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ABSTRACT The integration of renewable energy sources (RES) is rapidly increasing in electric power
systems (EPS). While the inclusion of intermittent RES coupled with the wide-scale deployment of
communication and sensing devices is important towards a fully smart grid, it has also expanded the cyber-
threat landscape, effectively making power systems vulnerable to cyberattacks. This article proposes a
cybersecurity assessment approach designed to assess the cyberphysical security of EPS. The work takes
into consideration the intermittent generation of RES, vulnerabilities introduced by microprocessor-based
electronic information and operational technology (IT/OT) devices, and contingency analysis results. The
proposed approach utilizes deep reinforcement learning (DRL) and an adapted Common Vulnerability
Scoring System (CVSS) score tailored to assess vulnerabilities in EPS in order to identify the optimal
attack transition policy based on N − 2 contingency results, i.e., the simultaneous failure of two system
elements. The effectiveness of the work is validated via numerical and real-time simulation experiments
performed on literature-based power grid test cases. The results demonstrate how the proposed method based
on deepQ-network (DQN) performs closely to a graph-search approach in terms of the number of transitions
needed to find the optimal attack policy, without the need for full observation of the system. In addition,
the experiments present the method’s scalability by showcasing the number of transitions needed to find the
optimal attack transition policy in a large system such as the Polish 2383 bus test system. The results exhibit
how the proposed approach requires one order of magnitude fewer transitions when compared to a random
transition policy.

INDEX TERMS Cybersecurity assessment, contingency analysis, cyberattacks, deep reinforcement
learning.

I. INTRODUCTION
The power grid is the cornerstone of all critical infrastruc-
tures. The safe and secure functionality of electric power sys-
tems (EPS) is directly related to every aspect of the economy
and society. In the last decades, worldwide energy demand
has significantly increased and is estimated to continue to
do so by nearly 50% by 2050 [1]. Due to the increasing
energy demand as well as the need to enhance system effi-
ciency and asset reliability, the technological modernization
of the power grid infrastructure has become an immediate
priority for governments and energy stakeholders around
the world [2]. This modernization, alongside environmental
concerns, are driving factors for the integration of renew-
able energy sources (RES) to the power grid. For example,
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the U.S. Energy Information Administration (EIA) indicates
that, in 2019, the windwas responsible for generating approx-
imately 42% of RES generated power at utility-scale facilities
in the U.S., and 7.3% of the total U.S. electricity gener-
ation, making it the most popular RES [3]. Even though
wind integration aids in accommodating the increasing power
demand, its intermittent nature introduces challenges related
to the mismatch between supply and demand. For instance,
short-term wind power fluctuations occur on a second or
sub-second timescale during which load balancing methods
do not yet operate. Thus, to ensure system stability, critical
aspects such as optimal location, power flow, and generation
variance must be taken into consideration when interconnect-
ing wind energy systems.

Traditionally, contingency analysis has been used to assess
physical power system security in EPS [4]. This is achieved
by calculating the power flow of all the system elements in the
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TABLE 1. NERC TPL-001-4 contingency categories.

event of single or multiple failures. In essence, a contingency
is the failure or loss of any element such as a circuit breaker,
generator, or transmission line. Contingencies can be planned
or unplanned. Planned contingencies include events resulting
from scheduled maintenance and proactive emergency pre-
paredness, while unplanned events include fluctuating wind
injections, cyberattacks, human errors, etc. The North Ameri-
can Electric Reliability Corporation (NERC) requires system
operators to meet the N − 1 security constraint and classifies
systems into four main categories [5]. These categories are
shown in Table 1.

The intermittent nature of wind power generates challenges
when performing security studies of power systems based on
contingency analysis. Their intermittency can rapidly change
the most critical contingencies of the system or create a num-
ber of contingencies (λ) that exceeds themaximum number of
contingencies that the system can handle (k); thus leading to
cascading scenarios. A prime example of insufficient security
margins is the widespread power outage across the U.K.
in 2019 [6]. The near-simultaneous loss of two-generation
sites, one being an offshore wind farm and the other one a gas-
fired power station, resulted in a massive under-frequency
event. Load shedding mechanisms responded immediately
causing a major disturbance that affected nearly one million
people.

Additionally, the power grid is experiencing a rapid move
towards a more interconnected system. Operational technol-
ogy (OT) electronic devices are deployed and operated at
all scales of the power system and are often being designed
and retrofitted with information technology (IT) devices to
support communication processes and protocols that enhance
the controllability and observability of the system. The use of
such digital electronic devices with software applications [7],
modules, drivers, commercial-off-the-shelf (COTS) hard-
ware [8], and network resources is a double-edged sword [9].
On one hand, it assists in the development of the future mod-
ern and advanced grid in terms of optimizing asset utilization,
addressing disturbances, providing better power quality, and
accommodating all storage and generation options with grid-
support functions. On the other hand, the coupling between
such cyber-electronic devices and physical components in
power systems has altered the threat model [10], [11].

In the past, the threat model has been solely focused on
physical threats. However, due to the integration of such
network-controlled components, the security challenges need
to consider both the cyber and physical nature of the grid,
addressing the growing number of emerging threats [12].

Some examples of these potential threats are presented
in [13]–[15], where it has been demonstrated that attackers
can leverage publicly available sources by using open-source
intelligence (OSINT) techniques combined with open-source
exploitation methods in order to spoof GPS signals of phasor
measurement units (PMUs). Another example is presented
in [16], where a real-world attack within the Ukrainian power
system is accomplished by injecting malicious firmware in
serial-to-Ethernet gateways at targeted substations. Attackers
were able to trip circuit breakers and cause a blackout that
affected approximately 225,000 customers.

In this work, we provide an effective way for system oper-
ators, at both the local and international level, to assess the
cyberphysical security of EPS, which takes into consideration
wind uncertainty together with cyber-based aspects such as
quantitative scoring systems of vulnerabilities identified in
IT/OT devices supporting the grid infrastructure. The assess-
ment follows a step-by-step process, from an attacker’s point
of view, designed to identify the most critical system points
an adversary can leverage to compromise the targeted EPS.
Our contributions are summarized as follows:

(1) We propose a cybersecurity assessment approach that
considers adversaries that make use of OSINTmodeling tech-
niques to construct power system models. Such models are
then used in tandem with contingency analysis that takes into
account wind intermittent generation to identify the critical
cyber and physical vulnerabilities of the EPS. The assessment
process is performed without the need for full observability
of the system since it models the state of the power system
as a partially observable Markov decision process (POMDP)
that is solved using deep Q-networks (DQNs). The solution
given by the proposed DQN reveals the optimal attack tran-
sition policy an adversary would follow to potentially induce
cascading failures in the assessed cyberphysical EPS.

(2) We propose an adapted version of the Common
Vulnerability Scoring System (CVSS) based on contingency
analysis results and information from the power and com-
munication networks that reveal cyber and physical vulner-
abilities within system nodes. The adapted CVSS is used to
generate a transition graph designed to assess the complexity
of each possible attack path based on various adversarial
strategies.

(3) We evaluate the performance of the proposed method-
ology using real-time simulations on test power systems high-
lighting the method’s scalability. Our results showcase that a
fewer number of transitions is needed compared to a random
transition policy in order to find the optimal attack transition.

The rest of the paper is organized as follows. Section II
presents related work. In Section III, we introduce the
methodology of the proposed cybersecurity assessment
approach. Section IV presents contingency analysis studies
for various power system test cases using real-time simula-
tion. In Section V, we demonstrate the effectiveness of the
proposed cybersecurity assessment approach and compare it
to different transition techniques. Finally, Section VI con-
cludes the paper and provides directions for future work.
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II. RELATED WORK
In this part, we explore some of the state-of-the-art
approaches being proposed by researchers that aim to address
issues related to (1) N − k contingencies simulations consid-
ering intermittent RES generation, (2) assessing the severity
of electronic devices security vulnerabilities, and (3) vulner-
ability and risk assessments methods for cyberphysical EPS.

1) METHODS FOR N − K CONTINGENCY ANALYSIS
Towards reducing the occurrence of cascading failures, exist-
ing research efforts have focused on proposing efficient meth-
ods that can perform studies based on N − k contingency
scenarios. Due to the size and complexity of power systems,
these ‘‘what-if’’ contingency scenarios are based on compu-
tationally expensive optimal power flow processes. Research
in this area aims to address the computational overhead of
N !/[k!(N − k)!] simulations for N − k contingencies. For
example, the work in [17] describes a fast-bounding case
which requires a small online memory model. Other efforts
compute the active power flow change at lines and the voltage
change at buses to evaluate the severity of N − 1 and N − 2
contingencies [18]. In [19], a graph-based power model anal-
ysis is presented for contingency ranking. In [20], a heuristics
pruning approach for identifying N − k contingencies is
discussed while a topology-based algorithm that considers
whether the generator or line is in densely populated areas is
presented in [21]. The authors use the concepts of closeness
and betweenness centrality to determine the component’s
importance for a N − k criterion.

One of the main challenges of performing contingency
studies in power systems with high penetration of wind is
that the uncertain nature of wind causes high variability when
identifying the most critical N − k contingencies of the
system. Existing studies do not often take into account this
variability [22]–[24]. The authors in [23] and [25] demon-
strate some of the effects that intermittent power genera-
tion has in critical contingency identification. They present
probabilistic power flow studies that show how the variable
nature of power flow, due to wind fluctuations and uncertain-
ties, can alter the number and location of the most critical
contingencies recognized by system operators. The correct
identification of these critical contingencies is of paramount
importance as they can be potentially leveraged by adver-
saries in order to cause major disruptions in EPS [26], [27].

2) SEVERITY ASSESSMENT OF ELECTRONIC DEVICES
SECURITY VULNERABILITIES
The wide-scale integration of information and communica-
tion technologies in the form of digital electronic devices
into the electrical grid expands the list of possible attack
vectors that adversaries could exploit to cause major disrup-
tive events. Hence, in order to ensure the secure operation
of the entire system, it is essential to consider the inher-
ent vulnerabilities introduced by the grid-supporting IT/OT
infrastructure. One scoring system that is widely used for

device-level vulnerability assessments in the IT industry is
CVSS [28]. The CVSS can assess the severity of software,
hardware, and firmware vulnerabilities by using numerical
scores. One example of its use can be found in [29]. Here,
the authors utilize CVSS to estimate the probability of suc-
cessfully exploiting identified independent vulnerabilities,
including zero-days, existing in components connected to the
LAN of a supervisory control and data acquisition (SCADA)
system. Another example of CVSS use can be found in [30],
where a CVSS-based cyber asset impact score is presented
providing a real-time cyber impact severity score that can be
used as a basis for processes such as vulnerability manage-
ment, isolation of cyber assets, and system reconfiguration.

3) VULNERABILITY AND RISK ASSESSMENT METHODS
FOR CYBERPHYSICAL EPS
Several researchers have focused on developing system-wide
security assessment tools aimed to identify possible vul-
nerabilities and attack vectors which can be subsequently
used to produce optimal control policies designed to guide
secure operations of cyberphysical EPS. The work presented
in [31], proposes power system emergency control mecha-
nisms based on DQNs to maintain the reliable operation of
the system by performing dynamic breaking of generation
and under-voltage load shedding. Other researchers have also
made use of DQNs to perform cybersecurity analysis stud-
ies in EPS. One example is presented in [32], where the
authors propose a DQN-based cyberphysical topology attack
designed to trip critically-targeted transmission lines with the
objective of exceeding power flow line constraints in the
system. This research demonstrates how the disconnection
of essential transmission lines could cause system collapse,
and how attackers can find out what type of topology attack
needs to be performed in order to cause cascading failures.
A similar approach is taken by researchers in [33], where a
robust DQN-based contingency management mechanism is
proposed to provide remedial action when contingencies exist
in the system.

Other works have focused on more traditional ranking
mechanisms to improve EPS cybersecurity. For example,
the research presented in [21] assesses system vulnerabil-
ity from the cyberphysical security perspective using con-
tingency ranking methods and a cyber-intrusion ranking
methodology. Similarly, in [34], an operational reliability
impact assessment framework has been developed. In this
study, the authors incorporate cyberphysical threats in the
assessment of the EPS operation. Another approach is pre-
sented in [35], describing an overload risk assessment method
based on N − 1 contingency analysis and wind penetration.
Compared to the existingwork, our proposed cybersecurity

assessment approach assesses the cyberphysical security
of EPS leveraging the use of deep reinforcement learn-
ing (DRL) paradigms while considering the intrinsic
interactions between the system’s network and physical
components. Our work considers physical-based aspects,
such as contingency analysis and wind uncertainty, together
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FIGURE 1. Graphical depiction of the major steps of the proposed cybersecurity assessment process and the optimal attack transition
policy given as output.

with network-based aspects, such as vulnerabilities stemming
from OSINT methods. The proposed assessment framework
reveals potential threats that can be utilized by attackers to
cause serious disruptions in EPS, and at the same time, assist
system operators to prioritize the deployment of cybersecu-
rity mechanisms, and thus, contribute towards reducing the
risk of cyberattacks.

III. CYBERSECURITY ASSESSMENT METHODOLOGY
In this section, we provide the methodology of the pro-
posed approach. Fig. 1 shows the step-by-step process that
our cybersecurity assessment approach follows. In step 1,
the assessment process determines the threat model based
on the adversary objectives and capabilities. Specifically, our
work considers an attacker that leverages OSINT techniques.
The OSINT methods are utilized in step 2 in order to run
contingency analysis with the objective of identifying the set
of k critical contingencies of the system. Our results focus
on two contingencies that assess the power system condition
when two components are lost, i.e., k = 2. However, the pro-
posed approach can be extended to consider a higher number
of contingencies. To proceed with the assessment process
without the need for full system observability [36], in step
3, the proposed approach creates a POMDP by defining a
transition probability (TP) based on the proposed adapted
version of the CVSS score metric. The score evaluates the
difficulty of each network transition in the generated system
graph. Then, in step 4, the POMDP is solved using a DRL
model designed to find the optimal attack policy between
the previously identified contingencies. Finally, the output
of the cybersecurity assessment process evaluates the poten-
tial threat by revealing the optimal attack transition policy
between the identified contingency pair which could cause
cascading failures in the physical system. The details of each
step are presented in the following subsections.

A. STEP 1: THREAT MODEL
OSINT refers to a collection of techniques andmethodologies
that can be used to gather, analyze, and exploit publicly
available information (e.g., public government data, com-
mercial data, social media, etc.) to characterize aspects of
a particular target system. Existing work has demonstrated

that the U.S. power grid infrastructure could be effectively
profiled using OSINT techniques [37], [38]. Following a sim-
ilar approach, we consider a threat model where an attacker
can leverage publicly available information using OSINT
methods to collect sufficient EPS data (e.g., line parameters,
the status and location of circuit breakers, system topology,
generation sites and capacity, etc.). Also, the attacker is able
to acquire data to calculate power flow and therefore run
contingency analysis [14]. Depending on the degree of sys-
tem contingencies (e.g., N − 1 secure system), the adversary
can leverage the ranking results of contingency algorithms to
identify which system elements if ‘‘removed’’ can lead to an
insecure power system state. Although a plethora of public
power system information is available, it is unlikely that the
attacker will ever have full knowledge and real-time observ-
ability of the system [39]. In our approach, it is assumed that
the attacker, in spite of having the necessary information to
perform contingency analysis via OSINT techniques, he/she
does not have the full state information of the system. Specif-
ically, while the adversarial agent is transitioning through
the cyber system network to exploit vulnerabilities in the
identified double contingency nodes, he/she is unaware of
his/her position relative to the contingencies and the cyber
network transition complexities (based on the adapted CVSS)
of the different attack paths.

In addition, we assume that the cyber system network
graph is isomorphic with the physical system graph, indi-
cating that the topology of the communication network is
mapped with the topology of the physical system. Therefore,
we model the environment as a POMDP in which the agent
may only access the current state and make an observation
for obtaining possible actions in each state (Step 3). Based
on the observation results for each state-action combination,
the network TP is calculated. This probability reveals the
transition complexity between different states. By leveraging
this methodology, a DQN-based algorithm is then utilized
to identify the optimal attack transition policy between the
critical contingency elements (Step 4).

B. STEP 2: CONTINGENCY ANALYSIS
In order to find the attacker’s optimal attack transition pol-
icy, we first need to identify the set of critical double
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contingencies of the physical power system (e.g., simultane-
ousN−2 or consecutivelyN−1−1).We utilize a fast pruning
N − 2 algorithm to find all the thermal constraint violations
via linear power flow approximation [40]. The algorithm is
initiated based on the set of all N − 2 pairs. The contingency
candidate list is pruned using line outage distribution factors
(LODFs). LODFs describe the power flow impact on other
lines when a line outage occurs. The pruning approach is
based on the thermal constraints of lines, running until the
number of contingencies included in the set does not change.
If the LODF exceeds its thermal constraint, it is added to the
contingency candidate set. The line overload condition can be
written asAxy·Bxc+Ayx ·Byc > 1, where x and y are lines expe-
riencing outages, z is an arbitrary line experiencing power
flow changes, and c is a possible constraint. Matrix Axy can
be calculated by Axy = (1+Lxy · fy/fx)/(1−Lyx ·Lxy), where
L is the LODF shown in Eq. (1). This equation describes the
change in the flow through line x, where fx is the original
flow, and f ′x is the flow after the outage. Correspondingly, fy
represents the flow through line y before the line is tripped.
Matrix Bxc is calculated by Bxc = fx ·Lzx/(f criticalz ±fz), where
f criticalz is the bound value, and the ± sign corresponds to the
conditions f ′z < −f criticalz and f ′z > f criticalz , respectively.
Eq. (2) shows the power flow variance experienced by line
z when lines x and y are experiencing outages.

Lxy =
f ′x − fx
fy

(1)

f ′z − fz =
Lzx · (fx + Lxy · fy)

1− Lyx · Lxy
+
Lzy · (fy + Lyx · fx)

1− Lyx · Lxy
(2)

C. STEP 3: POMDP TRANSITION MODEL BASED
ON ADAPTED CVSS
After finding the most critical contingency set, the pro-
cess advances to create the corresponding POMDP of the
cyberphysical-graph environment by calculating the corre-
sponding TP between the different nodes of the system.
Generally, POMDPs are used to model the response and
outcomes of systems when different actions are performed at
specific states. In our environment, observations made by the
attacker do not provide full state information, i.e., the agent
does not know apriori how many nodes the system has nor
their respective states, and he/she needs to observe the envi-
ronment to determine potential actions, hence the selection of
POMDP system modeling. POMDPs can be mathematically
modeled as a 6-tuple (S,A, �,P,R,O), where S is the set
of all possible states in a given environment, A contains
all the agent’s potential actions, � is a set which includes
all possible observations, P is the TP for each state, R is
the reward function for performing different actions, and O
represents conditional observation probabilities. The notation
of POMDP tuples is summarized in Table. 2. At the current
state s, given the TP and observation o, the agent takes action
a to move to the next state s′. As a result of this state-action
pair, the agent receives reward R. This process repeats until
the terminal state is reached. In this POMDP formulation,

TABLE 2. Notation of POMDP tuples.

the TP for each state is an essential factor that must be deter-
mined adequately according to the process being modeled.
In our case, the TP relies on the cyber system vulnerabilities,
i.e., vulnerabilities that exist in electronic devices, and their
potential impacts related to the physical system, i.e., the
identified power system contingencies.

Considering the cyber network system vulnerabilities as
well as the optimal attack transition policy between the
identified contingencies (physical vulnerabilities), a TP for
each transition step (between cyberphysical system nodes)
can be determined. These probabilities aid in the traversal
agent’s decision making since the values reveal the difference
in complexity and difficulty for each transition, i.e., how
vulnerable is the cyberphysical system at each node, i.e., bus,
from the point of view of the attacker transition policy.
In each step, the node’s identified cyber and physical charac-
teristics including the electronic device vulnerabilities, ther-
mal limits of lines, and power generation are considered.
A graphical illustration of this procedure is shown in Fig. 2.
In this work, we compute the TP using an adapted version
of CVSS v3.1.

FIGURE 2. Overview of the transition probability (TP) assessment.

CVSS is a vulnerability scoring system generally used
in the IT industry to assess the severity of the identified
computer system’s vulnerabilities. Although there exist tem-
poral and environmental metrics in CVSS, their main aim is
to reflect how vulnerabilities change over time or demon-
strate uniqueness to a particular user’s environment [28].
For our application, base metrics portray a better picture
regarding how the cyber and physical vulnerabilities at each
power system node affect the transition difficulty of the
threat. More specifically, the base score provides a compre-
hensive assessment of the intrinsic characteristics of iden-
tified vulnerabilities using quantitative Exploitability and
Impact metrics as shown in Fig. 3. The range of scores goes
from 0 to 10, with 10 being the most severe – maximum
value.
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FIGURE 3. Outline of the Common Vulnerability Scoring System (CVSS)
base metric.

1) EXPLOITABILITY METRIC
This metric describes the difficulty and technical means by
which software, hardware, or firmware vulnerability can be
exploited. In our case, the exploitability represents the diffi-
culty of vulnerability exploitation for each electronic device
that exists in a particular node of the cyber-layer of the
power system. In other words, it represents the complexity
of the transition based on the type of node (i.e., PQ or PV
power system bus) to which the agent is transitioning to. The
overall score of this metric is determined by five sub-metrics,
described below.
a) Attack Vector (AV) – This metric is defined as one of the

following categories: network, adjacent network, local net-
work, or physical. In a network attack, an adversary exploits
a vulnerable device bound to the network stack. This type
of attack is conducted through the Open Systems Intercon-
nection (OSI) layer 3. In an EPS, an attacker may conduct
a network attack by manipulating TCP-level packets flowing
across a substation network. In an adjacent attack, the adver-
sary also exploits vulnerable devices bound to the network
stack. However, the attack cannot be performed across the
boundary of OSI layer 3. In essence, the attack is limited
to the same shared physical or logical network. An exam-
ple of this type of attack is an Address Resolution Proto-
col (ARP) flooding attack that leads to a denial-of-service
targeted at the control and monitoring devices connected
to a LAN segment of a microgrid [41]. In a local attack,
a direct path to the vulnerable element is required (e.g., local
terminal, remote terminal, or deceive legitimate users into
executing malicious instructions). In an EPS, this type of
attack could be performed by executing malicious code in
local control or monitoring electronic devices accessed via a
local or remote terminal. Finally, for a physical attack, actual
physical interaction between the attacker and the target is nec-
essary. In an EPS, this means that the attacker must compro-
mise the targeted electronic devices through physical means
(e.g., causing physical damage to the devices).
b) Attack Complexity (AC) – This metric represents the

amount of effort an attack on the vulnerable electronic device
would require. The value of this metric, high or low, depends
on the security level of the electronic devices as well as
the adversary’s capabilities and skills. In EPS, generation
buses can be considered of more significance than load
buses in regards to power grid operation and, consequently,

possible threats. Typically, additional security mechanisms
are in place to protect bulk generation infrastructure [42].
This is accomplished by using electronic security devices,
physical barriers, or security monitoring equipment. Hence,
as part of our CVSS vulnerability scoring, PV and PQ
buses are considered of high and low attack complexity,
respectively.
c) User Interaction (UI) – This metric reveals whether

user interaction is required to exploit a certain electronic
device. It quantifies the amount of participation required from
a human user, different from the attacker, to successfully
compromise the targeted device. For example, attackers could
attempt to deceive the system operator to give them access
to the control room via phishing or malware attacks. Due
to the importance of PV buses, we assume that the attacker
will require UI to manipulate a PV bus. On the contrary,
it is assumed that attackers would not need to obtain special
permission from another human user to access PQ buses. The
values for this metric are: required for PV buses, and none for
PQ buses.
d) Privileges Required (PR) – This metric determines the

level of privileges needed to carry out an attack, i.e., it eval-
uates the level of privileges that are required by the attacker
before successfully compromising the vulnerable electronic
device. Similarly to the previous metric, we designate its
values according to the type of power system bus being
evaluated: high for PV buses, and low for PQ buses.
e) Scope (S) – This metric demonstrates whether or not

compromising a particular electronic device will cause impli-
cations beyond its security scope. If the scope metric is
defined as changed, attacking the corresponding electronic
device will result in a detrimental implication beyond its
security scope, i.e., will affect the other elements in the sys-
tem. If the scope is defined as unchanged, it will only cause
implications to elements under the same security scope. In our
context, when a PQ bus is attacked, no major disturbances are
observed in other system’s elements since generation is not
directly affected, thus its scope can be defined as unchanged.
However, if a PV bus is compromised, more severe effects on
surrounding nodes of the physical EPS network, caused by
power stability issues, are observed. In this case, the scenario
needs to be characterized by changed scope.
Following the description of the exploitability metrics,

Table 3 shows a detailed comparison between the metrics
values found in different available scoring systems. These
scoring systems are the CVSS v3.1 [28], CVSS v2.0 [43],
and the Industrial Vulnerability Scoring System (IVSS) [44].
CVSS v3.1 is the most up to date scoring system which
provides the most accurate way of capturing the main char-
acteristics of vulnerability via numerical scores. IVSS is an
outdated scoring system and not widely used and supported
by the community. Other quantitative risk assessment scoring
systems, such as CCSS [45] and CMSS [46], were also
considered when selecting the appropriate scoring system.
However, all of these scoring systems are based on the previ-
ous version of CVSS, i.e., CVSS v2.0.
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TABLE 3. Exploitability submetrics comparison of different score
systems: CVSS v3.1, CVSS v2.0, and IVSS.

2) IMPACT METRIC
In CVSS, the impact metric is used to evaluate different
exploitation methods and capture the effects of successfully
exploited vulnerabilities. This metric is determined using
three factors: confidentiality (C), i.e., the effect on system
information disclosure, integrity (In), i.e., how detrimental
the modification of system data would be, and availability
(A), i.e., the system accessibility after an adverse effect has
occurred. During an attack, an adversary can cause high,
low, or no impact in each specified factor. For our study,
the impact metric is designed to capture the effect of different
exploited vulnerabilities in the EPS. During an attack on a
PV or a PQ bus, the system may experience varying degrees
of impacts related to total loss, some loss, or no loss of
the confidentiality, integrity, and availability of certain grid-
supporting devices. More specifically, if the attacker is able
to attack a PV bus, we assume a worst-case scenario since

the attacker demonstrated to have enough information and
skills to attack a highly secure system and possibly have the
means to exploit additional vulnerabilities. This, in turn, may
result in a total loss of integrity, confidentiality, and avail-
ability. Using this assumption, the impact of compromising
a PV will cause high impact on confidentiality, integrity,
and availability. On the other hand, despite existing research
demonstrating the importance of load altering attacks on
power system stability [47], manipulation of PQ buses and
load change attacks will likely not result in interruption of
the operation of the generator, load, or transmission line in
the system due to frequency load shedding protections [48].
Under these circumstances, the impact of a compromised PQ
bus will not be significant enough when compared to the
impact of a compromised PV bus [49]. Thus, we assume that
compromising PQ buses will have low impact in all three cat-
egories. Finally, the no impact value is used when an attacker
compromises an electronic device that is not connected to any
PV or PQ bus.
Based on the exploitability and impact metrics, CVSS can

be calculated as shown in Eq. (3) [28]:

CVSS =
{
min {E + I , 10}, if S unchanged
min {1.08 · (E + I ), 10}, if S changed

(3)

E = (AV · AC · UI · PR) · 8.22 (4)

I =


6.42 · Ib, if S unchanged
7.52 · (Ib − 0.029)−

3.25 · (Ib − 0.02)15, if S changed
(5)

where Ib = 1− [(1−C) · (1− In) · (1− A)]. E , AV , AC , UI ,
PR, S, and I represent the exploitability metric, attack vec-
tor, attack complexity, user interaction, privileges required,
scope, and impact metrics, respectively. The calculated CVSS
value is used as a major factor in the computation of the TP
within our transition model.

The traditional CVSS scoring method provides a detailed
calculation process that assesses the impact of exploiting a
vulnerability with different attack vectors. However, it cannot
be used directly for our application since it fails to consider
important factors when used to evaluate complex cyberphys-
ical systems. In particular for power systems, it does not take
into account features such as system topology, power gener-
ation, and line constraints. Since we assume the adversarial
agent does not have full topological information, we include
power generation and line constraint calculations in our
proposed TP calculation. Since generators provide varying
amounts of power to a system depending on the current state
of the grid, the relative importance of a generator (and hence
its attack impact) is determined by its power output. In addi-
tion to considering the difficulty of transitioning to certain
system nodes, we also examine the overload percentage of
the transmission lines. If the power flow across that line is
near its flow constraint, the line could be more easily affected
by changes in the surrounding system. Taking each of the
aforementioned aspects into consideration, we define the TP
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as follows in Eq. (6):

TP =
CVSS
10
∗

G∑n
k=1Gk

∗
Pf

λcritical
(6)

where G is the power generation of a connected generator,
n is the total number of generation units in the system, Pf
represents the power flow through transmission lines, and
λcritical is the line power flow constraint for the connected
transmission line. For a power system operating under normal
conditions, the range ofG/{

∑n
k=1 Gk} ∈ [0, 1] and λcritical ∈

[0, 1]. Since the CVSS score ∈ [0, 10], we scale it by dividing
by 10. A smaller TP value represents a cyberphysical node
vulnerability of low severity, i.e., the node has lower possi-
bilities to be exploited by attackers since it has a lower CVSS
score, and it is less important in terms of overload percentage,
generation amount, and thermal limits. On the contrary, a TP
represents a cyberphysical node vulnerability of high severity.

D. STEP 4: SOLUTION OF ADVERSARIAL MODEL
After formulating and defining the corresponding POMDP,
in this step, we develop an algorithm to solve the model
and yield the optimal transition policy for the considered
threat. Due to the complexity of EPS, it is important to have
a mechanism to solve sequential decision-making problems
efficiently. In our studies, we develop a DQN-based DRL
algorithm.

1) Q-LEARNING
Q-learning is an off-policy RL algorithm designed to find
the optimal action an agent needs to take at the current state.
All the actions that the RL agent can take are evaluated using
a Q-value which determines how good is a particular action
in the current state. Eq. (7) shows the ‘update’ rule used to
calculate new Q-values at each state-action pair, where s is
current state, a is the action at s, s′ is the new state, and a′

includes all the future potential actions. Using the learning
rate α ∈ [0, 1], the new Q-value (Qnew(s, a)) is updated
using the current Q-value (Qold (s, a)), the estimated optimal
future value (max

a
Q(s′, a′)), and the immediate reward (R).

γ ∈ [0, 1] represents a discount factor that determines the
importance of immediate rewards compared with potential
long-term rewards. A higher Q-value demonstrates that a
series of actions will produce a higher total accumulated
reward. These actions are referred to as the optimal policy.

Qnew(s, a) = Qold (s, a)

+α · (R+ γ ·max
a
Q(s′, a′)− Qold (s, a)) (7)

Traditionally, Q-learning is implemented using Q-tables.
However, this approach is not practical nor scalable for
solving large state-action environments. To solve this issue,
researchers in [50] proposed the replacement ofQ-tables with
deep neural networks, also known as DQNs.

2) DEEP Q-NETWORK (DQN)
In order to address the computational overhead of
Q-learning when dealing with large, uncertain, and dynamic

FIGURE 4. Example of the observation process for state A.

environments, DQNs generalize the approximation of the
Q-value function using artificial neural networks rather than
storing every solution in a table. For our environment mod-
eled as a POMDP, we assume that the DQN agent starts in a
random initial state s (a node in the cyberphysical network)
and transitions to the next state s′ occur by taking actions
(i.e., moving through nodes/buses in the system) based on
observations until it reaches both nodes of the contingency
pair, regardless of transition order. As shown in Eq. (8),
an observation functionO generates the observations for each
potential action a′ given state s. The state s refers to the bus
where the agent is currently located during the solution pro-
cess including all bus-related corresponding information and
measurements (i.e., circuit breaker status, power generation,
power consumption, voltages, etc.). At every step, the agent
makes an observation o which helps to indicate which pos-
sible movements (or actions) the agent can take according
to the observed available neighboring buses and branches
connected to the current bus. Then, based on the observation,
an action a (movement to another bus) is performed in order
to transition to the next state (i.e., the next bus). Fig. 4 presents
an overview of this process. It can be seen that if the current
state of the agent is bus A, then the attacker (agent) can
make an observation o to obtain the next available bus to
move into, which can be either K, I, or M, by taking a1, a2,
or a3, respectively. Using the observation, the agent is also
capable of revealing whether or not a contingency is present
in the current bus where it moved into, since the contingency
pairs are known to the attacker from the analysis in step 2
(Section III-B).

O(o|s, a) = O(o|s′, a′) (8)

Once each potential transition is determined, the TP for
each transition needs to be computed (as defined in Eq. (6)).
These calculated results will be utilized to determine the
security index, SI ′i , when making a transition from s to s′ as
shown in Eq. (9), where γ is a discount factor, and 1Cp is
the line flow difference between the current state and each
potential transition state. Finally, the maximum value of the
security index which represents the bus with the highest
vulnerabilities’ score and overload value, will be used to
compute the corresponding reward function. As shown in
Eq. (10), the reward function considers the overall benefit of
different transitions as it takes into account the security index
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of each potential state, SI ′i .

SI ′i = max
a∈A

γ ·
∑
s′∈S

TP
(
s′|s, a

)
·1Cp (9)

R =
∑
s′∈S

TP
(
s′|s, a

)
· [1Cp + SI ′i ]) (10)

State-action-rewards tuples are stored in the replay mem-
ory set M for recording agent’s experiences. This mem-
ory set assists in independently training the neural network.
All environmental information of the current state (weights,
biases) is stored in the action-value parameter θ . In each
step, the DQN combines multi-layered neural networks with
existing Q-learning algorithms to approximate Q(s, a; θ ). θ−

will change as the result of changing θ . Eq. (11) demonstrates
the updated target value given by the current state and action,
where the target action-value parameter θ− is equal to θ at
the beginning of the iterations. When this number of iter-
ations is reached during training, θ− is updated to prevent
an obstructed learning process [51]. Using the parameters
described, the loss-function value can be calculated as shown
in Eq. (12) for each state-action pair. It represents the error
between the predicted Q-value and the target Q-value. The
goal is to determine an optimal policy that minimizes the error
and ensures that the training result will be as close as possible
to the target value, where the target value is the estimated
expected return of the actions taken by the DQN.

yi = R+ γ max
a′

Q
(
s′, a′; θ−i

)
(11)

Li (θi) = E(s,a,R,s′)∼M
[
(yi − Q (s, a; θi))2

]
(12)

The agent performs an action that is selected according
to the designated exploration-exploitation (ε-greedy) strategy
of Eq. (13). Such a strategy controls the degree of exploita-
tion over exploration. At each step, if exploration is being
performed with probability ε, the algorithm selects a ran-
dom action at from the action set. During exploitation with
probability 1 − ε, the action with the maximum Q-value is
taken. The target values θ− will only be updated once the
desired number of iterations has been reached [51]. The over-
all learning process is presented in Fig. 5 and the notation of
the DQN parameters is summarized in Table 4. This learning
process is repeated until a terminal state is reached, i.e., both
contingency pairs have been finally ‘‘visited’’ by the agent.

at =

{
random a′, ε

argmaxaQ(s′, a′; θ ), 1− ε
(13)

E. STEP 5: OUTPUT OF THE ASSESSMENT PROCESS
An attacker with sufficient OSINT can aggregate enough
power system information (e.g., power generation, capacity,
load consumption, topological data, etc.) to perform contin-
gency analysis and identify critical system elements. These
identified critical contingency elements can be leveraged to
generate cyberattack transition policies following the process

FIGURE 5. Process of how the DQN model is utilized as part of the
proposed cybersecurity assessment.

TABLE 4. Notation of DQN parameters.

described in previous steps. The generated cyberattack tran-
sition policies take into account vulnerabilities in electronic
devices that exist in the cyber network layer as well as
physical system vulnerabilities related to contingency stud-
ies. The DRL algorithm provides a solution known as the
optimal attack transition policy that can be used to attack
the devices controlling the operations of the critical ele-
ments (e.g., microprocessor-based relays controlling circuit
breakers, protocol translator converters, etc.) and results in
potential power outages in the EPS. Our methodology can
also be leveraged by control center operators and stakeholders
to identify vulnerable components in the EPS or investigate
potential attack strategies.

IV. CONTINGENCY ANALYSIS SIMULATIONS
In this section, we introduce a number of contingency sim-
ulation case studies used to demonstrate the effectiveness
of the proposed approach. These case scenarios prove how
the most critical contingency pairs of a system vary when
wind energy systems are in-place. We provide an analysis
of the varying degrees of severity with different contingency
scenarios and examine how wind generation impacts critical
contingencies. For this validation study, we use a doubly-fed
induction generator (DFIG)model for wind power generation
modeling and real-time simulation (OPAL-RT) for testing the
system in a real-time environment.

A. CONTINGENCY SCENARIOS
First, we run the assessment process of Section III up to Step 2
in order to assess multiple contingency scenarios in different
test systems. In Table 5, we present the number of critical
contingencies for N − 1, N − 1 − 1, and N − 2 scenarios
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TABLE 5. Number of contingencies for different cases and scenarios.

in different power system test cases. For example, the IEEE
39 bus system has 13 N − 1, 19 N − 1 − 1, and 71 critical
N −2 contingencies without any wind power injection, while
the number of these contingencies varies with different wind
penetration levels.

The N − 1 contingencies are determined by disconnecting
each line and observing system responses. For N − 1 − 1,
the most severe N − 1 case is removed from the system,
and the process is run again. The N − 2 pruning algorithm
is carried out as described in Section III. In the rest of the
section, we focus on the N − 2 case as the most severe
scenario. It should be noted that the proposed approach can
be adapted, based on user requirements, for any number of
contingencies k .

FIGURE 6. IEEE 39 bus system with wind power integration.

B. WIND POWER GENERATION MODELING
USING A DFIG MODEL
A DFIG model consists of a wound rotor induction generator
driven by wind turbines and an AC/DC/AC insulated-gate
bipolar transistor-based pulse width modulated converter.
The DFIG model used in our case studies for modeling wind
energy systems is developed in MATLAB/Simulink. Using
this model, we are able to study the dynamic response of EPS
to wind speed variations and investigate the impact of differ-
ent penetrations. Three DFIGs are modeled and integrated to
the IEEE 39 bus system at buses 5, 21, and 26 (Fig. 6) [52].

FIGURE 7. (a) Wind speed, and (b) wind power variation for scenario A.

The wind speed and wind power data for each wind sys-
tem are collected at a one-minute resolution on May 14,
2020 (1440 mins = 24 hrs) from [53]. In the rest of the
paper, we investigate two scenarios of wind integrated power
systems: scenario A, in which the wind data is collected
from three locations in Tallahassee, FL, with similar variation
and power generation levels. The wind speed and corre-
sponding wind power generation information are provided in
Fig. 7(a) and Fig. 7(b). In scenario B, the wind speed and
power data are obtained from three locations in Boston,
MA (Wind 1), Dallas, TX (Wind 2), and Tiffin, OH (Wind 3)
with different weather characteristics. For this scenario,
the wind speed and power generation are shown in Fig. 8(a)
and Fig. 8(b), respectively.

C. CONTINGENCY SCENARIOS WITH WIND
POWER INJECTION
The amount of power produced by wind energy systems
fluctuates due to wind’s intermittent nature. As the generation
changes, power flow varies, which may affect contingency
analysis results. Therefore, we simulate wind power injec-
tion levels at eight distinct timestamps, for the two sim-
ulation scenarios (scenario A and scenario B) throughout
one day and observe the changes in reported contingencies
with different wind penetration. These tests are performed
for the IEEE 39 bus system (Fig. 6). As shown in Table 6
and Table 7, seven wind power integration simulation cases
(SC1-SC7) are simulated for scenario A and scenario B. For
each case, we present the amount of power injected by the
three DFIG-based wind farms (WF1, WF2, WF3) and the
number of identified N − 2 contingencies.
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TABLE 6. Scenario A: Impact of different wind power injections on the number of N − 2 contingencies in the IEEE 39 bus system.

TABLE 7. Scenario B: Impact of different wind power injections on the number of N − 2 contingencies in the IEEE 39 bus system.

FIGURE 8. (a) Wind speed, and (b) wind power variation for scenario B.

For scenario A in Table 6, the highest number of N − 2
contingency pairs (100) exists when WF2 and WF3 are inte-
grated to the system (SC5) with generation of 159.20MWand
155.70MW, respectively. The least amount of pairs occurs
when WF1 and WF2 turbines are injecting power into the
system (SC4), and the wind power injection for WF1 and
WF2 are 77.52MW and 54.52MW, respectively. As shown in
the results, the number of N − 2 contingencies change when

the same amount of power is injected at different locations.
Additionally, injecting varying levels of power in the same
location also changes the number of contingencies.

As for scenario B in Table 7, the highest number of N − 2
contingency pairs (103) exists when WF2 and WF3 are inte-
grated into the system (SC5), and thewind power injection for
WF2 and WF3 are 136.80MW and 187.30MW, respectively.
The least amount of pairs occurs when only WF1 is injecting
126.30MW power into the system (SC1).

Comparing with the normal case of IEEE 39 bus system
without wind power injections (71 pairs of N − 2 contin-
gencies in Table 5), the number of N − 2 contingencies in
38 cases (out of 56 cases in total in Table 6) of scenario
A are over 71. For scenario B, 44 cases (out of 56 cases in
total in Table 7) are more than 71. These results demonstrate
how the intermittent behavior of wind energy directly affects
the number and location of contingencies in EPS with high
penetration of RES. A more specific case that shows how
the intermittent behavior of wind can alter the number of
contingencies can be observed in Table 5. The number of
N−2 contingencies can increase or decrease when compared
with the case of no wind injection. One scenario that results
in a lower number of N −2 contingencies is SC7 at t = 1400
where the number of N − 2 contingencies decreases from the
original 71 to 67; thus making the EPS more secure under
contingency conditions. A counterexample of this behavior
can be observed in SC7 at t = 0 where the number of N − 2
contingencies increases from 71 to 84.

D. REAL-TIME SIMULATION OF IEEE 39 BUS SYSTEM
We further examine the effect of contingency scenarios in a
real-time simulation environment. We observe the impact of
intermittent wind power injections across the IEEE 39 bus
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FIGURE 9. Contingency scenarios for IEEE 39 bus system: (a) contingency pair at lines 5− 8, 6− 7 without wind penetration, (b) contingency
pair 5− 8, 6− 7 with wind penetration levels as case of Table 6: SC7, t = 800m, (c) contingency pair 5− 8, 6− 7 with wind penetration as
case of Table 7: SC5, t = 0m. (d) contingency pair 10− 13, 16− 21 without wind penetration, (e) contingency pair 10− 13, 16− 21 with wind
penetration as case of Table 6: SC7, t = 800m, (f) contingency pair 10− 13, 16− 21 with wind penetration as case of Table 7: SC5, t = 0m.

system by analyzing the variability of all the bus voltages
in the system. At t = 0.3s, a N − 2 contingency event is
triggered by simultaneously disconnecting two three-phase
circuit breakers. To understand the severity of losing critical
elements, we disconnect the most critical pair (lines 5 − 8
and 6−7) from the N −2 contingency set of the IEEE 39 bus
system. Fig. 9(a) presents the N − 2 effect that disconnecting
lines 5 − 8 and 6 − 7 have in the test system without any
wind connected. Fig. 9(b) demonstrates the same contingency
scenario (disconnection of lines 5 − 8 and 6 − 7) with wind
power being injected to the system (Table 6: SC7 t = 800m).
In this scenario, WF1, WF2, and WF3 inject 153.70MW,
159.20MW, and 155.70MW power to the test case system,

respectively. An additional test scenario is run using the same
contingency pairs (disconnection of lines 5−8 and 6−7) with
different wind power injections (Table 7: SC5 t = 0m). In this
case, WF2 and WF3 inject 136.80MW and 187.30MW,
respectively, with the results depicted in Fig. 9(c).

In order to understand the effect that different N − 2
contingency pairs may have in the EPS, we perform studies
using different N −2 pairs present in the contingency set. For
these studies, we disconnect a less critical contingency pair
from the N − 2 contingency set. At t = 0.3s, circuit breakers
are tripped at lines 10− 13 and 16− 21, in a test case system
without any wind power penetration, and the respective volt-
age variations can be observed in Fig. 9(d). Fig. 9(e) depicts
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how the voltage variations change when wind penetration
(Table 6: SC7 t = 800m) is considered under the same con-
tingency scenario. An additional case (Table 7: SC5 t = 0m)
with the contingency pair 10 − 13, 16 − 21 is demonstrated
in Fig. 9(f).

When comparing the real-time simulation results, we can
observe that the most critical contingency pair (lines 5 − 8
and 6 − 7) causes higher voltage variations when compared
to a less critical contingency pair (lines 10−13 and 16−21).
Several buses in the EPS reach under and over-voltage values
of around 0.87 p.u. and 1.1 p.u. for the most critical contin-
gency pair (lines 5−8 and 6−7) and under and over-voltage
values of around 0.92 p.u. and 1.18 p.u. for the less critical
contingency pair (lines 10 − 13 and 16 − 21). Also, besides
observing the voltage variations different contingency pairs
can produce, we can also observe, in some cases, how the
intermittent behavior of wind power helps to mitigate the
severity of line overloads. Figs. 9(d) – 9(f) demonstrate this
behavior. For instance, in Fig. 9(e), most buses of the power
system have voltage measurements that are closer to the
nominal 1.0 p.u value. On the other hand, the case in Fig. 9(f)
shows the opposite, since some voltage values measured at
some buses are farther apart from 1.0 p.u when compared
with the case where no wind power injection is included,
i.e., Fig. 9(d). Our results demonstrate how important is to
coordinate the amount of wind power as it penetrates the
system. For example, the authors in [24] proposed a scheme
for power systems to maintain N −1 security within different
levels of wind power injection. In addition, a dynamic reserve
allocation of DFIG wind farms is presented in [54] to sustain
system frequency stability. In our case, the results not only
demonstrate the variation of N − 2 contingency numbers but
also how these results can be used to control the penetration
level of wind farms to increase the N − 2 secure operational
range of power systems.

V. RESULTS: THE EFFECTIVENESS OF THE PROPOSED
CYBERSECURITY ASSESSMENT
This section presents our experimental results that demon-
strate the effectiveness of the proposed cybersecurity assess-
ment approach. We evaluate the efficacy of the process
according to the optimal attack transition policies given as
outputs. In this part, we provide the experimental setup for the
presented test cases, the DQN agent model implementation
details, and its corresponding hyperparameters. Six test case
systems are used to demonstrate the number of transitions
needed to identify the optimal attack path for the correspond-
ing case. Furthermore, the performance of the DQN model
is evaluated according to the obtained rewards and losses,
i.e., convergence for each test case. Finally, the effectiveness
of the DQN, used to solve the transition model, is verified by
comparing it to other transition-path policy-finding methods,
and specifically to the: (i) random policy search, (ii) depth-
first search (DFS), (iii) Dijkstra’s shortest path algorithm,
and an (iv) IVSS-based DQN model.

TABLE 8. DQN hyperparameters.

A. EXPERIMENTAL SETUP AND DQN HYPERPARAMETERS
The RL DQNmodel is trained and tested on a 64-bit machine
with an Intel Core i7-7600U, 2.8GHz, and 16.00GB of
memory. The proposed algorithm is implemented in Julia,
a high-level, high-performance, dynamic programming lan-
guage. The DQN solver for POMDP is provided in [55].
The source files and models associated with this work can
be found at [56]. The DQN hyperparameters are presented
in Table 8.

TABLE 9. Average number of transitions and timing for cyberphysical
attacks.

B. CYBERSECURITY ASSESSMENT: ATTACK-PATH
TRANSITION RESULTS
In order to demonstrate the efficacy of the proposed cyberse-
curity assessment process, we use six test case power systems
related with the contingency studies in Section IV (Table 5):
(a) IEEE 30 bus system, (b) IEEE 39 bus system, (c) IEEE
39 bus system with wind W1 (Table 6 SC7 at t = 800m),
(d) IEEE 39 bus system with wind W2 (Table 7 SC5 at
t = 0m), (e) UIUC 150 bus system, and the (f) Polish
2383 bus system. Based on the identified critical N −2 pairs,
the malicious agent begins at a random initial state and finds
the optimal attack-path transition policy to the existing and
most criticalN−2 contingencies. A contingency is identified
when one of the two buses has been visited by the agent.
In Table 9, we show the number of transitions required to
reach both critical contingencies as well as the number of PV
and PQ buses visited by the agent. For each comparison, five
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random initial states are selected for each test system, and the
average results are presented. For example, the IEEE 39 bus
system requires an average of 8.8 transitions to correctly iden-
tify the most critical contingency pair. During the transitions,
an average number of 0.4 generation (PV ) and 4.6 load (PQ)
buses need to be visited, i.e., compromised, by the agent.
TTr is the training and evaluation time (in seconds) needed for
the DQN to ‘learn’ the optimal attack path for different cases,
and TTo is the total time (in seconds) required to complete the
process. The utilization of the Polish 2383 bus system in our
experimental results aids in the evaluation of our proposed
process with a realistic large-scale EPS. As seen in Table 9,
the training and evaluation process of the DQN in a typical
computer with 2.8GHz CPU and 16.00GB RAM requires
an average of 1459.5 seconds (approximately 24 minutes),
and a total running time of 1506.7 seconds (approximately
25 minutes). Note that the running time of the entire process
could be reduced by decreasing the number of hidden neurons
in the DQNmodel. The results demonstrate that the proposed
cybersecurity process can be used in tandem with medium
and long-term control and planning applications. On the other
hand, the proposed approach would require high computing
power in order to be integrated into very short-term decision
making processes [57].

FIGURE 10. DQN rewards for bus test systems.

C. DQN REWARDS AND LOSS CONVERGENCE
As mentioned in Section III, the DQN aims to minimize the
loss between the target value and the predicted value. The
DQNagent learns the optimal policy as this loss isminimized.
Here, we verify and evaluate the performance of our proposed
approach by examining the convergence of the DQN loss
during the training process. We also show how the average
reward gradually increases at each step, for each test case,
up to 250 training steps. It should be noted that the total num-
ber of training steps used is 500 while the update frequency of
the plot is set to 2, thus only 250 steps can be observed in the
graph. Fig. 10 shows the rewards for each test case system
and Fig. 11 shows the corresponding loss for each case.
As shown in Fig. 10, the DQN agent progressively ‘learns’

FIGURE 11. Average DQN loss for bus test systems.

how to maximize the cumulative rewards in each test case
system. At the same time, as the agent ‘learns’, the loss keeps
decreasing until it converges to a minimum value as depicted
in Fig. 11. These results showcase the training process of the
DQN agent and its performance on all bus test case systems.

D. EFFECTIVENESS OF DQN: COMPARISON WITH
OTHER TRANSITION TECHNIQUES
The effectiveness of using a DQN model in our cybersecu-
rity assessment process is demonstrated by comparing our
DQN agent based on the CVSS scoring system with different
techniques that could be used to find the optimal attack
transition policy in a graph. The techniques used to compare
the performance of the proposed DQN are: (i) random policy
search, (ii) DFS, (iii) Dijkstra’s shortest path algorithm, and
(iv) IVSS-based DQN model. The random transition tech-
nique provides a baseline, or naive case, where transitions
are performed randomly, i.e., without any intelligent control
mechanisms. DFS is a searching technique for traversing a
tree structure by starting from an arbitrary root node and
exploring each branch as far as possible before going back
to the root node and continuing to the next branch. Dijkstra’s
algorithm is a more sophisticated way of finding an optimal
path through a graph structure. Dijkstra’s algorithm is used
to solve shortest-path problems in non-negative weighted
graphs by finding an acyclic path between a source and a
target node with the minimum transition cost. Both DFS
and Dijkstra’s search policies need full observability of the
network, hence, for testing purposes in those two cases,
we assume full observability of the system and its correspond-
ing contingency pair. Finally, the IVSS-based DQN model is
designed to evaluate the differences between the CVSS and
IVSS vulnerability assessment criteria.

The tests conducted are run using the power system test
cases presented in Table 9. For each case, five random initial
states are selected and the average number of transitions is
calculated. The maximum, minimum, and average number
of transitions for each case are shown in the box plots pre-
sented in Fig. 12. From Figs. 12(a) – 12(f), we can observe
that, in general, the results of the DQNs-based transition
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FIGURE 12. Number of transitions needed for DQN (CVSS-based), DQN (IVSS-based), DFS, random, and Dijkstra transition policies for (a) IEEE 30 bus
system, (b) IEEE 39 bus system, (c) IEEE 39 bus system + Wind W1 (Table 6: SC7, t = 800m), (d) IEEE 39 bus system + Wind W2 (Table 7: SC5, t = 0m),
(e) UIUC 150 bus system, and the (f) Polish 2383 bus system.

FIGURE 13. Number of transitions needed for DQN (CVSS-based) and DQN (IVSS-based) on all test systems evaluated. These
figures demonstrate the scalability of the proposed approach as the number of buses increases.

techniques tend to require fewer number of transitions,
i.e., are more efficient, when compared with the random
and the DFS transition techniques. When compared with
Dijkstra’s algorithm, our DQN implementation performs
slightly worse due to its iterative learning process. However,
Dijkstra’s shortest path algorithm has the major disadvantage
of requiring full system observability. The results demon-
strate the advantages of using DQN as the main solver
technique for our proposed process. Finally, it can also be
observed from Fig. 12 that using CVSS v.3.1 has major
advantages when compared to the IVSS scoring system. The
CVSS-based DQN consistently requires fewer number of
transitions in all evaluated test cases.

To understand the scalability of the proposed DQN
approach based on CVSS and IVSS, the number of tran-
sitions for the different test systems evaluated are plotted
in the box plots shown in Figs. 13(a) and 13(b). In these
figures, we can observe that as the number of buses increase,
the number of transitions also increases but not in an exponen-
tial fashion. Additionally, the results depicted in the figures
demonstrate that in almost all test systems the DQN based
on CVSS requires a smaller number of transitions than the
DQN approach based on IVSS. An example of the improved
performance when using the CVSS-based approach can be
observed when comparing the number of transitions required
for the Polish 2383 test system.
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VI. CONCLUSION AND FUTURE WORK
In this article, we present a cybersecurity assessment
approach designed to assess the cyberphysical security of
EPS with high penetration of wind. The proposed process
assumes that adversaries could leverage OSINT to perform
contingency analysis. Based on the contingency results and
identified exploitable cyberphysical vulnerabilities via an
adapted CVSS metric, an optimal attack transition policy is
generated that can be potentially leveraged to cause major
outages in an EPS. The results provided by the proposed
process are also critical for improving cybersecurity visibility
for system operators and stakeholders; it provides informa-
tion regarding the most critical attack-path an adversary must
follow to severely compromise the system alongside with
information about the most vulnerable elements in the EPS
at a particular time. The proposed approach is tested using
real-time simulation, realistic data from various actual wind
energy systems, and various test case power systems. Addi-
tionally, results regarding the training and convergence of the
DQN agent, proposed as the main optimal attack-path transi-
tion technique, are presented and compared with other com-
peting techniques. These results demonstrate the applicability
of the cybersecurity assessment approach in modern EPS.

The limitations of the cybersecurity assessment approach
presented in this work include mostly the assumptions related
to the threat model: (i) The contingency analysis can only
be performed when the attacker has sufficient power system
data acquired using OSINT techniques. Without the neces-
sary information, the set of contingencies cannot be correctly
identified. (ii) The cyber system network graph is assumed
to be isomorphic with the physical system graph, indicating
that the topology of the communication network is mapped
one-to-one with the topology of the physical system. This
assumption may not be necessarily true on some systems,
since the physical and communication networks could have
different network topologies.

Based on the limitations discussed, future work will
focus on: (i) Exploring potential defense strategies based
on moving target defense methods that could be used to
enhance the overall system security and resilience by dynam-
ically updating time-varying parameters within the control
system of EPS (act as a moving target), thus, limiting
adversaries understanding of the cyberphysical EPS model.
(ii)Analyzing and investigating other DRL solvers that can be
adapted into the proposed cybersecurity assessment approach
(e.g., UCB, A3C, or TRPO). (iii) Investigating how transi-
tions, in the proposed cybersecurity assessment approach, are
affected in scenarios where the cyber and physical networks
are not assumed isomorphic; examined by using real-time
co-simulation testbeds.
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