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ABSTRACT This study proposed a muscle fatigue classification method based on surface electromyogra-
phy (sEMG) signals to achieve accurate muscle fatigue detection and classification. A total of 20 healthy
young participants (14 men and 6 women) were recruited for fatigue testing on a cycle ergometer, and
sEMG signals and oxygen uptake were recorded during the test. First, the measured sEMG signals were
denoised with an improved wavelet threshold method. Second, the V-slope method was used to identify the
ventilation threshold (VT) to reflect the muscle fatigue state. The time- and frequency-domain features of the
sEMG signals were extracted, including root mean square, integrated electromyography, median frequency,
mean power frequency, and band spectral entropy. Third, the time- and frequency-domain features of the
sEMG signals were labeled either ‘‘normal’’ or ‘‘fatigued’’ based on the VT. Finally, the statistical features
of 16 participants were selected as the training data set of the Convolutional Neural Network–Support
Vector Machine (CNN-SVM), Support Vector Machine, Convolutional Neural Network, and Particle Swarm
Optimization–Support Vector Machine algorithms. In addition, the statistical features of the four remaining
participants were used as the test data set to analyze the classification accuracy of the four aforementioned
algorithms. Experimental results indicated that the denoising effect of the improved wavelet threshold
algorithm proposed in this study was satisfactory. The CNN-SVM algorithm achieved accurate muscle
fatigue classification and 80.33%–86.69% classification accuracy.

INDEX TERMS Convolutional neural network-support vector machine (CNN-SVM), muscle fatigue,
sEMG, wavelet threshold.

I. INTRODUCTION
The muscular system is an important part of the human body,
providing power to the body’s movements. Exercise-induced
muscle fatigue refers to the physiological phenomenon when
the maximum voluntary contraction force of a muscle is
caused by exercise or a temporary decline in the output
power [1]. When muscles are fatigued for long periods dur-
ing exercise, the risk of athletic injury increases. Therefore,
the accurate detection ofmuscle fatigue is the basis formuscle
fatigue relief and treatment and has important kinematics
and medical significance. Electromyographic (EMG) signals
are recorded by placing an EMG sensor on the surface of
a muscle [2]. A weak current signal generated as a surface
EMG (sEMG) signal indicates muscle movement, changes in
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the number ofmotor units, and their participation in activities.
Moreover, activity patterns, metabolic status, and other fac-
tors can accurately reflect muscle activity state and functional
status in real time. The study of muscle fatigue status based
on sEMG signals was initially proposed in the 1980s [2], [3].
When muscle movement reaches the anaerobic threshold
(AT), muscles demonstrate a fatigued status. The ventilation
threshold (VT) is considered the gold standard for determin-
ing the AT [4]. Meanwhile, VT refers to the breakpoint during
exercise at which ventilation starts to increase at a rate faster
than that of oxygen uptake (VO2). VT is calculated with the
V-slope method [4]. However, the VT measurement device is
complex, expensive, and inconvenient. By contrast, an sEMG
signal measurement device offers convenient testing and sim-
ple operation; thus, it is widely used in sports medicine.

However, sEMG signals obtained by existing acquisition
technology contain certain noise, and sEMG signals must
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be analyzed by professional neurologists to determine the
state of muscle fatigue by examining the EMG waveform.
In the process of training without the presence of experts,
warning signs of muscle fatigue cannot be detected in time,
and muscle injury accidents may occur. Thus, developing a
method for the intelligent recognition of muscle fatigue based
on sEMG signals is necessary. This method would rely on
the EMG signal denoising method and muscle fatigue feature
extraction and classification. In recent years, noise cancel-
lation algorithms and automatic classification algorithms for
sEMG signals were widely developed. Olivier Girard et al.
used M-wave root mean square (RMS) changes to reflect
the fatigue process of vastus lateralis (VL) and rectus
femoris (RF) muscles under high temperatures and mild con-
ditions [5]. Cote-Allard, Ulysse et al. employed raw EMG,
spectrograms, and continuous wavelet transform as inputs
of a deep learning network to classify sEMG signals [6].
H. Li et al. proposed a wavelet-based vibration signal
denoising algorithm with a new adaptive threshold function
to eliminate background noise effectively [7]. Meanwhile,
A. Subasi et al. provided a method to visualize the onset
of fatigue processes by separating myoelectric signals from
fresh and fatigued muscles using neural networks in indepen-
dent component analysis [8]. Xu Y. S. et al. investigated the
effectiveness of a wavelet transform-domain filter for denois-
ing EMG signals [9]. Moreover, Rachel L. Whittaker et al.
constructed a linear regression model using quantitative per-
ceptual fatigue scores and muscle fatigue accumulation [10].
Qi Wu et al. proposed a BFA-GSVCM classification method
to solve the performance problem of the SVCM classifier
by improving the loss function in the SVCM establishment
process and compared it with the GSVCM, GA-GSVCM,
PSO-SVCM, and other classification algorithms [11].

The support vector method proposed by Vapnik is an algo-
rithm for the binary classification of data based on supervised
learning [12]. Meanwhile, support vector machine (SVM)
was developed from 1992 to 1995 based on statistical the-
ory [13], [14]. Hubel and Wiesel [15] first proposed the
concept of the convolutional neural network (CNN) in 1962;
in 1998, LeCun et al. [16] established the first CNN model,
namely, LeNet-5, to solve classification problems. Hinton
and Salakhutdinov [17] advanced the CNN, thereby facil-
itating the development of other CNN network structures.
The present study proposes an improved wavelet threshold
function for sEMG signal denoising and combines the CNN
and SVM to improve fatigue classification accuracy. The
experimental results indicate that the algorithm proposed in
this study has better performance in signal denoising and
fatigue state classification than the algorithms used in pre-
vious research.

Two main contributions of this work can be summarized as
follows:

1) A new wavelet threshold denoising method is used
to eliminate the sEMG signal noise and motion noise
in the sEMG signal and maintain the details of the
sEMG signal.

2) The CNN-SVM classification algorithm is used to
classify the time- and frequency-domain features of
sEMG signals to accurately identify muscle fatigue
status.

In our research, we aimed to accurately monitor the user’s
muscle fatigue status during exercise and reduce the risk of
sports injuries. Such injuries are the main challenge for the
implementation of exercise guidance.

II. METHODS
A. PARTICIPANTS
Fourteen healthy males (n = 14, age range: 20–30 years,
height: 1.75 ± 0.1 m, weight: 67.5 ± 8.6 kg) and 6 healthy
females (n = 6, age range: 20–30 years, height: 1.60 ±
0.05 m, weight: 52 ± 3.4 kg) were recruited for this study.
All the participants were informed of the purpose, method-
ology, and potential risks of the study before their verbal
and written informed consent was obtained. None of the par-
ticipants reported cardiovascular diseases or muscular disor-
ders. Moreover, some of the participants had certain training
foundation.

B. PROCEDURES
The participants were instructed to refrain from high-
intensity training, maintain a regular diet, and abstain from
ingesting stimulants (caffeine, nicotine, and so on) or alco-
hol a day before the test. Each of the participants per-
formed warm-up exercises for 2–3 min before the test. The
protocol was 50 W as the initial workload, and a 25 W
workload was added every 2 min for the progressive test
phase. The participants were instructed to maintain a ped-
aling rate within the range of 60–70 rpm throughout the
test. The test was terminated when a participant reached
volitional fatigue and was unable to maintain a pedaling rate
above 60 rpm.

C. DATA ACQUISITION
Throughout each exercise trial, pulmonary ventilation, VO2,
and carbon dioxide (CO2) were measured by using a portable
gas analyzer (K4b2 Cosmed, Rome, Italy). Respiratory
gas exchange measurements were obtained every 5 s. The
regression analysis of the slope of CO2 uptake versus the
VO2 plot via the V-slope method was used to calculate
the VT [18].

The participants’ skin was prepared by shaving off excess
hair and rubbing it with alcohol to reduce impedance. Sub-
sequently, sEMG sensors were placed on five muscles on
the left leg. The position of the sEMG sensors is shown
in FIGURE 1. The sEMG sensors were fixed with a sports
bandage, which would not affect the participants in executing
the test protocol in the cycle ergometer. The EMG signals
of the RF, VL, vastus medialis (VM), tibialis anterior (TA),
and gastrocnemius (GA) muscles were detected by bipolar
(20 mm center-to-center 1 cm× 1 cm in diameter) Ag–AgCl
surface electrodes (Noraxon, USA).
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FIGURE 1. Description of muscle location on the left leg and sEMG
electrode placement; GA, TA, RF, VM, and VL muscles.

D. sEMG SIGNAL DENOISING ANALYSIS
Noise is ubiquitous, and numerous noises can be detected in
an EMG signal. Many data analysis methods were designed
to eliminate noise and extract real signals from data. In 1988,
Ingrid Daubechies first applied wavelet transform to signals
for filtering [19]. French scientist Stephane Mallat proposed
the main wavelet transform algorithm in the same year [20].
In the current research, the application of wavelet denoising
algorithm was highly extensive. This algorithm is simple to
implement and demonstrates remarkable denoising effect in
practical applications. In general, the acquired EMG signals
were composed of real signals and noise.

f (t) = s (t)+ n (t) (1)

where f (t) is the acquired sEMG signals, and s(t) and n(t)
represent real signals and noise, respectively. The wavelet
coefficientwj,k obtained bywavelet transform decomposition
on the original myoelectric signal f (t) is composed of two
parts, that is, the wavelet coefficient uj,k corresponding to
s(t) and the wavelet coefficient vj,k corresponding to n(t).
To achieve optimal performance in wavelet analysis, a suit-
able wavelet function should be employed. Most studies
on sEMG analysis concluded that the Daubechies (Db)
wavelet family is the most suitable wavelet for sEMG signal
analysis [21]–[23]. We adopted the Db7 wavelet family as
the wavelet basis following the recommendations of previous
reports [24]–[26].

The steps of the wavelet threshold denoising method are as
follows:

Step 1. Select the appropriate wavelet base and decomposi-
tion layer to perform wavelet decomposition on the acquired
sEMG signals and obtain a set of wavelet coefficients wj,k .

Step 2. Select the appropriate threshold function to process
ŵj,k to calculate the estimated wavelet coefficient ŵj,k .

Step 3. Inversely transform the processed wavelet coeffi-
cients to reconstruct the noise-canceled signal.

The method for choosing an appropriate threshold function
in step 2 to make ||ω̂j,k − uj,k || as small as possible is
controversial. If the threshold is too small, then it will not
filter interference signals, resulting in no obvious denois-
ing effect. By contrast, if the threshold is too large, then it
will cause excessive signal loss, which will affect the sig-
nal analysis. Therefore, choosing the appropriate threshold
function is crucial for sEMG signal denoising analysis. Com-
monly used threshold functions include hard threshold, soft
threshold [27], and semi-threshold functions.

The hard threshold function is expressed as follows:

ŵj,k =

{
wj,k ,

∣∣wj,k ∣∣ ≥ λ
0,

∣∣wj,k ∣∣ < λ
(2)

The soft threshold function is expressed as follows:

ŵj,k =

{
sign(wj,k )(

∣∣wj,k ∣∣− λ), ∣∣wj,k ∣∣ ≥ λ
0,

∣∣wj,k ∣∣ < λ
(3)

The Semi-threshold function is expressed as follows:

ŵj,k =


0,

∣∣wj,k ∣∣ ≤ λ1
sign(wj,k )

λ2(
∣∣wj,k ∣∣− λ1)
λ2 − λ1

, λ1 <
∣∣wj,k ∣∣ < λ2

wj,k ,
∣∣wj,k ∣∣ > λ2

(4)

In Eqs. (2) and (3), Wj,k is the wavelet coefficient, and λ is
the threshold, as follows:

λ = σ (2 log(N ))
1/2 (5)

where N is the signal length, and σ is the variance of the
noise:

σ =
MADj

0.6745
(6)

where MADj is the median value of the wavelet decomposi-
tion coefficient of the j th layer [27]–[29].

Although widely used, hard threshold, soft threshold, and
semi-threshold functions have several drawbacks. In Eq. (2),
the threshold function is discontinuous when wj,k = ±λ,
which causes oscillations during wavelet coefficient recon-
struction, resulting in a poor denoising effect. The deviation
between the estimated wavelet coefficient and actual wavelet
coefficient in Eq. (3) cannot be eliminated, thereby causing
poor approximation between the reconstructed signal and the
real signal. In Eq. (4), two thresholds, that is, λ1 and λ2, must
be estimated in the semi-threshold function, but doing so is
difficult.
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The improved threshold function proposed in this paper is
as follows:

ŵj,k =



wj,k −
mλk+1sign(wj,k )

(m+ 1)
∣∣wj,k ∣∣k + λsign(wj,k )(

w2
j,k − λ

2
)1/2 ,∣∣wj,k ∣∣ > λ

sign(wj,k )
∣∣wj,k ∣∣k+1

(m+ 1)λk
,∣∣wj,k ∣∣ ≤ λ

(7)

where m and k are variable parameters, m ∈ [0, 1], and
k is a positive integer. The improved threshold function is
continuous and steerable at the ±λ point. Parameters m and
k in the threshold function Eq. (5) are the adjustment factors.
When k ≥ |λ| and m→0, the function has a hard threshold,
whereas when 0< k < |λ| and m→1, the function infinitely
approaches the soft threshold. In the function, m adjusts
the variation in the wavelet coefficient, and k adjusts the
smoothness of the threshold function in |Wj,k ≤ λ|. The new
threshold function proposed in this study combines the advan-
tages of soft threshold, hard threshold, and semi-threshold
functions. This approach enables the smooth transition of the
wavelet threshold curve. The improved threshold function
proposed in this study realizes the smooth transition of the
wavelet threshold curve and avoids the pseudo-Gibbs phe-
nomenon. Therefore, the reconstructed signal is smooth.

The threshold λ is the key to denoising sEMG signals. The
threshold calculation method proposed by Grace et al. is not
ideal for practical applications and can lead to oversegmenta-
tion [30]. As the number of sEMG signal layers decomposed
by wavelets increases, noise energy gradually becomes weak,
and the energy of real sEMG signals increases. The wavelet
threshold is selected based on the high- and low-frequency
characteristics of the signals.

The following hierarchical threshold estimation is obtained
based on Eq. (8).

λ = σ (2× log(N ))
1/2 g(j) (8)

g(j) =

 1

4 (2π)
1/2

 exp
(
−
j2

32

)
(9)

where j is the number of wavelet decomposition levels. When
we calculated the high-frequency threshold, g(j) was a large
value, resulting in a slightly large threshold. However, when
we calculated the low-frequency threshold, g(j) was a small
value, resulting in a slightly small threshold [g(j) ∈ (0,1)].

E. FEATURE EXTRACTION
The analysis of sEMG signals is concentrated in the
time and frequency domains. In this study, the time- and
frequency-domain features of the denoised sEMG signals
were extracted. RMS and IEMG signal are generally used
to describe changes in EMG amplitude during contraction
fatigue. The mathematical expressions of RMS and IEMG

signal are shown as Eqs. (10) and (11).

IEMG =
∫ t+T

t
|x(t)| dt (10)

RMS =
[
1
T

∫ t+T

t
x2(t)dt

]1/2
(11)

Median frequency (MF) and mean power frequency (MPF)
are commonly used to describe the frequency-domain char-
acteristics of sEMG signals. The mathematical expressions
of MF and MPF are shown as Eqs. (12) and (13).∫ MF

f1
PS(f )df =

∫ f2

MF
PS(f )df (12)

MPF =

∫ f2
f1
f × PS(f )df∫ f2
f1
PS(f )df

(13)

where PS is the power spectrum of the sEMG signal, which is
calculated using the periodogram power spectral density esti-
mate method, and f1 and f2 determine the frequency-domain
signal bandwidth of the sEMG signal (f1 = lowest frequency
and f2 = highest frequency of the bandwidth).

Band spectral entropy (BSE) is a method that combines
information entropy and band decomposition for sEMG sig-
nal analysis. The calculation method for BSE is shown in
Eqs. (14) and (15), where Pi is the spectral energy in the
frequency band, and Pi is the normalized spectral energy.

BSE = −
∑

n
i=1Pi lnPi (14)

Pi =

∑ n
i=1Ei
E

(15)

F. FATIGUE RECOGNITION
As a neural network algorithm, the CNN often requires a
large number of training samples; thus, overfitting problems
may emerge. SVM training with a large number of training
samples; thus, overfitting problems may emerge. SVM train-
ing with a large number of training samples will consume
substantial machine memory and computing time. The SVM
based on statistical theory and structural risk minimization
can solve the problems of small samples and overfitting. This
study designed a suitable CNN-SVM model using manual
design features to overcome the shortcomings of traditional
classifier algorithms and improved the performance of the
classifier. The fully connected layer of the CNNwas replaced
with the SVM, and the remaining convolutional layers and
subsampling layers were used to extract features from the
noise-reduced data automatically. Feature data were classi-
fied with the Gaussian kernel SVM algorithm.

The following procedure describes the CNN-SVM classi-
fication system for the fatigue status recognition of sEMG
signals.

Step 1. Data preparation: The sEMG signals after the noise
reduction process were used as the input sample of the CNN.
The sample was divided into a training sample, a verification
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sample, and a test sample in accordance with certain propor-
tions.

Step 2. Training samples to train the CNN. Feature vectors
corresponding to the training samples were extracted after
training.

Step 3. The SVM was trained with the training sample
feature vectors from step 2.

Step 4. In the test phase, the trained SVM was used to
replace the fully connected layer of the CNN, and the test
samples were inputted into the trained CNN to obtain the
corresponding feature vector of each test sample.

Step 5. The feature vector of the test sample was trained
for classification or regression.

The process of identifying muscle fatigue state based on
the improved wavelet threshold and CNN-SVM is shown
in Fig. 2.

FIGURE 2. The process of realizing muscle fatigue state recognition based
on improved wavelet threshold and CNN-SVM methods.

The Xavier method was used to randomly initialize the
weight matrix (W) of two adjacent layers of the network
following Eq. (16) [31], where nj and nj+1 represent the
number of neurons in the two adjacent layers. With reference
to previous research [32], [33], a feature extractor consisting
of two convolutions and pooling was designed to construct
the CNN structure, and a fully connected layer of two layers
of perceptrons was used to implement the classification func-
tion. The ReLU function (17) was employed as the activation
function of the convolutional layer and fully connected layer.

W ∼ U

− 6
1/2

(nj+nj+1)
1/2
, 6

1/2

(nj+nj+1)
1/2

 (16)

f (x) =

{
x, x > 0
0, x ≤ 0

(17)

The SVM identified fatigue state was based on the sEMG
feature data extracted by the CNN. The kernel function of
the SVM uses a Gaussian kernel function with satisfactory
learning capability. Eq. (18) is an SVMclassification decision
function that identifies muscle fatigue, and Eq. (19) is the
kernel function of the SVM.

f (x) = sign
[∑N

i=1
α∗i yiK (x, z)+ b∗

]
(18)

K (x, z) = exp

(
−
‖x − z‖2

2σ 2

)
(19)

III. RESULTS
A. sEMG SIGNAL DENOISING EFFECT EVALUATION
The sEMG signals were recorded at a rate of 2000 Hz using
wireless myoelectric sensors. Figure 3 presents the measured

FIGURE 3. Measured sEMG signals from the participants.

sEMG signals from the participants. An increased amount
of noise was detected in the original sEMG signals. The
effectiveness of the improved wavelet threshold algorithm
proposed in this study for denoising sEMG signals was veri-
fied by comparing traditional thresholding methods. Signal-
to-noise ratio (SNR) and RMS error (RMSE) were used as
the objective evaluation indicators.

SNR = 10 log

{ ∑
n s(t)

2∑
n
[
s(t)− ŝ(t)

]2
}

(20)

RMSE =

{∑
n 10 log

[
s(t)− ŝ(t)

]2
N

}1/2
(21)

Hard threshold, soft threshold, semi threshold, the new
wavelet threshold proposed by Zhang et al. [34], and the
wavelet threshold algorithm proposed in this study were com-
pared, and the results are shown in Table 1. The simulation
experiment data in Table 1 indicate that the improved wavelet
threshold denoising method proposed in this study achieved
a large peak SNR and a small RMSE. Thus, the improved
wavelet threshold denoising algorithm was a satisfactory
denoising algorithm.

TABLE 1. Performance comparison of different noise reduction
algorithms.

B. FATIGUE STATE RECOGNITION
For muscle fatigue analysis, typical sEMG feature sets are in
the time and frequency domains, of which the most common
are RMS, IEMG signal, MPF, and MF. According to previ-
ous research, when muscles are fatigued, IEMG signal and
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RMS will increase but MF and MPF will decrease. The
recorded sEMG signals were divided into N time windows,
and each window had a 1.5 s sEMG signal. The calculated
RMS and IEMG signal of the sEMG signals demonstrated
an increasing trend, as shown in Fig. 3. The RMS and IEMG
signal of the sEMG signals of the RF, VL, and VM muscles
exhibited a significant upward trend. Figures 4 and 5 show
that MPF and MF decreased, and BSE initially increased
and then decreased after the muscles entered the fatigued
state. As revealed by the yellow line in Figs. 4(a) and 4(b),
the slope of the MF fitting curve was –0.00898, and the slope
of the MPF fitting curve was –0.00607. The MPF character-
istic parameters showed a slight upward trend when muscle
fatigue increased. The yellow line in Fig. 5 demonstrates that
the slope of the BSE fitting curve was a cubic function.

FIGURE 4. Denoised sEMG signals.

FIGURE 5. Trend of instantaneous IEMG (a) and RMS(b) for participant.

To accurately represent classification accuracy, we selected
the following scheme to confirm the effectivity of the pro-
posed method among the 100 sEMG signal data samples
from the 20 participants. The sEMG signals of the RF, VL,
VM, TA, and GA muscles of the 20 participants during the
fatigue test were divided into normal sEMG signals and
fatigued sEMG signals on the basis of the time correspond-
ing to the VT. The above feature types were divided into
two categories, where 0 represented a normal status, and
1 represented a fatigued status. The 2D data obtained by
combining RMS, IEMG, MF, MPF, and BSE with the mus-
cle fatigue status values were used as the input samples of
the CNN, SVM, PSO-SVM, and CNN-SVM. For the CNN-
SVM-based classification, the hyperparameters included ker-
nel size (5 × 5), pool size (2 × 2), and activation function
(ReLU). The number of training epochs was dependent on the
data, which to be between 15 and 32 epochs in the pre-training
process and less than 10 in the fine-tuning process. The
size of the filter in the network was optimized by gradually
decreasing from a large number. The number of filters in
the first CNN was large, and all steps were set to 1. The
AdaDelta optimizer with a 2–5 learning rate and a decay rate
of 10–4 yielded the lowest loss in all dataset permutations.
We used grid search to optimize the CNN model and stopped
training early when the verification loss was no longer
improved.

All algorithms were implemented in MATLAB R2018a.
Theoretically, the program running time of the CNN-SVM
algorithm was significantly higher than that of the PSO-SVM
and SVM algorithms. The simulation time of the CNN-SVM
algorithm was 13757 s. By contrast, the simulation times
of the CNN, PSO-SVM, and SVM algorithms were 12630,
10972, and 9237 s, respectively.

For each test data set, we used 10-fold cross-validation to
train a supervised classifier. Eightfold validation was used
in training. One of them was used as a validation set to
optimize the network. The last fold was used to test the
algorithm. In the results, only muscle fatigue state and non-
fatigue state were predicted. The classification accuracy of
the CNN-SVM algorithm was compared with that of the
SVM and PSO-SVM algorithms, and the results are shown
in Table 1. By comparing the fatigue classification accuracy
of the four algorithms on the feature data sets of three differ-
ent combinations, we found that the CNN-SVMclassification
mode was better than the three other algorithms. The exper-
imental results of this study proved that the BSE of sEMG
signals proposed by Liu et al. [35] can be classified as a
feature type, and classification accuracy can be improved.
Table 3 shows the comparison of the influence of the three
denoising algorithms on the accuracy of four classification
algorithms.

Fig. 8 presents the training and validation losses of the
CNN-SVM model by epochs. By contrast, both the training
and validation losses decreased steadily for the CNN-SVM
model, which also indicated that the data overfitting problem
was alleviated.
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FIGURE 6. Trend of MF(a) and MPF(b) for participant.

FIGURE 7. Trend of BSE for participant.

FIGURE 8. Mean training loss and mean validation loss for CNN-SVM.

IV. DISCUSSION
The purpose of the present studywas to propose amethod that
could effectively remove noise in sEMG signals and accu-
rately detect muscle fatigue. The improved wavelet thresh-
old denoising algorithm proposed in this study performed
better than the traditional wavelet threshold algorithm for
sEMG signal denoising. We compared and evaluated the

TABLE 2. Comparison of the classification accuracy(in %) of different
feature types by SVM, PSO-SVM, CNN, CNN-SVM classification algorithms.

TABLE 3. Compare fatigue classification accuracy(in%) based on the
combination of denoising algorithm and classification algorithm.

classification performance of the CNN-SVM, SVM, and
PSO-SVM algorithms for sEMG signal fatigue status.

Typical sEMG features for muscle fatigue analysis are
concentrated in the time and frequency domains [36], [37].
To characterize the frequency domain of sEMG, researchers
often use MF and MPF [38]. During sEMG time-domain
analysis, researchers often use RMS and IEMG [39]. As the
muscles of the participants became fatigued, the changes
in the characteristics of the EMG signal parameters of the
subjects were basically the same, and they were repeatable.
According to related research, IEMG and RMS values
increase, and MPF values decrease [40]–[42]. Different posi-
tions of the collected EMG signals will lead to varying trends
in MPF. In Hogrel et al.’s study, the MPF parameters of
the sEMG signals extracted from the lateral femoral (LF)
indicated a regular downward trend followed by an upward
trend as the LF gradually entered the fatigue status dur-
ing the test [43]. The experimental results in this study
were consistent with previous work, but the characteris-
tics of some participants did not change significantly. The
feature types of RMS + IEMG + MF + MPF + BSE
used in this study solved the problem that a single fea-
ture description of muscle fatigue characteristics was not
sufficiently reliable. The addition of BSE features based
on the traditional time- and frequency-domain features fur-
ther improved the accuracy of muscle fatigue classifica-
tion. Previous research indicated that SVM and PSO-SVM
algorithms have improved classification accuracy for feature
types (RMS+ IEMG+MF+MPF+BSE) [44]. The classi-
fication accuracy of CNN-SVM for muscle fatigue state were
7.48%, 7.33%, and 7.01% higher than SVM, PSO-SVM,
and CNN, respectively. The improved wavelet threshold
denoising algorithm proposed in this paper was better
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than the semi-threshold and new threshold denoising algo-
rithm in improving the classification accuracy of dif-
ferent classification algorithms. To improve classification
accuracy, the improved wavelet threshold algorithm was
8.36%–11.35% higher than the semi-threshold algorithm and
1.75%–5.51% higher than the new algorithm.

Muscle fatigue, particularly when undetected, can increase
the risk of injury. Identifying muscle fatigue based on
sEMG signals is necessary and can serve as the founda-
tion of automated systems. Automated muscle fatigue detec-
tion/prediction technology through wearable devices could
play an essential role in the design of training assistance
systems.

V. CONCLUSION
This study proposes a method that can obtain real
sEMG signals and accurately identify muscle fatigue. The
improved wavelet denoising algorithm proposed in this study
demonstrates better performance than traditional wavelet
threshold denoising algorithms for denoising sEMG signals.
The extraction of RMS, IEMG signal, MF, MPF, and BSE
features from denoised sEMG signals to use as input of
the CNN-SVM algorithm achieves accurate fatigue status
recognition. The improved wavelet algorithm can improve
the accuracy of the classification algorithm to identify mus-
cle fatigue status. Although some features do not change
significantly under muscle fatigue, comprehensive compar-
ison results indicate that the CNN-SVM algorithm exhibits
satisfactory performance in muscle fatigue recognition. The
accuracy ofmean instantaneous frequency based on ensemble
empirical mode decomposition–Hilbert transform for the
CNN-SVM algorithm to identify muscle fatigue status will
be further explored in future research.
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