that every point and its nearest
neighbours are located in a linear manifold. Also, each point
xi is defined as a linear combination of its k nearest neigh-
bours [23] as follows:

x̂i =
N∑
j=1

wijxj subject to
∑
j

wij = 1, i = 1 : n. (4)

LLE seeks to optimise the weights wij by solving

Ŵ =argmin
N∑
i=1

‖xi−x̂i‖2 subject to
∑
j

wij = 1, i = 1 : n.

(5)

The low dimensional representation Ŷ is produced by opti-
mising the following cost function (6) with the weights
obtained from (5).

Ŷ = argmin
N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyj

∥∥∥∥∥∥
2

(6)

The structure capturing of LLE is related to the number of
neighbours k . If k is large, then LLE can be considered a
linear dimensionality reduction method, as it assumes that
every point and its neighbours are located in linear manifolds.

F. LAPLACIAN EIGENMAPS (LE)
LE is a nonlinear dimensionality reduction technique which
embeds high dimensional data with a focus to maintain their
local structure [18]. The similarity wij between xi and xj has
been determined as:

wij =

{
exp(− dis(xi,xj)2)

2σ 2
) if xj ∈ Neigi

0 otherwise

}
(7)

3Distances of data in a neighbourhood are more significant than the
distance between folds (regions) in manifolds [20].
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Assuming the number of neighbours k ≤ N and let Neigki
denote the neighbourhood of xi with k neighbours. Let D =
(dij) be a N ×N diagonal matrix with elements dii =

∑
i∈Ni

wij.

The matrix L = D − W is a symmetric matrix with N × N
dimensions known as graph Laplacian. The low dimensional
representation Y = (y1, . . . , yd ), is defined by minimising
the objective function (8)

argmin trace(YLY T ), (8)

where
∑
i

∑
j
wijdis(yi, yj) = YLY T . For a small k , since

the weight is zero for points outside the neighbourhood,
the global data structure is not captured. On the other hand,
if the number of neighbours k is large, the method favours the
preservation of more global information. Thus, the structure
capturing of LE is related to tuning the number of neigh-
bours k , increasing the computational time.

G. t-STOCHASTIC NEIGHBOUR EMBEDDING (t-SNE)
t-SNE is a nonlinear dimensionality reduction technique
which calculates the conditional probability pi|j between sam-
ples xi and xj using the Gaussian distribution, centred at xj
with the variance σi as in (9).

pi|j =
exp(−dis(xi,xj)

2

2σ 2i
)∑

k 6=i
exp(−dis(xi,xk )

2

2σ 2i
)

(9)

The high dimensional space similarity pij is calculated as
pij =

pi|j+pj|i
2N , whereas, the low dimensional similarity is

calculated as in (10).

qij =
(1+ dis(xi, xj)2)−1∑

k 6=l
(1+ dis(xi, xj)2)−1

(10)

t-SNE tries to make the low dimensional similarity qij as
similar as possible to its corresponding high dimensional
similarity pij. Consider (9), t-SNE builds n-Gaussian distri-
butions, which are related to density σi, and to the distance
of each sample xi to its neighbours. If the distance between
the sample xi and its neighbours is small, then the Gaussian
distribution is sharp; otherwise, it broadens. However, there
can be some scenarios in which different variables involved in
different Gaussian distributions may produce the same prob-
ability (similarity), the so-called confusing samples problem.
In other words, points with different Euclidean distances
in the high dimensional space might be mapped in such a
way that they have the same Euclidean distance in the low
dimensional space, resulting in a failure with regards to data
structure capturing. Besides, the goodness of the captured
structure of low dimensional data generated by t-SNE relies
on perplexity, as an indication of the number of neighbours.

To also capture a more global structure of the data, Zhou
and Sharpee [24] presented the Global t-SNEmethod. Global
t-SNE suggests using an exponential distribution in addition

to Gaussian distribution. If the Gaussian distribution is sensi-
tive to smaller distances, the exponential distribution is unsta-
ble to larger distances because of its heavy tail. However,
in the same way to t-SNE, and in addition to the additional
time needed to tune the parameter k , Global t-SNE fails to
maintain distances of confusing samples.

H. MULTISCALE SNE
One possible solution to the problem mentioned when
using t-SNE and Global t-SNE could be to employ multi-
perplexities in high dimensional space as in [25] to maintain
small and large distances. In fact, Multiscale SNE is an exten-
sion of Stochastic Neighbour Embedding (SNE) [26], using
Gaussian distributions in high and low dimensional spaces
to maintain the data structure, it defines the probabilities as
follows:

phij =
exp(−rhidis(xi,xj)

2

2 )∑
k 6=i

exp(−rhidis(xi,xj)
2

2 )
(11)

qhij =
exp(−shidis(xi,xj)

2

2 )∑
k 6=i

exp(−shidis(xi,xj)
2

2 )
(12)

pij =
1
L

Lmax∑
h=Lmin

phij (13)

qij =
1
L

Lmax∑
h=Lmin

qhij (14)

where rhi and shi denote precision in high and low dimen-
sional spaces, respectively, and 1 ≤ Lmin ≤ h ≤ Lmax where
L = Lmax − Lmin + 1 is considered the number of scales
(number of different perplexities employed). In [25] it is sug-
gested using Lmin = 2 and Lmax = log2

N
2 . Multiscale SNE

improves capturing a more global structure, but increases
the computational complexity by log2

N
2 . Tuning the scale

parameter determines the efficiency of the algorithm, and this
makes multiscale SNE more complex and costly.

I. UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION (UMAP)
UMAP, a similar method to t-SNE is a useful technique to
capture the local structure of the data. For each xi let define
ρi and σi where

ρi = min (dis(xi, xj), 1 ≤ j ≤ k, dis(xi, xj) ≥ 0) (15)
k∑
j=1

exp(
−max 0, dis(xi, xj)− ρi

σi
) = log2 k (16)

and the similarity function is defined as in (17).

wij = exp(
−max 0, dis(xi, xj)− ρi

σi
) (17)
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Based on (17), UMAP gives more importance to the local
structure capturing than the global structure of the data, and
requires tuning the parameter k to generate the best embed-
ding in terms of preserving the data structure.

J. TRIMAP
To capture a more global structure of the data, Amid and
Warmuth presented the TriMap method, which considers the
similarities of three points (triplets) instead of a pair of points.
TriMap defines a set of triplets T = {(i, j, k) : pij > pik}
where the satisfaction probability of the triplet (i, j, k) is
defined as in (18).

Prijk =
qij

qij + qik
=

1
1+ qik

qij

(18)

The low dimensional representation can be calculated by
minimising the cost function

min
{yn}
−

∑
(i,j,k)∈T

wi,j,k logPrijk , (19)

where wijk =
pij
pik

is the weight of the triplet (i, j, k). The
probability pij in the high dimensional space is calculated as:

pij = exp(−
dis(xi, xj)2

σ 2
ij

) (20)

where σ 2
ij = σiσj and σi is set to the average distance of xi to

its 10th to 20th nearest neighbours. TriMap proposes using the
function in (21) as a function for the similarities calculation
in the low dimensional space.

qt
′

ij =

{
exp(−dis(yi, yj)2) if t ′ = 1

1+ (1− t ′)(−dis(yi, yj)2)
1

1−t′ otherwise

}
(21)

TriMap, similarly to t-SNE, employs a Gaussian distribution
in the high dimensional space and Student-t distribution in the
low dimensional space. As demonstrated with t-SNE, using
different Gaussian distributions in the high dimensional space
and one Student-t distribution in the low dimensional space
cause the so-called confusing sample problem, which also
occurres in TriMap.

K. AUTOENCODERS AND RESTRICTED BOLTZMANN
MACHINE (RBM)
Autoencoders4 are neural networks composed of two parts
encoder and decoder. The encoder uses φ function (22) to
embed the original high dimensional data X to the low dimen-
sional data Y . In contrast, the decoder uses the functionψ (23)
to embed the low dimensional data Y to the output data X ′,
where X ′ is the reconstructed data of the original data X by
minimizing the cost function in (24).

φ : X → Y (22)

4Autoencoders are neural networks composed of one input layer, one out-
put layer and one hidden layer, whereas deep autoencoders are multi-layered
neural networks composed of one input layer, one output layer and many
hidden layers.

ψ : Y → X (23)

φ,ψ = arg min
φ,ψ
||X − (ψ ◦ φ)X ′||2 (24)

Deep autoencoders [27]–[31] are multi-layered neural net-
works, where each pair of neighbourhood-layers is con-
sidered to be an Restricted Boltzmann Machine (RBM).
However, like all neural networks, it is difficult to find the
optimal parameters for RBMs; and as such, their selection is
heuristic, or based on previous experiments [32]. Above all,
most of the methods aforementioned disregard the preserva-
tion of the data manifold structure [33]. Hence, to improve
RBM and to capture the local data structure, neighbourhood
graphs have been used [33]. However, it is complex to imple-
ment this approach since it requires to tune not only the
number of neighbours, but also the number of hidden layers,
the number of nodes in each hidden layer, the number of
epochs, and the batch size.
In summary, MDS, PCA, and Isomap concentrate on the

maintenance of the global structure of data, whereas LE,
LLE, t-SNE, UMAP, and TriMap favour the maintenance of
the local structure of data. Furthermore, the scale of main-
tained data structure by Isomap, t-SNE, LLE, LE, UMAP,
and TriMap relates to the number of neighbours considered
by each method. Note that, tuning the number of neighbours
will inevitably increase the computational time of the meth-
ods mentioned above. Contrastingly, PCA and MDS do not
require parameter tuning, and therefore save computational
time. However, they neglect the maintenance of local data
information and fail to capture the structure of nonlinear data.
Sammon mapping has been proposed as a nonlinear version
of PCA andMDS, but focuses on short-distance preservation,
at the expense of global information losses. t-SNE, UMAP,
and TriMap have proposed using Gaussian and Student-t dis-
tributions to provide a softer border between local and global
structure maintenance; however, as mentioned above, they
require tuning the number of neighbours to generate the best
low dimensional representation in terms of maintained data
structure. Multiscale approaches such as Multiscale-SNE
attempted to overcome this shortcoming; however, it still is a
costly method due to both the multiscale calculations and the
utilization of Gaussian distribution, and it is much slower than
using Student-t distribution. Overall, the above-mentioned
dimensionality reduction techniques favour either local or
global data structure. For some methods, parameter tuning,
which increases the computational cost and complicates the
applicability of the methods, has a significant impact on the
maintenance of the data structure.
This paper proposes the Same Degree Distribution (SDD)

method for dimensionality reduction, together with Multi
Same Degree Distributions (MSDD), aiming to capture
the geometry of data by employing the same degree-
distribution(s) in the high and the low dimensional spaces.
SDD and MSDD use degree-distribution(s), in which
degree-distribution (deg = 1) is the same as Student-t
(deg = 1), and for greater degrees, degree-distributions
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(deg > 1) are sharper than Student-t distributions (deg > 1).
Note that the scale of the maintained data geometry relates to
the degree of the degree-distribution. A degree-distribution
with a high degree is very sensitive to small distances and
the lower the degree, the more sensitive to large distances the
degree-distribution becomes, at the expense of losing some
local information. To find the best low dimensional repre-
sentation of data, tuning the degree of degree-distribution
is essential. Because we scale the distances of data by their
maximum value, tuning the degree of degree-distribution in
the range from 1 to 15 will be sufficient to capture the
structure of data, even when data has a large fraction of short
distances. As a result, SDD (MSDD) requires fewer iterations
to find the best representation in the low dimensional space
in terms of structure capturing compared to other methods
such as Isomap, LLE, LE, t-SNE, UMAP, and TriMap, which
require to tune the number of neighbours up to the number of
samples (N ) − 1. Furthermore, SDD (MSDD) values have a
smooth difference between far away and close points, which
is an advantage over MDS, PCA, and Isomap, where errors
generated by embedding far away points have a higher impact
than errors generated by embedding closer points.

However, SDD (MSDD) is expected to perform less
favourably with datasets that have high negative skewness in
distance distribution, due to a large number of records located
in the tail of degree-distribution(s). Note that in this case,
the tail of a degree-distribution is not sharp enough, and there-
fore, large differences between any two large distances are
reflected in small differences between the two corresponding
degree-distribution similarities.

III. PROPOSED APPROACH
A. SAME DEGREE DISTRIBUTION (SDD) APPROACH
SDD is a nonlinear dimensionality reduction technique
with pseudocode shown in Algorithm 1. It employes
degree-distribution in the high (27) and the low (28) dimen-
sional spaces to capture the local and global data structure.
Degree-distribution is Student-t distribution when the degree
of freedom is 1, and for greater degrees, it looks as sharper
Student-ts. SDD intends to find a suitable degree to best
capture the structure of the data. Degree-distributions are
more sensitive to small distances, the greater the distance,
the less sensitive degree-distribution becomes, such that, scal-
ing the pairwise distances of high dimensional data into the
range between 0 and 1 would be an essential step in the
performance of the proposed approach in terms of capturing
data structure. As a result, high dimensional space similar-
ities of a degree-distribution will be calculated using the
scaled Euclidean distances instead of the Euclidean distances.
Kullback-Leibler is the loss function used in SDD to approx-
imate the degree-distribution in the low dimensional space
with the degree-distribution in the high dimensional space:

C1 =
∑
i6=j

(pdegm )ij log(
(pdegm )ij
(qdegm )ij

(25)

Algorithm 1 SDD
Require: Input :
X ∈ RNxD, number of iterations H , learning rate
η, momentum α, number of degree-distributions
n, degree degm, initial low dimensional data
Y 0
= y1, . . . , yN ∈ N (0, 10−4I ).

Step 1 :
Compute the high dimensional space similarities (pdegm )ij
using (27).
Step 2 :
Compute the low dimensional space similarities (qdegm )ij
using (28).
Step 3 :
Compute the gradient δC

δ yi where C1 is defined in
(25).
Step 4 :
Minimize the objective function using the Gradient
Descent optimisation algorithm: Y h = Y h−1 + η δC2

δyi
+

α(Y h−1 − Y h−1).
Output :
Low dimensional space represenation Ybestdegm .

where degm is the degree of degree-distributionm, m = 1 : n.
SDD intends to minimize the cost function C1 as (26):

loss1 = min (C1) (26)

where

(pdegij )ij =
(1+ dis(xi, xj))−degm∑

k 6=l
(1+ dis(xk , xl))−degm

(27)

(qdegij )ij =
(1+ dis(yi, yj))−degm∑

k 6=l
(1+ dis(yk , yl))−degm

(28)

However, the minimal loss function value of (26) does not
reflect how well the data structure is captured. Thus, to have
a better indication of the goodness of a dimensionality reduc-
tion method, we propose the use of Kendall’s Tau correlation
coefficient (τ ). This coefficient (τ ) measures the correlation
between distance rank of the high and the low dimensional
data as in (29):

τ =
C − D

√
((C + D+ T ) ∗ (C + D+ U ))

(29)

where the number of concordant pairs is denoted with C , and
the number of discordant pairs is denoted with D, while T
and U are the numbers of ties in pairwise distance matrices
of the high and the low dimensional spaces DIS and dis,
respectively. If a tie occurs for the same pair in both DIS
and dis, it will not be added to either T or U , and the input
of the data should be in a one-dimensional array. Therefore,
the pairwise distance matrixes in both the high dimensional
space (DIS) and the low dimensional space (dis) will be
flattened to a one-dimensional array. The value of τ ranges
between -1 and 1. If τ is close to 1, it means that there is a high
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correlation between ranks. On the other hand, if τ is close
to -1 or 0, it means there is no relation or negative relation
between ranks. Ranks of distances between the high and the
low dimensional spaces represent the ranks of neighbours
for both spaces, respectively. Consequently, a high value
of τ means that the neighbour’s rank is captured. In terms
of comparison, the best dimensionality reduction method is
the method with the highest value of τ . For some datasets,
one degree-distribution is not sufficient to capture enough
data structure, and therefore more degree-distributions are
needed to be applied. To deal with this, we present a multi-
distribution-based approach Multi SDD (MSDD), discussed
below.

B. MULTI SAME DEGREE DISTRIBUTION (MSDD)
APPROACH
MSDD involves multi degree-distributions instead of one
degree-distribution (SDD), to better capture the data struc-
ture; such that, MSDD can be described as an extension of
SDD. The pseudocode of MSDD is demonstrated below in
Algorithm 2. MSDD employs n degree-distributions, as such
n-objective functions must be optimised. Multi-objective
optimisation problems are classically solved using scalarisa-
tion techniques [34], [35]. MSDDwill be optimised using the
composed Kullbak-Leibler (s) as in (30) via the optscalarisa-
tion techniques [34]:

C2 = a1
∑
i6=j

(p1)ij log(
(p1)ij
(q1)ij

+ . . .+ an
∑
i6=j

(pn)ij log(
(pn)ij
(qn)ij

(30)

To simplify the problem, we allocate the same influence
to each degree-distribution (weight am = 1, m =

1 : n) in (30). So, the parameters to be tuned are the
number of degree-distributions n and the degree of each
degree-distribution degm,m = 1 : n. The problem can be
formulated as below:

C2 =

n∑
m=1

∑
i6=j

(pdegm )ij log(
(pdegm )ij
(qdegm )ij

(31)

loss2 = min (C2) (32)

The performance of SDD and MSDD and other dimensional-
ity reduction methods will be tested and compared using two
different quality measures: co-ranking matrix and τ .

C. QUALITY ASSESSMENT
In addition to Kendall’s Tau (τ ) (29), we also use the
co-ranking matrix [36] to measure the quality of each dimen-
sionality reduction method. Let us define DISN×N and
disN×N the matrixes of pairwise distances in the high and
low dimensional spaces, respectively. In both spaces the rank
matrices RNXN and rNXN of the distance matrixesDISNXN and
disNXN are calculated as follows:

Rij =
∣∣{k : DISik < DISij}

∣∣ (33)

rij =
∣∣{k : disik < disij}

∣∣ (34)

Algorithm 2MSDD
Require: Input :
X ∈ RNxD, number of iterations H , learning rate
η, momentum α, number of degree-distributions n,
degree degm, Degrees = bestdegm from Algorithm I,
τactual = max(τ ), initial low dimensional data
Y 0
= y1, . . . , yN ∈ N (0, 10−4I ).

Step 1 :
Compute the high dimensional space similarities (pdm )ij
using (27).
Step 2 :
Compute the low dimensional space similarities (qdegm )ij
using (28).
Step 3 :
Compute the gradient δC2

δ yi where C2 defined in (31) is

reformulated as: C2 =
∑

m/∈Degrees

∑
i6=j

(pdegm )ij log(
(pdegm )ij
(qdegm )ij

+∑
m∈Degrees

∑
i6=j

(pdegm )ij log(
(pdegm )ij
(qdegm )ij

.

Step 4 :
Minimize the objective function using the
Gradient Descent optimisation algorithm:
Y h = Y h−1 + η δC2

δyi
+ α(Y h−1 − Y h−1).

Step 5 :
Add more degrees in cases: if τnew < τactual ,
Degrees = Degrees

⋃
degm with τnew , τactual = τnew.

Output :
Low dimensional space represenation YDegrees.

where |·| defines the set of cardinality. The co-ranking matrix
Q is defined by

Qkl =
∣∣{(i, j) : Rij = k and rij = l}

∣∣ (35)

Errors generated by a dimensionality reduction method cor-
respond to off-diagonal entries of the co-ranking matrix [36].
A diagonal co-ranking matrix represents a perfect dimension-
ality reduction method.

D. COMPLEXITY ANALYSIS
SDD needs to create two matrixes with N × N to store
distances in both high and low dimensional spaces and
another matrix that stores the difference P− Q with N × N .
In total, the complexity of SDD is 3N 2. MSDD computa-
tional complexity is higher and is related to the number of
degree-distributions involved. The computational complex-
ity is 3nN 2, where n is the number of degree-distributions,
and hence it requires n times more than SDD. Because
the number of degree-distributions affects the computational
complexity, we suggest starting from one degree-distribution
and then increasing the number of degree-distributions. The
number of degree-distributions used in MSDD will be that
number that produces the highest value of the correlation
coefficient τ .
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FIGURE 1. Three distance distributions.

IV. IMPLEMENTATION GUIDANCE OF SDD AND MSDD
In this Section, we present some guidance on the implemen-
tation of the SDD and MSDD approaches. The performance
of SDD is related to the degree(s) of degree-distribution(s),
and the selection of the degree of degree-distribution asso-
ciates with 1) the high dimensional data distance distribu-
tion and 2) the dimensionality reduction purpose. In the
case of data with a large fraction of large distances and
small fractions of small distances, as shown in Fig. 1(a),
employing small degree degree-distribution(s) is suggested.
Degree-distributions with a small degree (i.e. deg 1, 2), has
heavy tails, which means high sensitivity to large distances.
High degree (deg>5) degree-distribution(s) is suggested to be
employed in datasets that have a large fraction of small dis-
tances (Fig. 1(c)), and medium degree degree-distribution(s)
should be employed in datasets with a large fraction of
medium distances (Fig. 1(b)). However, this is an intuitive
judgement, and the simulations provided later will gener-
ate precise results. If for a user, the local structure of the
data is more important than the global structure, we suggest

FIGURE 2. Scaled Euclidean distance.

employing high degree degree-distribution(s); otherwise,
the employment of low degree degree-distribution(s) may
be more beneficial. The degree of degree-distribution which
captures the best structure of the data we have named best
degree. If we add degree-distribution(s) with degree(s) far
from the best degree, then we might lose some local or global
structure of the data. The degree(s) close to the best degree
might contribute to maintaining better the data structure by
not affecting the actual maintained data structure.

Defining the degree of a degree-distribution also depends
on the distance range, and it has to be noted that
degree-distributions are less sensitive to large distances.
To solve this problem, we propose scaling the distance ranges
to the interval range from 0 to 1.

A. SCALING THE DISTANCE RANGE
To scale the pairwise distance range, we propose divid-
ing every single distance on pairwise distances with a
decent positive number. The Euclidean distance between

x1, y1 is calculated as dist(x1, y1) =

√
x21 + y

2
1,

whereas the Euclidean distance between αx1, αy1 is
calculated: dist(αx1, αy1) =

√
(αx1)2 + (αy1)2 =√

(α)2(x1)2 + (α)2(y1)2 =√
(α)2((x1)2 + (y1)2) = α

√
((x1)2 + (y1)2) = αdist(x1, y1).

As such, it is proved that if all sample values are scaled by a
positive number α, the Euclidean distance calculated between
the scaled samples also scales by the positive number α.
Distributions of Euclidean distance and the scaled Euclidean
distance can be visually seen in Fig. 3(a) and Fig. 3(b),
respectively. In SDD(MSDD), α = 1

max dis(xi,xj)
, due to the

high sensitivity of the degree-distribution(s) in the value
range between 0 and 1.

V. EXPERIMENTAL SETTINGS AND RESULTS
In this Section, the proposed method and its extension is
tested and compared with several benchmark dimensionali-
tiy reduction techniques; PCA, MDS, Isomap, LLE, t-SNE,
UMAP, and Trimap, using several typical benchmark datasets
including Iris, Breast Cancer, Swiss roll, MNIST, and Make
Blob. All algorithms were implemented in Python with the
same number of iterations (2000). PCA, MDS, Isomap,
LLE, LE, and t-SNE, were implemented using their Sklearn
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FIGURE 3. Distributions of Euclidean distances(a) and scaled Euclidean
distances (b) of Make Blob data with 500 samples.

versions, and for UMAP5 and Trimap,6 their GitHub versions
were applied. For Isomap, LE, UMAP, and t-SNE, the param-
eter k (pr for t-SNE) was tuned in the range (1,N−1), to find
an appropriate number of neighbours which could produce
the best low dimensional representation in relation to the
structure capturing. For LLE, in MNIST dataset, the number
of neighbours k was tuned up to 1000, due to the memory
problem. TriMap also failed to obtain a number of neighbours
of more than 199, so the number of neighbours was tuned up
to 198.

The effectiveness of each method was evaluated using
the co-ranking matrix and τ (Kendall’s Tau). Co-ranking
matrix indicates a perfect mapping if the matrix is diagonal,
and the off-diagonal entries are the errors. τ takes values
between -1 and 1, and when τ is 1, there exists a perfect
correlation between ranks corresponding an ideal mapping.
The performance of each method in terms of Kendall’s Tau τ
is presented in Table 1 along with the computational time t
(in seconds) and the number of neighbours k (perplexity
pr for t-SNE). The two-dimensional data representations of
the methods are presented in Fig. 9 and Fig. 10, and their
co-ranking matrixes are presented in Fig. 11 and Fig. 12.

A. IRIS
The first dataset considered is Iris with 4 dimensions
(attributes) and 150 samples, with distance distribution shown
in Fig. 4. Based on the distance distribution in Fig. 4,
the largest fraction of samples has relatively short and

5https://github.com/lmcinnes/umap
6https://github.com/eamid/trimap

FIGURE 4. Euclidean distance distribution of Iris dataset.

medium distances, in which, our proposed approach is
expected to perform better than others. From the simulation
results, the best method with the highest τ of 0.967347
(Table 1) was MSDD (deg: 8). Its co-ranking matrix is shown
in Fig. 11(a) has fewer off-diagonal entries in the top-centre
sections, which indicates a good short and medium distance
preservations. However, the co-ranking matrix of MSDD
(deg: 8) has more off-diagonal entries than the co-ranking
matrixes of Isomap shown in Fig. 11(p) and PCA showed
in Fig. 11(k), in the bottom right sections. Thus, for the
Iris dataset, MSDD (deg: 8) performed better than the other
methods in terms of local structure capturing, and it per-
formed similarly with Isomap and PCA for global structure
preserving. Considering the computational time, as shown
in Table 1, MSDD was more expensive than PCA, MDS,
Isomap, and LE; however, it outperformed t-SNE, UMAP,
and TriMap. MSDD (deg: 8) achieving the highest τ for the
Iris dataset, and adding more degree-distributions did not
improve the data structure capturing, but instead, could make
it worse. As shown in Table 1, MSDD (degs: 7 and 8), MSDD
(degs: 8 and 9), and MSDD (degs: 7, 8 and 9) generated
lower τ , and as a result, less data structure was maintained.

B. BREAST CANCER
The Breast Cancer dataset7 with 30 attributes is the second
datasets considered. The distance distribution of breast cancer
data is shown in Fig. 5, where the majority of samples have
relatively short distances, in which MSDD is expected to
maintain better the data structure.MSDD (degs: 9 and 10) and
MSDD (degs: 10 and 11) were the dimensionality reduction
approaches that produced the highest τ of 0.998125, as shown
in Table 1. However, MSDD (deg: 10) achieved a similar
τ (0.998122) with less computational time. Analyzing the
co-ranking matrixes of the Breast Cancer dataset in Fig. 11,
and Fig. 12, we can see that MSDD (deg: 10) performed
better than other methods in maintaining the short, medium
and large distance (less off-diagonal entries of the co-ranking
matrix of MSDD in Fig. 11(b) than the rest of the co-ranking
matrixes). Considering the computational time, MSDD was
more expensive than PCA, MDS, LE; however, it was more

7Load breast cancer from sklearn, Python.
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FIGURE 5. Euclidean distance distribution of Breast Cancer dataset.

FIGURE 6. Swiss Roll data (a) and its Euclidean distance distribution (b).

FIGURE 7. Euclidean distance distribution of MNIST data.

useful than t-SNE, LLE, and UMAP, TriMap in both, higher
structure maintaining and less computational time.

C. SWISS ROLL
Swiss Roll data with 1600 samples and 3 attributes is shown
in Fig. 6(a) and its distance distribution is shown in Fig. 6(b),

TABLE 1. The performance of methods (rows) in datasets (columns) in
terms of Kendall’s Tau coefficient and computational time.

is the third dataset considered. By examining the co-ranking
matrixes in Fig. 11 and Fig. 12, it can be seen that MSDD
(deg: 1), PCA and Isomap performed better than the other
methods in preserving the data structure. More specifi-
cally, MSDD (deg: 1) produced the highest τ was MSDD
(deg: 1) of 0.914619 followed by Isomap and PCA with τ
of 0.912133 and 0.911537, respectively, as shown in Table 1.
Although MSDDwas more expensive than two linear dimen-
sionality reduction methods PCA and MDS, it performed
better than t-SNE, Isomap, LE, LLE, TriMap, and UMAP
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FIGURE 8. Euclidean distance distribution of Make Blob data.

in terms of structure maintaining and computational time,
as shown in Table 1.

D. MNIST
MNIST with 2500 samples and 784 attributes is the fourth
dataset considered, with distance distribution shown in Fig. 7,
dominated by entries with medium, large distances. MSDD
(deg: 1) achieved the highest τ of 0.606540, followed by
t-SNE (0.549509) and LE (0.523077), as shown in Table 1.
As we can see, MSDD hugely provided better structure
preservation over the other consideredmethods. Furthermore,
MSDD was less expensive in relation to computational time

compared with Isomap, t-SNE, UMAP, Trimap LE, and
LLE. Although PCA and MDS were faster than MSDD,
their performances in terms of τ were low. Therefore,
the usage of MSDD has been beneficial with MNIST dataset
in terms of both structure maintaining and computational
time.

E. MAKE BLOB
Make Blob with 40 attributes and with distance distribution
as shown in Fig. 8 is the last dataset considered. As we
can see, the majority of samples have a distance of between
40 to 70, whereas a small fraction has a distance around
10. As we can also see from Table 1, MSDD (deg: 1) has
been less useful in maintaining the data structure evaluated
by a τ of 0.572387. The main cause of that has been the
largest fraction of data located in the tail sections of degree-
distributions. The method that performed the best in this
dataset was t-SNE with the highest τ of 0.651567 shown
in Table 1 and its respective co-ranking matrix demonstrated
in Fig. 11 and Fig. 12, which illustrated fewer off-diagonal
entries than other methods. However, t-SNE and LE, although
they had the highest performances, were the most expensive
methods. Furthermore, it should be noted that generating the
best representative low dimensional data in terms of structure
maintaining relies on the number of neighbours for methods

FIGURE 9. The visualisation of the two-dimensional representation of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST
(784 attributes) and Make Blob (40 attributes) generated by MSDD, MDS, PCA, and Isomap.
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FIGURE 10. The visualisation of two-dimensional representation of the Iris (4 attributes), Breast Cancer (30 attributes),
Swiss Roll (3 attributes), MNIST (784 attributes) and Make Blob (40 attributes) generated by LLE, LE, t-SNE, UMAP, and
TriMap.

FIGURE 11. The co-ranking matrixes of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and
Make Blob (40 attributes) generated by MSDD, MDS, PCA, and Isomap.

such as Isomap, LLE, LE, t-SNE, UMAP, and TriMap. As a
result, these methods challenged by data with a large num-
ber of samples, because they require tuning the number of

neighbours from 1 to N − 1, but to tune the degree on SDD
takes a maximum of 15 steps. Although MSDD is more
expensive than SDD, its computational complexity does not
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FIGURE 12. The co-ranking matrixes of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and Make
Blob (40 attributes) generated by LLE, LE, t-SNE, UMAP, and TriMap.

significantly increase if following the guidance provided in
Section IV.

VI. CONCLUSION AND FURTHER WORK
This paper proposes SDD and MSDD for the dimensionality
reduction of data to better preserve the data structure using
less computational time compared to other manifold learn-
ing methods. SDD employs one degree-distribution, whereas
MSDD adds various degree-distributions on top of SDD,
aiming to improve the data structure capturing. Due to the
high sensitivity of degree-distribution(s) in small andmedium
distance sections, SDD (MSDD) can usefully capture the
structure of data with a large fraction of small and medium
distances. Conversely, it performs less favorably in datasets
with a large fraction of large distances, due to the large
number of samples placed in the low sensitivity section(s)
(tail(s)) of degree-distribution(s). Overall, SDD (MSDD) out-
performs in terms of structure capturing benchmarks methods
such as t-SNE, UMAP, Isomap, PCA, MDS, Trimap, LLE,
and LE in data which dominates by small and medium dis-
tances. Additionally, the structure capturing of SDD (MSDD)
does not rely on the number of neighbours, but it instead
tunes the degree of degree-distribution, which ranges from
1 to 15 instead of 1 to N − 1. As a result, SDD (MSDD)

can be more useful than other manifold learning techniques
to reduce the data dimensionality of datasets having a large
number of samples.

In the experiments conducted, employing one degree-
distribution has produced the best low dimensional data rep-
resentation in terms of structure maintaining. The addition
of a degree below or above the best degree has resulted
in the deterioration of the maintained data structure. For
Breast Cancer, where the best result was achieved by the
combination of two degree-distributions, the improvement
was not notable. In conclusion, we suggest that using one
degree-distribution can be efficient in capturing data struc-
ture. However, if preserving the data structure is crucial, then
we suggest adding more degree-distributions on top of the
best degree degree-distribution.

For further work, the authors aim to approximate the num-
ber of degree-distributions and their degrees in relation to
the data. Reducing the computational complexity is another
objective for further work.
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