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ABSTRACT Underwater geophysical properties can provide useful information for surface navigation,
particularly in situations where a global navigation satellite system is unavailable. Unmanned surface
vehicles (USVs) equipped with geophysical sensors can measure certain types of underwater properties
related to Earth geophysics. For example, multibeam echosounders can obtain an array of sonar ranges
for underwater terrains, and magnetometers can measure geomagnetic vector fields. These measurements
can be used to track vehicle poses if pre-surveyed geophysical maps are provided. This paper proposes
geophysical navigation of USVs using a multibeam sonar and magnetometer. The navigation algorithm is
implemented within a particle filter framework, and we designed observation models for each geophysical
sensor. To avoid the particle impoverishment problem of the conventional terrain based navigation, a terrain
roughness measure is employed to modify the weight update and resampling steps of the standard particle
filter framework. We conducted field experiments in an inland water environment using the designed surface
vehicle, and validated enhanced tracking performance of the proposed methods by comparing the methods
with conventional approaches.

INDEX TERMS Geophysical navigation, magnetometer, multibeam echosounder, particle filter, unmanned
surface vehicle.

I. INTRODUCTION
The global navigation satellite system (GNSS) is the most
common solution that marine surface vehicles depend on to
obtain position and heading information in real time. How-
ever, it is necessary to prepare for situations where the GNSS
is unavailable. For example, during military operations, there
is a strong possibility of GNSS jamming or spoofing [1]–[3],
or malfunctions of the receiver antenna caused by physical
attacks.

Therefore, additional navigation sources are necessary as
backup to existing GNSS. Several approaches can be adopted
for this purpose. One approach is to utilize existing maritime
radio infrastructure as navigation beacons. Unlike weak and
vulnerable GNSS signals, maritime radio signals are strong
and robust to interference. Examples of these techniques
include enhanced long-range navigation (eLoran) [4] and
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ranging mode (R-Mode) [5]. However, these systems use
low-frequency radio ranging and can lead to highly coarse
positioning (with accuracy larger than 80 m for eLoran [6]
and 50 m for R-MODE [7]) depending on the environment.
In addition, the vehicle should be equipped with additional
maritime radio signal receivers.

Another approach is to perform dead-reckoning (DR) by
onboard proprioceptive sensors such as inertial measurement
units (IMUs) and Doppler velocity logs (DVLs). IMUs can
measure vehicle linear acceleration and angular velocity in a
body-fixed frame, DVLs can measure linear velocity. These
signals can be integrated to obtain the three-dimensional (3D)
position and orientation of the vehicle [8], [9]. However,
DR has the problem of accumulating errors due to sensor
noise and biases. Moreover, DVL measurement accuracy
is severely degraded with inclined or irregular underwater
floors. The third approach is to exploit themap of the environ-
ment surrounding the ego vehicle. Any type of properties of
the environment that helps vehicle positioning can be utilized
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and encoded into maps. If the maps are initially known or
provided by operators, the problem becomes a localization
or positioning task. If the maps are unknown, then a simul-
taneous localization and mapping problem must be solved
[10]. In this work, we assumed that a certain type of map
of the target operation area is constructed before the vehicle
starts its mission. For example, if the vehicle operates near
bridges, positions and cross-section shapes of the columns
can be encoded into a map and utilized for navigation with
onboard sensors such as light detection and ranging (LiDAR)
or optical cameras [11]. Radar installations and coastline
maps can also be used in a similar manner [12] if the vehicle
operates near coastlines. Evidently, navigation using these
types of maps is restricted to the areas having either bridges
or coastlines. In this paper, we propose an unmanned surface
vehicle (USV) system navigation that utilizes sensing of
underwater geophysical properties, or geophysical navigation
(GN). Two types of underwater properties are examined:
underwater terrain and geomagnetic fields. The advantages of
using these properties in navigation include 1) omnipresence
of the signal sources (i.e. terrain and geomagnetic fields) over
all water surfaces and 2) low variability between the observed
signals acquired at the same position during a long period,
or repeatability of observations in the temporal domain.

Multibeam sonar sensors such as the multibeam
echosounder (MBES) can obtain an array of sonar ranges
with every single sonar transmission and acquire a 2D profile
of the underwater terrain, which is considerably more effi-
cient than the single-beam echosounder. The acquired terrain
profile can then bematchedwith existing terrainmaps to infer
navigation information. This technique, called terrain-based
navigation (TBN), is effective in areas with rich terrain
features [13]–[16]. However, in areas with sparse terrain
features, sonar observations should be used in a selective
manner to improve the performance of the tracking filter;
otherwise, a local minimum or divergence may occur [17].
In this paper, we propose the use of a terrain roughness
measure in the implementation of a particle filter-based TBN
algorithm. In particular, the proposed approach attempts to
resolve the particle impoverishment problem by modifying
the weight update and resampling steps.

The other geophysical property used in the proposed navi-
gation algorithm is the geomagnetic field. AUSV is equipped
with high-precision underwater magnetometers that can mea-
sure the 3D vector or scalar strength of the Earth’s magnetic
field. Because the Earth’s magnetic field is affected by soft
and hard iron distortions from the vehicle’s metallic body
frame and electromagnetic devices such as thrusters, a dedi-
cated calibration procedure is required for the use of magne-
tometers [18]–[20]. Calibrated magnetic field measurements
can then be used as additional navigation features that can
enhance the conventional TBN algorithm [21].

In this paper, the construction of geophysical maps is
explained in Section II. The design of the GN filter is
described in Section III. The field experiment and its results

FIGURE 1. Geophysical sensing by MBES and magnetometer installed on
a USV.

are presented in Section IV, and the conclusions are summa-
rized in Section V.

II. GEOPHYSICAL MAPPING
The first task in geophysical navigation is to obtain reliable
geophysical maps. In this work, two types of geophysical
properties are exploited: underwater terrains and geomag-
netic fields. Bathymetric and geomagnetic maps have already
been explored over many years and are now publicly avail-
able. For example, the GEBCO grid [22] provides an inter-
polated grid of bathymetry measurements taken over much of
the world’s ocean floors. However, this grid generally has low
resolution (up to several kilometers), and only certain parts of
the ocean floors are mapped with higher resolution. For the
geomagnetic field maps, empirical models such as the World
Magnetic Model (WMM) [23] and International Geomag-
netic Reference Field (IGRF) [24] provide information about
the Earth’smagnetic field but with updates only every 5 years.
Therefore, in this study, we built a high-resolution and up-
to-date terrain and geomagnetic maps to guarantee better
navigation performance.

A. TERRAIN MAPPING
The procedure for terrainmapping includes rawmeasurement
of bathymetry by underwater sonar sensors, outlier rejection
in sonar profiles, and reconstruction of 3D point clouds of
underwater terrains with the vehicle’s pose information.

Several sonar sensors are available for bathymetry, includ-
ing the single beam profiler, DVL, andMBES. For its superior
efficiency, an MBES was selected in this work because it
obtains hundreds of sonar ranges in a single scan, which
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provides considerably more information than the other sonar
ranging sensors. Bathymetry measurements by an MBES
installed below a surface vehicle is illustrated in Fig. 1.

Sonar ranging has multipath propagation, generally caused
by reflected sonar signals against water surfaces or the vehicle
itself, and the sonar ranges affected by this should be cor-
rected or rejected for consistent mapping. Assuming that the
terrain captured in every sonar scan has a smooth and contin-
uous shape and no high frequency components in a spatial
domain, we can reject the outlier ranges using a threshold
calculated as the average terrain height. The reconstruction
is then achieved by converting inlier sonar ranges to the 3D
point cloud of underwater terrain through coordinate trans-
formation. Because the vehicle moves in a 3D space on the
water surface, its pose state vector η can be described in an
SE(3) group [25] by

η =

[
η1
η2

]
(1)

where η1 = [x, y, z]> is the 3D position of the vehicle, and
η2 = [φ, θ, ψ]> is the Euler angles describing the vehicle
orientation, both represented in a global or inertial reference
frame {I}. We conveniently chose a universal transverseMer-
cator (UTM) coordinate system as an {I} frame, but any
other global coordinate system can be selected depending on
the application. Then, the conversion of the sonar ranges to
terrain points can be formulated as

pSk,t =


0

rk,t cos (
π + s
2
− kb)

rk,t sin (
π + s
2
− kb)

 (2)

where rk,t is the range measurement from the kth sonar beam
at time step t , pSk,t is the 3D point of terrain represented in a
sonar sensor-fixed frame {S}, s is the sonar scan width, and b
is the beam spacing. pSk,t is further converted to be represented
in {I} by

pIk,t = RI
B(η2,t )(R

B
Sp

S
k,t + t

B
S )+ η1,t (3)

where η1,t and η2,t are the robot states at time step t , RIB(·) is
a rotation matrix describing the transformation from {B} to
{I}, RBS is a matrix describing the rotation from {S} to {B},
and tBS is a translation vector describing the sensor position
from the vehicle’s motion center. The vehicle position η1,t
and orientation η2,t can be measured using GPS and IMU,
respectively.

Finally, the terrain map T consists of reconstructed 3D
terrain points as follows:

T = {pIk,t |k = 1, . . . , nb, t = 1, . . . , ts} (4)

where nb is the number of sonar beams in a single scan, and
ts is the total time step taken for the sonar mapping.

B. GEOMAGNETIC FIELD MAPPING
The second type of geophysical property to be mapped
is the geomagnetic field. The developed USV is equipped

with high-precision underwater magnetometers and mea-
sures the 3D vector mM of the Earth’s magnetic field in a
magnetometer-fixed frame {M}. However, magnetometers
suffer from hard and soft iron effects caused by various
electromagnetic devices and ferromagnetic materials, which
bias the mapping results. Therefore, calibration of the mag-
netometers installed on the vehicle is an essential step for
consistent mapping. We previously performed research in
this area [20] and proposed a dedicated and efficient mag-
netic calibration method for USV applications. The same
procedure was applied in this work, and the details are not
described here. After calibration, the calibrated geomagnetic
field measurements m̂M compose an arc or circle of a unit
sphere in a sensor-fixed frame. Then, they are transformed
and represented in an {I} frame. The vehicle 3D orientation
estimated by a gyroscope is used in this step. The conversion
of the geomagnetic field values from the {M} to {I} frame is
performed by

mI
= (RMI )−1 · m̂M

. (5)

The total strength of the geomagnetic field F is then calcu-
lated by

F = ||mI
||. (6)

Because only a single 3D field vector is acquired along the
vehicle’s path, the resulting geomagnetic field strengthmap is
quite sparse, and further interpolation is necessary to create a
dense map, which is more useful for navigation than a sparse
map. To this end, we employed Gaussian process regression
(GPR) [26], a nonparametric regression method, and densi-
fied the sparse map. In GPR, the probability of the functions
with two domains is defined as a normal distribution:

p(f (x), f (x′)) = N (µ, 6). (7)

Here, the mean (µ) and covariance (6) of the functions are
described by

µ =

[
µ(x)
µ(x′)

]
, 6 =

[
K (x, x)+ σ 2

n I K (x, x′)
K (x′, x) K (x′, x′)

]
(8)

where σ 2
n is the variance of the Gaussian noise in function

observations, and K is a kernel function designed according
to the problems. In this work, we apply a relatively simple
squared exponential kernel:

K (x, x′) = σ 2
f exp

(
−
||x− x′||2

2l2

)
+ σ 2

n δ(x, x
′) (9)

where δ(·) is a Kronecker delta function, σ 2
f is the signal

variance, and l is the length scale. Assuming a zero mean for
the prior (i.e., µ = 0), the regression is calculated by

E(f ′) = K (x′, x)[K (x, x)−1 + σ 2
n I ]y (10)

cov(f ′) = K (x′, x′)

−K (x′, x)[K (x, x)+ σ 2
n I ]
−1K (x, x′) (11)
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where E(f ′) and cov(f ′) are the mean and covariance of the
target function f (x′), respectively, and y is the noisy observa-
tions of f (x). The final dense geomagnetic field map can then
be defined as

M = {E(f ′)|x′ = x1, x2, . . . , xn} (12)

where x1, x2, . . . , xn is the number of user-defined 3D posi-
tions in an operation area at which the magnetic field is
interpolated.

When using the geomagnetic field map for navigation,
we assume that the USV operates on a similar level of water
surface as in the mapping phase, and tidal differences are neg-
ligible. To resolve these restrictions, one can further perform
the downward or upward continuation [27] using the acquired
magnetic field data and compensate for the tidal effects. This
approach requires high fidelity for the continuation process
(particularly for downward continuation) and was beyond the
scope of this research.

III. GEOPHYSICAL NAVIGATION
The particle filter used in this study follows a standard
framework of sampling-importance resampling (SIR) [10].
It maintains a set of N pose hypotheses, that is, particles
Pt = {η

(i)
t |i = 1, . . . ,N }. This particle set realizes the

posterior probabilities of the target state ηt by a set of weights
Wt = {w

(i)
t |i = 1, . . . ,N }. Algorithm 1 describes the particle

filtering algorithm used in this work. The process consists of
three steps: motion update, weight update, and resampling.
These steps are performed on the basis of the designed vehicle
motion and sensor observation models, which are explained
in detail in the following sections.

A. MOTION UPDATE
In this step, particles are moved and dispersed according
to the vehicle motion model. We employ a velocity motion
model [28], which assumes that vehicle motion is controlled
by two velocities, a forward linear velocity vt and a yaw
angular velocity ωt . The motion sensors used in this study
included a DVL and fiber optic gyroscope (FOG), which
provide measurements of vt and ωt , respectively. This control
input ut = [vt , ωt ]> is applied to each particle in a proba-
bilistic manner to realize the uncertainty inmotion prediction.
We first sample a control input and an additional heading
perturbation term γ̂ as follows:

v̂ = vt +N (0, α1v2t + α2ω
2
t ) (13)

ω̂ = ωt +N (0, α3v2t + α4ω
2
t ) (14)

γ̂ = N (0, α5v2t + α6ω
2
t ) (15)

where N (0, σ ) is a sampled value from a normal distribu-
tion with zero mean and standard deviation σ , and a set of
parameters α = [α1, α2, . . . , α6] describes the motion noise.
α1 and α2 introduce the extent to which the uncertainty in
the measurement of linear velocity grows with current linear
and angular velocity, respectively, and α3 and α4 similarly

Algorithm 1 Particle Filter-Based GN

Require: N (particle size), Ñeff (effective sample size thresh-
old), η0 (initial pose), u0:T−1 (control input), α (motion
noise parameters), r1:T (sonar range measurement),m1:T
(magnetic field measurement), σ 2

r (sonar range noise
covariance), σ 2

s (smoothing noise covariance), σ 2
m (mag-

netic field noise covariance), R̃z (terrain roughness
threshold), T (terrain map),M (geomagnetic field map),
Rs (region of interest for sonars),Rm (region of interest
for magnetometers), S (parameters for sonar sensing)

Ensure: ηt (robot pose), {η
(i)
t } (set of particles), {w

(i)
} (set of

particle weight)
1: {η

(i)
0 } ← η0

2: {w(i)
} ← 1/N

3: for t = 1 to T do
4: {η

(i)
t } ← motion_update({η(i)t−1},ut−1,α)

5: if new rt available then
6: Rz← roughness(rt )
7: {r̂(i)t } ← ray_casting({η(i)t }, T ,Rs,S)
8: if Rz > R̃z then
9: {w(i)

} ← weight_update({w(i)
}, rt , {r̂

(i)
t }, σr)

10: else
11: {w(i)

} ← weight_update({w(i)
}, rt , {r̂

(i)
t }, σs)

12: end if
13: end if
14: if new mt available then
15: {m̂(i)

t } ← ray_casting({η(i)t },M,Rm)
16: {w(i)

} ← weight_update({w(i)
},mt , {m̂

(i)
t }, σm)

17: end if
18: Neff← 1/

∑N
i=1(w

(i))2

19: if Neff < Ñeff and Rz > R̃z then
20: {η

(i)
t } ← resample({η(i)t }, {w

(i)
})

21: {w(i)
} ← 1/N

22: end if
23: ηt ←

∑N
i=1 w

(i)
· η

(i)
t

24: end for

establish the uncertainty in angular velocity. The vehicle pose
is then updated using the following equations:

η
(i)
t+1 = η

(i)
t +1η

(i)
t

= η
(i)
t +


−
ν̂

ω̂
sin(ψ (i)

t )+
ν̂

ω̂
sin(ψ (i)

t + ω̂1t)

ν̂

ω̂
cos(ψ (i)

t )−
ν̂

ω̂
cos(ψ (i)

t + ω̂1t)

N (0, σz)
ω̂1t + γ̂ 1t


(16)

where σz is the disturbance in the vehicle’s z-direction motion
due to waves.

B. WEIGHT UPDATE
In this step, the weight of each particle is updated according
to the likelihood of the predicted measurements from each
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FIGURE 2. Observation of multibeam sonar range with ray casting.

particle given the actual sensor measurements. The predicted
measurements are calculated from each sensor’s observation
models. For an MBES, two observation model types can
be applied: projection-based and range-based [16]. In this
work, we exploited the range-based model because it is more
informative in the case of multibeam observations. Prediction
of the sonar range is carried out by casting a ray in the
beam direction and finding a hit point on the terrain map
T . Because the number of beams used in multibeam sonar
sensing is several hundred, efficient ray casting is required.
One basic approach is to downsample the beam measure-
ments. Another approach is to reduce the map resolution.
However, this has a limitation when the size of the target
area is significantly large. Instead, we employed a region
of interest (ROI) to restrain the search area for ray cast-
ing (Fig. 2). The ROI is set as a bounding box centered
and oriented with the current pose with pre-defined width
and height to cover the maximum roll and pitch of the
vehicle. This approach greatly reduces the computational
load and ensures scalability of the range-based observation
model.

Once the range is predicted, the particle weight can be
updated by

w(i)
new = w(i)

old
1

√
2πσr

exp
[
−

1
2σ 2

r
||r̂(i)t − rt ||

2
]

(17)

where rt is the array of outlier-removed actual sonar ranges in
a single scan at time step t , r̂(i)t is the predicted sonar ranges
from the i-th particle, and σ 2

r is the noise covariance of the
sonar range measurement. Here, the weight is updated in a
productive fashion, but additive updates can also be used.

Similarly, the magnetometer measurement can be pre-
dicted by casting a single ray downward from the center of
the magnetometer and finding a hit point on the magnetic
field map M. The particle weight update can be calculated
by

w(i)
new = w(i)

old
1

√
2πσm

exp
[
−

1
2σ 2

m
||F̂ (i)

t − Ft ||
2
]

(18)

whereFt is the actual geomagnetic field strengthmeasured by
a magnetometer at time step t , F̂ (i)

t is the predicted strength
from the i-th particle, and σ 2

m is the noise covariance of the
magnetometer measurement.

FIGURE 3. Terrain smoothness along the USV trajectory.

C. TERRAIN ADAPTIVE FILTER DESIGN
A conventional SIR filter has a particle impoverishment prob-
lem when the likelihood values between particles are highly
similar over a certain span of time [17]. In our case, particle
impoverishment can occur near the region where underwater
terrain is flat. To resolve this problem, we employed a terrain
roughness Rz and modified the weight update and resampling
steps of the conventional filter based on the Rz values.
The Rz value for each sonar scan can be calculated by

Rz =
1
q
6
q
i=1(zpeak,i − zvalley,i) (19)

where zpeak and zvalley are the values for the i-th highest
peak and lowest valley, respectively, and q is the number of
extreme z values used. This parameter represents the aver-
aged maximum differences of terrain elevation captured in a
single multibeam sonar scan. With a smaller Rz, the sensor
covariance used in the weight update is selectively assigned
with larger values. Then, (17) is modified as follows:

w(i)
new = w(i)

old
1

√
2πσs

exp
[
−

1
2σ 2

s
||r̂(i)t − rt ||

2
]

(20)

where σ 2
s is the smoothed covariance of the sonar range mea-

surement. The resampling step is also modified by restraining
the resampling frequency for a small Rz. The modified steps
are shown in lines 8–12 and 19–22 in Algorithm 1.

An example of the terrain smoothness (1/Rz) calculated
along the vehicle trajectory is shown in Fig. 3 for the data
obtained in our field test. The proposed filter adaptation
method is applied to the area with 1/Rz larger than a certain
threshold value (shown in yellow and red).

IV. FIELD TEST
A. EXPERIMENTAL SETUP
To verify the proposed GN method, a field test was per-
formed in an inland water environment. The test site was the
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FIGURE 4. The USV developed at KRISO; equipped with INS sensors and
geophysical sensors.

Jang-Seong reservoir in South Korea, and a USV developed
at KRISO (Fig. 4) was used for data acquisition. The vehicle
was equipped with an Imagenex 837B MBES and a Barting-
ton Grad-13S for sonar and magnetic sensing, respectively,
and a Teledyne RDI Explorer DVL and Advanced Navigation
Spatial FOG for DR. A Hemisphere GPS was used for geo-
physical map construction and reference path acquisition. All
navigation algorithms were post-processed with MATLAB
running on a 4.2 GHz Intel i7 PC with 32 GB RAM.

The USV autonomously followed two sets of trajectories,
as shown in Fig. 5. One was used to construct a geophysical
map over the test area, and the other was used to validate
the navigation algorithms. The average speed of the vehicle
was approximately 1.0 m/s, and approximately 1.5 h was
consumed to obtain each data set.

B. MAPPING RESULTS
1) TERRAIN MAP
The constructed underwater terrain map from the first survey
data is shown in Fig. 6. Approximately 16 million sonar
ranges were processed to generate the terrain map. The size

FIGURE 5. Planned USV trajectories for map construction (upper) and GN
validation (lower).

FIGURE 6. Constructed underwater terrain map. The vehicle trajectory
(blue line) and MBES sonar scans (green dots) are shown.

of the mapped area was approximately 200 m × 300 m.
For the mapped area, the average depth of the reservoir was
approximately 22 m. There are some distinct areas showing
various heights, but most of the mapped areas are flat with
few features. Before the reservoir was created by the dam, the
area was a green field, which is why the underwater terrain
is nearly flat. The original resolution of the map was approx-
imately 0.1 m, and it was downsampled for computational
efficiency when used in the navigation filter.

208712 VOLUME 8, 2020
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FIGURE 7. Magnetometer measurements and calibration results.

FIGURE 8. Scatter plot of magnetic field measurements represented in a
sensor-fixed frame {M}.

2) MAGNETIC FIELD MAP
The geomagnetic field data obtained from the mapping pro-
cedure are shown in Fig. 7. The reference field strength
(49.9931 µT) was employed from the recently published
WMM data for the test site. Because the geomagnetic field
in the test area has high strength in the center region (see
Fig. 9) and the vehicle crossed the center region in a
lawn-mower pattern, the sensor readings shown in Fig. 7
have repetitive convex and concave shapes. However, the
raw magnetometer data set suffers from distortions and its
convex peaks are not consistent, whereas the calibrated data
show smooth peak amplitudes. The calibration results can
be further verified from the scatter plot, as shown in Fig. 8.
The 3D points of calibrated magnetic field measurements
should consist of a horizontal circle when represented in the
sensor-fixed frame. By applying the same calibration param-
eters to the magnetometer measurements in a navigation
phase, we can exploit the geomagnetic field strength without
bias. The final GPR-generated dense field map is shown
in Fig. 9.

FIGURE 9. Interpolation of magnetic field map with GPR. Initial field
strength measurements along with a vehicle trajectory are shown in black
dots.

FIGURE 10. Illustration of tracking performance indices.

TABLE 1. Tracking performance (unit: m).

C. TRACKING RESULTS
Using the constructed geophysical maps described in the
previous sections, we tested the performance of the proposed
geophysical navigation method. For the GN filters, N = 400
was used for particle generation, and σr = 0.85 m and σm =
0.1 µT were set for the measurement models for the sonar
and magnetometer, respectively. For the motion model, α =
[1.0, 10−4, 10−2, 10−4, 10−4, 10−4] was used. For the adap-
tive filter, Rz and σs were set to 1/3 and 102 ·σr, respectively.
All these parameters were selected empirically for our dataset
to show the best performance for each tracking algorithm:
1) DVL-INS, 2) conventional TBN, 3) magnetic field-aided
TBN (MTBN), 4) adaptive TBN (ATBN), and 5) magnetic
field-aided adaptive TBN (MATBN).With this setup, for each
algorithm we ran 100 Monte Carlo (MC) simulations and
evaluated the tracking performance. The evaluation criteria
we employed were along-track and cross-track errors, which
are calculated as represented in Fig. 10.
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FIGURE 11. Tracking performance evaluated from 100 MC runs. Estimated trajectories from different GN methods are shown with
reference (GPS) and DR (DVL-INS) paths. Applied GN methods were: (a) TBN, (b) MTBN, (c) ATBN, and (d) MATBN.

FIGURE 12. Example of ATBN tracking results. Reference path by GPS (black dots), DVL-INS estimation (cyan dots), and ATBN estimation (magenta
dots); ROI for sonar observation (green box); and predicted sonar ranges (blue dots) are shown.

The tracking results of each algorithm are shown in Fig. 1
from the MC runs. The reference (GPS) and DVL-INS tra-
jectories are shown in each plot for comparison. The accu-
mulated error in DR is compensated by the conventional
TBN when the terrain provides sufficient information in
the initial segment of the trajectory (Fig. 11a). However,

the conventional TBN fails in tracking when the vehicle
approaches the area where the terrain roughness is low. This
result is due to the local minima of filter estimation caused
by particle impoverishment. In contrast, terrain adaptive TBN
(Fig. 11c) alleviates this problem and shows significantly bet-
ter performance, because the proposed filter adjusts both the
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FIGURE 13. Detailed view of steps between Figs. 12b and 12c. The GN filter adjusts the weight update and resampling based on the terrain roughness.
The particles (gray arrows) begin to spread when the vehicle passes over the uninformative region, and focus again as they encounter rough terrain.

FIGURE 14. Evaluation of along-track and cross-track errors from 100 MC runs. The mean and standard deviation of errors for GN estimations are
shown. (a) TBN, (b) MTBN, (c) ATBN, and (d) MATBN.

amount of the weight update and the frequency of resampling
according to the usefulness of the terrain observations. This
means that if sonar measurements are less informative, the

filter tries to rely more on the motion update. The results
of MTBN (Fig. 11b) and MATBN (Fig. 11d) compared
with those of TBN and ATBN, respectively, validate that the
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augmented observations by the magnetic field measurements
further improve the tracking performances. The procedure of
the adaptive GN is demonstrated in Figs. 12 and 13, where an
instance of MC simulation for ATBN is shown.

The average tracking errors with standard deviations
from 100 MC runs are shown in Fig. 14, and they are sum-
marized in Table 1. The adaptive algorithms (ATBN and
AMTBN) had slightly smaller along-track errors and con-
siderably smaller cross-track errors compared with the TBN.
The methods using magnetic fields (MTBN and MATBN)
had smaller errors and deviations compared with the methods
not using magnetic fields (except that the along-track errors
of MATBN had slightly larger values).

V. CONCLUSION
In this study, we investigated a solution for USV navigation
problems by exploiting underwater geophysical information.
Two types of geophysical maps (underwater terrain and geo-
magnetic field strength maps) were constructed and utilized
for navigation filters. We propose an improved version of
TBN by applying a terrain adaptive particle filter imple-
mentation. In particular, we varied the resampling frequency
and the amount of weight update according to the terrain
roughness to address the particle impoverishment problems.
As an additional geophysical property, geomagnetic field
strength was augmented to the observation models. Exper-
imental results validated the enhanced performance of the
proposed GN methods compared with those of the DVL-INS
and conventional TBN. We expect that exploiting more vari-
able geomagnetic fields in other sites can lead to more drastic
improvement of the tracking performances. The proposedGN
methods can be employed for various civilian and military
use cases where USVs are required to navigate under GNSS
restrictions.
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