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ABSTRACT This study presents an instantaneous spectrum analysis for electroencephalograph data pro-
cessing that would facilitate the practice of learning and instruction through real-time measurements of the
learner’s cognitive load. The instantaneous spectrum analysis is derived from the ensemble empirical mode
decomposition which decomposes signals into a gathering of intrinsic mode functions without mode mixing.
The multi-marginal Hilbert-Huang spectrum is introduced to estimate frequency contents. As a result, the
amplitude of brain rhythms related to the cognitive load can be determined accurately. A model study
was performed at first to test the efficacy of the proposed algorithm by comparing with the Fourier based
technique, then a prefrontal experiment was conducted to show the advantages of the proposed method. With
the higher resolution and more realistic of the proposed method relative to conventional spectrum analysis,
more significant features of the signal can be extracted.We believe that the proposedmethod has the potential
to be a substantial technique in electroencephalograph data analysis.

INDEX TERMS Electroencephalograph, cognitive load, ensemble empirical mode decomposition,
multi-marginal Hilbert-Huang spectrum, brain rhythms.

I. INTRODUCTION
Cognitive load is essential for understanding instructional
design quality and optimizing working memory capacity
on learning during instruction [1]. Several innovative pro-
cesses and methodologies based on physiological measures
for analyzing cognitive load are available [2]–[6]. Dan and
Reiner [7] indicated that observing psycho-physiological
changes when they occur in response to the progression of a
learning session allows for adjusting the individual learner’s
capabilities. This observation usually can be achieved by
detecting the brain’s electrical activities. Electroencephalo-
graph (EEG) is a non-invasive electrophysiological monitor-
ing device to detect electrical activities of the brain [8]. The
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accessibility of the EEG device and advanced near-real-time
analysis techniques have improved the quality of teaching and
learning in various aspects [3], [4], [7]. Nowadays, the EEG
is also an effective tool in the study of machine learning, such
as providing new communication and control options for indi-
viduals to interact with the external world [9] or monitoring
human driving behavior to reduce traffic accidents [10].

It is well documented that when the brain performs a
working memory task, the frontal/prefrontal cortex makes
a change in energy transfer in the brain due to the activ-
ity of working memory [11]–[14]. At least five distinct
rhythms (waves) of electrical activity in the brain have been
reported [15]–[18]. Among those waves, Alpha (8∼14 Hz)
and Theta (4∼8 Hz) are two of these waves sensitive to
cognitive, comprehending, and working memory perfor-
mance [17], [19], [20].
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Most studies regarding the brain’s electrical activity and
cognitive load are focused on the frontal cortex, and pre-
frontal data are rare. The standard methods used for process-
ing the data are Fourier based spectrum analysis [21], [22].
In recent years, some novel techniques were proposed for
EEG data analysis, including wavelet transforms [23]–[26]
and empirical mode decomposition (EMD) based meth-
ods [27]–[30].

From the viewpoint of instruction efficacy, numerous stud-
ies show that an appropriate instructional method reduces
the cognitive load in learners, and efficiently uses the
working memory capacity; however, the individual cogni-
tive load varies according to the demands of the task with
time [31]–[33]. Consequenly, reliable and accurate measure-
ment of cognitive load with EEG is crucial in developing
successful instructional methods.

There are many advantages of using EEG in studying brain
activities such as the possibility of measuring modulations
of electric potentials over time [34], providing qualitative
information about neural activities [35], and achieving high
temporal resolution of the signal [36]. However, it has some
limitations that we should pay attention to, which are low
spatial resolution, susceptible to motion artifacts, and diffi-
culty in estimating workload precisely [4], [26]. The precise
measurement of cognitive load using EEG signals is still
under research, particularly to investigate the prefrontal EEG
signals classification across different cognitive tasks levels.

Our study aims to develop a novel non-linear and non-
stationary data processing scheme to upgrade EEG data
measurement and interpretation precision. To this end,
an arithmetic task with four levels of difficulty was designed
to examine the electrical activities of the prefrontal cortex
at different difficulty levels. The proposed method is mainly
derived from the ensemble empirical mode decomposition
(EEMD) instantaneous attributes [37], [38], which includes
the computation of amplitude, phase, and frequency at any
given time. Once a meaningful time-frequency-amplitude
distribution (spectrogram) is obtained, the multi-marginal
Hilbert-Huang spectrum (MHHS), an extension of the
marginal Hilbert spectrum [39], [40], can be evaluated
accordingly to determine the participants’ cognitive load.
The proposed method is demonstrated in a model study and
then comparedwith the conventional Fourier-based technique
with real data to validate our findings.

II. OVERVIEW OF SUBJECTS AND EXPERIMENT
A mental arithmetic assessment was designed for the exper-
iment. To avoid bias and to reduce false data, a standard
inspection for cognitive load EEG subjects was carried out
before conducting the experiment. The educational back-
ground, age, and health condition of all subjects must be
compatible, but the experiment was not gender-classified.
Also, all the subjects were required not to have been involved
in any mental arithmetic training. With the above require-
ments, we recruited 20 subjects. All of the subjects were
college students between 20 and 25 years old, physically and

mentally healthy, and having no history of any brain disease
or mental illness. All subjects were asked to take four mental
arithmetic tasks of different difficulty levels:

(1) Two-digit by one-digit multiplication problem with
single-digit carry only. For example: 72 × 3, 81 × 9,
and 61 × 7.

(2) Two-digit by one-digit multiplication problem with
ones and tens digits carries. For example: 32 × 7, 45
× 5, and 18 × 9.

(3) Three-digit by one-digit multiplication problem with
tens and hundreds digits carries. For example: 431 ×
5, 393 × 3, and 621 × 7.

(4) Three-digit by one-digit multiplication problem with
ones, tens, and hundreds digits carries. For example:
956 × 2, 684 × 4, and 527 × 5.

Twenty-five questions on each level of the mental arith-
metic task were designed according to the cognitive load and
working memory capacity. The difficulty levels were distin-
guished by the complexity of calculation, as listed above.
Subjects were instructed to mentally solve all questions of
the easiest level and then finish questions in the next level of
difficulty. This running order is consistent with the procedure
for evaluating working memory adopted in the Wechsler
Memory Scale (WMS-III) [41] which is the most thoroughly
standardized instruments for the neuropsychological assess-
ment of memory. There was no specific individual design
for calculation complexity of each question on the same
level. The multiplier and multiplicand of each question on
the same level were randomly selected from among integers
with the predefined number of digits. We avoided any leading
or misleading questions. All the questions were neutral and
unbiased; this is evident that the responding Theta amplitudes
of the 25 questions on the same difficulty level show no
significant trend (Fig. 5 in RESULTS). There was no time
limit for answering the questions, but subjects were asked to
answer each question as soon as possible.

III. METHODS
The EEG signal is generated from the brain’s electrical activ-
ity that is a non-linear and non-stationary process. In such
a case, the frequency of the data should be ever-changing,
and having an instantaneous attribute. The EEG signal anal-
ysis by applying techniques like the fast Fourier transform
(FFT), short-time Fourier transform, spectral EEG features,
wavelet, or standardHilbert transform are effective [22]–[26],
however, the problems of time and frequency resolution and
end-effects should be considered [40], [42]. Therefore, we
introduce the EEMD spectrogram using the marginal Hilbert
spectrum to analyze EEG data. This section is a brief descrip-
tion of the proposed method.

A. DATA DECOMPOSITION
The first step of analyzing the acquired EEG data is to
perform data decomposition to determine the feature of the
data and extract meaningful components to build up the
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base for spectrogram analysis. We adopt an empirically
based adaptive data-analysis method initially proposed by
Huang, et al. [40] called EMD, and it was upgraded to an
advanced version EEMD byWu and Huang [38]. The EEMD
method is intuitive, direct, and adaptive with an a posteriori-
defined basis [38], [40]. This method presumes that any
data are composed of a series of simple oscillatory modes
of different frequency bands called intrinsic mode functions
(IMFs) which fulfill the following two conditions: (1) the
number ofminima,maxima, and the number of zero crossings
must be equal, or differ by one at most; (2) the envelopes
determined by the local maxima and that by the local minima
are symmetrical to zero [40]. Any data can be decomposed
through the sifting process [37], [40].

Unlike the mono-frequency and stationary harmonics
as assumed in the Fourier analysis, the IMFs contain
time-variable amplitudes and frequencies which are corre-
sponding to the physical properties of the data. Through the
sifting procedure of the EMD/EEMDdecomposition, the data
can be decomposed into a set of IMFs and a residue, a mono-
tonic function or a function from which no more IMF can be
extracted [37], [40]. If the data contain non-IMF components,
those will be in the residue. The decomposition result is
expressed by a simple equation:

x(t) =
∑n

j=1
cj(t)+ rn(t) (1)

where j denotes the number of IMFs, cj(t) is the j-th IMF,
and rn(t) is the final part interpreted as the DC component or
residual of x(t) after n-times sifting. The number n, an integer
within the range between 1 and a finite integer, indicates the
number of sifting or the total number of IMFs. It has been
shown that the total number of IMFs of a data set is close to
log2Nwhere N is the number of total data points [43]. In prac-
tice, the number of IMFs depends on the sifting stoppage cri-
teria achieved by aCauchy type of convergence test [38], [40].
The more rigorous the stoppage criterion is set, the more
IMFs are obtained. However, too many IMFs are not sug-
gested because it could make the resulting IMFs approaching
harmonic functions lacking physical meaning [44]. More
details regarding the decomposition method can be found
in various publications [40], [43], [45]–[47]. Here we target
the discussion on the concepts of instantaneous frequency
attribute and marginal Hilbert spectrum, which are used in
processing the EEG data.

B. INSTANTANEOUS FREQUENCY
The computation of instantaneous frequency is straight
forward in conventional Hilbert transform by finding the
complex conjugate pair x(t) and y(t), where y(t) is the
Hilbert transform of data x(t)x(t). Mathematically, it can be
expressed as

y (t) =
1
π
P

∫
∞

−∞

x(τ )
t − τ

dτ (2)

x (t) = −
1
π
P

∫
∞

−∞

y(τ )
t − τ

dτ (3)

[48]–[50] where P is the Cauchy principal value of the inte-
gral. With the complex conjugate available, we then have the
complex trace z(t)

z (t) = x(t)+ iy(t) = a(t)eiϑ(t) (4)

where a(t)a(t) denotes the instantaneous amplitude (envelope
amplitude) or simply called envelope by some investigators,
andϑ (t) = tan−1 (y(t)/x(t)) (rotation angle) is the instanta-
neous phase. The instantaneous frequency �(t) then can be
easily defined mathematically as

�(t) =
dϑ(t)
dt

(5)

The above derivation is the so-called analytic sig-
nal method, which computes the instantaneous frequency
through the conventional Hilbert transform. Although the
analytic signal method is mathematically compact and
effective, there are some difficulties in computation that
have been arguing among many investigators [51]–[54].
The major controversy is that the function must be
mono-component and have a non-overlapping spectrum
to produce a physically meaningful instantaneous fre-
quency [48], [53]. Huang et al. [55] gave an example to
describe the difficulties of computing instantaneous fre-
quency, and Chen and Jeng [37] followed a similar deriva-
tion. Both results confirmed that the instantaneous frequency
exists only if the input signal is a mono-component function
with zero mean symmetry at any given time.

Huang et al. [55] introduced efficient EMD based algo-
rithms, the normalized Hilbert transform and the direct
quadrature, to remedy deficiencies of the analytic signal
instantaneous frequency computation. However, some diffi-
culties are still unsolved, e.g. the amplitude modulation (AM)
part of the data is ignored, and the IMFs are mode mixed.
Chen and Jeng [37] proposed a more rigid method to derive
the instantaneous attributes by incorporating the EEMD into
their algorithm, which overcomes the mode mixing problems
and reduces the artificial fluctuations.

C. NLT EEMD ALGORITHM
The EMD algorithm has shortcomings of mode mixing,
stoppage criterion, and false end effect, which impede to
obtain accurate computation of instantaneous frequency.
Wu and Huang [38] proposed a noise assisted method,
EEMD, to alleviate these difficulties. Chen and Jeng [37]
introduced a complete algorithm, the natural logarithm trans-
formed (NLT) EEMD, to improve the signal/noise ratio of
ground-penetrating radar data. The method that we apply to
compute the spectrogram of EEG data integrates two algo-
rithms [37], [56] proposed by Chen and Jeng, which is briefly
described below:

1. Take the NLT of the data if the data are seriously
attenuated. The transform function is defined as,

L (t) = sign[c log (a+ |x (t)|)]
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sign =
1, x (t) > 0
0, x (t) = 0
−1, x (t) < 0

(6)

where L(t)L(t) is the logarithm of the data x(t); the
sign function is used to keep the original data polarity;
the constant a is a value to avoid negative logarithmic
value; the scaling constant c is the control of maximum
output value.

2. Add a white noise series w(t) to the data x(t) or
attenuation-compensated data L(t). The white noise
should have scales populated uniformly through the
whole time-frequency space. For simplicity, we use the
data without NLT:

X (t) = x (t)+ w (t) × R (7)

where R is the ratio of the amplitude standard deviation
of w(t) to that of the x(t).

3. Derive IMFs from the white noise added data X (t) by
using the EMD algorithm.

X (t) =
∑n

j=1
Cj(t)+ Rn(t) (8)

4. Repeat steps 2 and 3 with sufficient times m; each time
different white noise of the same amplitude is added to
obtain an ensembleGj of the corresponding jth IMF and
residue

Gj(t) =
∑m

l=1
Cjl (9)

where j is the jth level of IMF; l is the index of ensemble
members, and m is called the number of ensemble
members.

5. Calculate the ensemble mean on each level of IMFs

C̄j (t) =
Gj(t)
m
=

1
m

∑m

l=1
Cjl (10)

6. Derive the instantaneous frequency and perform the
fluctuation control.
i) Remove local fluctuations: If f (ti), the instan-

taneous frequency of a data point in the time
domain, is greater than one standard deviation,
it will be replaced by themean of neighboring two
data point values f (ti−1) and f (ti+1).

ii) Reduce end effect: Slope extrapolation is per-
formed to estimate the value of endpoints f (t1)
and f (tn) of sequence f (ti), i = 1, 2, . . . n.
An alternative is to take the average of f (t2) and
f (t3) and that of f (tn−2) and f (tn−1) to replace
f (t1) and f (tn), respectively.

To implement the algorithm practicaly, a few hundred repe-
titions ofm is adequate, and the error caused by the remaining
noise would less than 1% if the added noise has an amplitude
that is a fraction of the standard deviation of the original
data [38]. Usually, we could select a smaller numberm as long
as the contamination from the residue of the added noise is
tolerable [57]. Considering the computation complexity and
the feasibility of real-time application, we select 100 for the
number m, and the outcomes are acceptable.

D. MULTI-MARGINAL HILBERT-HUANG SPECTRUM
As declared in original papers [38], [40], the Huang’s decom-
position method is effective in decomposing any complicated
data set into a series of IMFs which permit well-behaved
Hilbert transform and yield instantaneous frequencies as
functions of time. The Huang’s decomposition method with
the Hilbert transform is called the Hilbert-Huang Trans-
form (HHT). It has been shown in various studies that the
Hilbert-Huang spectrogram (HHS) is more realistic than
conventional spectrum analysis [30], [58]–[60] because no
spurious harmonics or negative frequency are needed in the
analysis [38], [40]. Besides, the HHT is free from the uncer-
tainty principle’s limitation to resolve more details of the
signal [39], [40].

Although the spectrogram obtained from the HHT has
many advantages, it may not be easy to interpret. In fact,
too many details may distract the focus of our analysis from
its original aim. Therefore, we introduce the multi-marginal
Hilbert-Huang spectrum (MHHS) to facilitate data interpre-
tation. The MHHS presents a measure of the total energy of
each frequency of the data-trace over the entire data span. The
marginal Hilbert spectrum of each IMF is

H (�) =
∫ T

0
Hn (�, t) dt (11)

where Hn (�, t) is the Hilbert amplitude spectrum of the
nth IMF, � signifies the instantaneous frequency, and T
is the time span of the IMF. In this study, we call H (�)
mono-marginal spectrum (MMS). Accordingly, the MHHS
can be defined mathematically as

mH (�) =
∑

n

∫ T

0
Hn (�, t) dt (12)

where mH (�) is the MHHS that we need to find out. This
technique is similar to the profilemarginal spectrum proposed
by Chen and Jeng [39] that is effective in computing the
marginal spectrum of multi-dimensional data. The advan-
tages of using MHHS are the possibility of enhancing the
weak energy of some frequencies and making the whole
spectrum easier to read visually.

It is important to note that the MHHS is completely differ-
ent from the Fourier spectrum. In Fourier analysis, the ampli-
tude (energy) of a given frequency � indicates the energy of
a component of a sine or a cosine wave carried on throughout
the time span of the data. In contrast, the MHHS means
the accumulated energy contribution from each frequency
value over the entire time span that has appeared locally in
a probabilistic sense [40].

IV. MODEL STUDY
Before applying the proposed method to real EEG data,
we present a synthesis example to test the algorithm’s relia-
bility by comparing the result of the proposed method with
conventional technique mentioned in the previous section
(III. METHODS). We opt for a Fourier-based processing
scheme for the comparison, including the 60 Hz harmonic
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noise muting, zero-phase finite impulse response (FIR)
band-pass filtering, and Fourier spectral analysis.

Fig.1 shows a 5 seconds synthetic model data-trace x(t) x(t)
with a 250 Hz sampling rate that is a combination of signal
s(t) and noise n(t). The noise n(t) is a 60 Hz harmonic wave
with Gaussian white noise while the signal s(t) consists of six
harmonic waves of different frequencies, namely 5 Hz, 7 Hz,
9 Hz, 11 Hz, 20 Hz, and 28 Hz, with varying amplitudes.

FIGURE 1. Synthetic model data. (a) Noise interfered model data-trace
x(t) = s(t)+n(t) where n(t) comprises a 60 Hz harmonic wave with
Gaussian white noise. (b) Signal s(t) contains six harmonic waves of
different frequencies in 4 seconds: 5 Hz, 7 Hz, 9 Hz, 11 Hz, 20 Hz, and
28 Hz. (c) AC 60 Hz harmonic noise. (d) Gaussian white noise.

The following step is to test the data analysis competence
of the MHHS algorithm. The model data-trace x(t) (Fig. 1a)
is decomposed by using the EEMD algorithm at first, and
then we select components (C2 to C8) to reconstruct the
model data-trace as shown in Fig. 2a. Based on Eq. (12),
the selected components are saved for generating MHHS as
shown in Fig. 2b. The Fourier processing scheme is first to
mute the 60 Hz AC noise with a notch filter, then a zero-phase
0.5∼50 Hz band-pass FIR filter is performed to enhance
the signal band. Finally, the Fourier spectrum is obtained by
applying the FFT for comparison.

It can be visually discerned that the MHHS method out-
performs the Fourier-based technique significantly (Fig. 2).
Comparing Fig. 2a with Fig. 2c, the EEMD reconstruction
successfully eliminates the baseline drift in this example.
This achievement is vital because the baseline drift occurs
frequently in medical data or data containing Gaussian white
noise [61], [62]. Furthermore, the most important finding in
the model study is that the MHHS (Fig. 2b) computed by
using the proposed method exhibits much higher resolution
as compared with the Fourier method, which will be shown
in Section VI with real data.

V. EEG DATA ANALYSIS
The data acquired from each subject were formatted into
three electrode positions, four arithmetic difficulty levels, and
25 questions on each difficulty level. Data was then read for

FIGURE 2. FIGURE 2 Comparison of MHHS and conventional processing
scheme. (a) EEMD reconstructed data in which IMFs C2 to C8 of the
model data-trace X(t) are selected for reconstruction. (b) The marginal
spectrum was obtained from the MHHS algorithm. (c) AC 60 Hz muted
and 0.5∼50 Hz band-pass filtered data in which the zero-phase FIR filter
is performed. (d) Fourier spectrum of Fig. 2(c).

the frequency feature analysis to understand brain activities.
Fig. 3 is a typical EEG data set acquired from subject x in this
experiment with preliminary results of the proposed method.
Note that the marginal spectrum shown in Fig. 3 is the MMS
reflecting the energy distribution of each single IMF in the
frequency domain rather than the MHHS, which will be
discussed later on. As seen, the spectrum energy of raw data
is dominated by the components C1 and C10, which are the
high-frequency noise and background energy, respectively.

FIGURE 3. Typical EEG data acquired from subject x in this experiment.
(a) Original data-trace and the IMF components from C1 to C5. (b) MMS
of each trace is shown in (a). (c) IMF components from C6 to C10, where
C10 is the residue. (d) MMS of C6 to C10.

In this experiment, the three-electrode positions are Fpz
(middle prefrontal cortex), Fp2 (right prefrontal cortex), and
Fp1(left prefrontal cortex). Dan and Reiner [7] reviewed a
series of studies and concluded that frontal Theta rhythm
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increases with a higher cognitive load. Holm, et al. [6]
suggested that the ratio of middle frontal cortex (Fz) Theta
rhythm to middle parietal cortex (Pz) Alpha rhythm is a
dependable index indicating changes in the cognitive load.
Our data are taken from the electrical activities of the pre-
frontal cortex; therefore, based on the mentioned findings,
Theta rhythm is our main interest in the methodological
comparison of our method with conventional technique due
to its significant correlation with cognitive load.

From the feature of the energy distribution of the MMS,
it is clear that Alpha rhythm resides in component C5 while
Theta rhythm has its dominant energy in C6.

The complete processing scheme is briefly illustrated using
a flow diagram, as shown in Fig. 4. Two cautions need to be
mentioned: the NLT is optional and depends on the data qual-
ity. It applies to severely attenuated data only. In addition, the
selection of using EMD or EEMD has different advantages.
One should consider the computation cost and the remaining
white noise interference even if the EEMD removes the mode
mixing problem.

FIGURE 4. Flow diagram of the proposed method.

VI. RESULTS
A detailed comparison of our method with the Fourier based
technique using data taking from a representative participant
(subject x) is shown in Fig. 5 where Figs 5a, 5c, and 5e are
the EEMD-MHHS derived responding Theta amplitude of
individual question on each difficulty level in three positions,
Fpz, Fp2, and Fp1, respectively. Figs 5b, 5d, and 5f are
the corresponding performances of Fourier based technique.
To make the comparison more objective, we further use the
average responding Theta amplitude of 25 questions on each
difficulty level to demonstrate different effects of the two
methods (Figs. 5g and 5h). In general, the Theta amplitude
derived from our method increases significantly with the
difficulty level (Figs 5a, 5c, and 5e) while the Fourier-based
technique does not, and even shows the smallest amplitude
on the highest difficulty level (Figs 5b, 5d, and 5f). The
unreasonable results of the Fourier-based technique are more
noticeable when the average responding Theta amplitude is

FIGURE 5. Comparison of the proposed method and Fourier based
technique using data taken from subject x. The different effects of the
two methods are clearly shown. (a) Responding Theta energy in Fpz was
calculated by using the proposed method. (b) Responding Theta energy in
Fpz was calculated by using the Fourier based technique. (c) Responding
Theta energy in Fp2 was calculated by using the proposed method.
(d) Responding Theta energy in Fp2 was calculated by using the Fourier
based technique. (e) Responding Theta energy in Fp1 was calculated by
using the proposed method. (f) Responding Theta energy in Fp1 was
calculated by using the Fourier based technique. (g) Average Theta energy
variation with different difficulty levels by using the proposed method.
(h) Average Theta energy variation with different difficulty levels by using
Fourier based technique. Bar colors in Fig. 5a to Fig. 5f indicate the
number sequence of 25 questions; bar colors in Fig. 5g, and Fig. 5h
denote the sequence of four different difficulty levels. The abbreviation
EEMD-MHHS in the figure stands for the proposed method, while Fourier
represents the Fourier based technique.

adopted, i.e. the more difficult the level, the smaller the Theta
amplitude (Fig. 5h). On the contrary, our method demon-
strates the significant consistency between the difficulty level
and the Theta amplitude (Fig. 5g).

Some researchers may accept the results of the
Fourier-based technique because similar phenomena are
found in the studies of prefrontal Alpha activity [4], [63].
However, the literature review in Section III-D and our model
study reveal that results derived from the Fourier based
technique may be debatable.

We also provide a visual friendly illustration of results
derived from the two methods (Fig. 6) to compare the
Theta energy distribution in the prefrontal cortex with dif-
ferent levels of cognitive load tasks. The Theta energy
level trend of subject x obtained from the proposed method
(Fig. 6a) is opposite to that of the Fourier-based technique
(Fig. 6b). An interesting outcome is the near ‘‘mirror sym-
metry’’between these two results.

Further investigation to carry out in this study is the indi-
vidual difference of 25 questions on each level. We notice
that the Theta amplitude variation in 25 questions on each
level (Figs. 5a-5f) has no significant trend. This could indicate
the large variability of EEG energy as reported by other
researchers [64]–[66]. The acceptablemethodology to reach a
comprehensive summary of thewhole dataset is by describing
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FIGURE 6. Topographic Theta energy maps of subject x for a quick
comparison of two stated methods. (a) Results derived from the proposed
EEMD-MHHS method. (b) Results derived from the Fourier based
technique.

the central tendency usingmean, median, or mode.Moreover,
we suspect that our data may have some sort of skew due to
outliers (i.e. the data distribution is not normal). Therefore,
we require the median to be used as the measure of cen-
tral tendency, given that the median is more robust for out-
liers. In this study, a quantitative comparison is achieved by
employing the ANOVA (analysis of variance) test. To avoid
possible bias, we add a different subject’s (subject y) data
(Figs 7c and 7d) to the analysis. The box plot shown in Fig. 7a
displays the median (red mark inside the box) of the normal-
ized amplitude of subject x’s Theta energy computed from
the proposed EEMD-MHHS method. The top and bottom
edges of the box indicate the 75th and the 25th percentiles,
respectively.

FIGURE 7. Box plot of the median of Theta amplitude on each cognitive
difficulty level. (a) EEMD-MHHS results of subject x. (b) Fourier based
technique outcomes of subject x. (c) EEMD-MHHS results of subject y.
(d) Fourier based technique outcomes of subject y. The red mark inside
the box is the median; the small red cross indicates the outlier.

The median values in Fig. 7a increase noticeably as the
cognitive difficulty increases. In contrast to the proposed
method, the median values obtained from the Fourier based
technique generally decrease while the cognitive difficulty
increases (Fig. 7b), although the trend is rather vague. Similar

outcomes are obtained from subject y data (Figs 7c and 7d).
The outliers, appearing in Figs. 7a and 7c, imply that the
data still have remaining added white noises, which result
from EEMD operation. However, this phenomenon does not
affect the competence of the proposed method because it
can be improved greatly as long as the number of ensemble
members is large enough. It should be noted that although
each median displayed in the box plot is ‘‘a’’ given amplitude
literally, it represents an amplitude composed of a series of
components, each component is the amplitude of a given
Theta frequency in the Theta band.

For the proposed method, the p-value (probability value)
from the ANOVA is 8.14e-20≤0.01(for results with a 99 per-
cent level of confidence), and the F-test value is 35.9, i.e.
(F, p) = (35.9, 8.14e-20) for subject x. The further this
F-test value deviates from 1, the more likely the underlying
variances are different, suggesting that the null hypothesis
may be rejected. In other words, the proposed method is
effective in distinguishing Theta energy of four levels of task
difficulty. Conversely, (F, p)= (8.86, 1.21e-5) for the Fourier
based technique, it is still effective in distinguishing Theta
amplitudes of four different tasks but not as significant as the
proposed method, and the ‘‘trend’’ is unreasonable, particu-
larly at level 4 (Figs 7b and 7d). From the box-plots shown
in Fig. 7, Theta amplitude distributions on four different lev-
els of task difficulty vary in both methods, i.e. some are nor-
mal, and some are not. Under this condition, the ANOVA F
test may not be sufficient.We then add the Kruskal-Wallis (K-
W) test to the analysis. The K-W test is a distribution-free test
and is effective when the assumptions of one-way ANOVA
are not met. The calculated results of the subject x show that
the K-W test value is 94.32, and the p-value is 2.59e-20 for
the proposed method. The Fourier based method results are
24.73 for K-W value and 1.75565e-5 for p-value. For subject
y, the K-W test value is 117.64, and the p-value is 2.25e-
25 for the proposedmethod. The Fourier basedmethod results
are 10.95 for the K-W test value, and 20.81 for the p-value.
In the chi-sq table, for 4-1 degrees of freedom and alpha
(the level of significance) level of 0.05, the critical chi-sq
value is 7.81. For both subjects, when using the proposed
method, the K-W test value is much higher than the critical
chi-sq value while the p-value is extremely small, then we
should reject the null hypothesis that median ranks are equal
across different levels of task difficulty. Besides, the data are
not necessarily normally distributed; therefore, the increasing
median does not result from the increasing variance. All of
the facts indicate that Theta amplitudes of four different tasks
are significantly different. Compared to the proposedmethod,
the K-W statistic, like the previous F-test, reveals that the
Fourier based method is not very effective for both subjects.

To investigate how strong the relationship is between data,
we calculate the correlation coefficients between the Theta
amplitude and the correct answer rate, and the amplitude and
the answer time (Fig. 8). In both comparisons, a strong pos-
itive correlation exists between the EEMD-MHHS derived
Theta amplitude and the correct answer rate (Fig. 8a).
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FIGURE 8. Bar charts of correlation coefficients. There are 20 bars in each
electrode position, representing 20 subjects in the experiment.
(a) Correlation between the EEMD-MHHS derived Theta amplitude and
the correct answer rate. (b) Correlation between the EEMD-MHHS derived
Theta amplitude and the answer time. (c) Correlation between the Fourier
based technique derived Theta amplitude and the correct answer rate.
(d) Correlation between the Fourier based technique derived Theta
amplitude and the answer time.

An even stronger positive correlation is shown between the
EEMD-MHHS derived Theta amplitude and the answer time
(Fig. 8b). Adverse correlations are found in the results of
Fourier-based technique (Figs. 8c and 8d), where about one-
half of the subjects display negative correlation coefficients.

A more precise comparison between the two methods can
be obtained from the same data used in Fig. 8. Table 1 shows
the correlation coefficient maximal values and calculated
means from that data bank.

TABLE 1. Numerical comparison of correlation coefficients.

VII. DISCUSSION
Nowadays, the EEG has been a promising tool for the con-
tinuous and on-line measurement of cognitive load at all
levels [4], [22]. With EEG’s help, instructional methods can
be improved by assessing a learner’s engagement and mental
load during learning tasks [7]. In educational psychology,
the EEG measurement is a key technique in understanding
learners’ cognitive load which indicates the total amount of
mental effort being used during problem-solving, thinking,
and reasoning [32]. All the above statements rely on the
accurate measurement of EEG and the post-processing of the
data.

We applied the EEMD in the computation to reduce the
mode mixing problem, but the computation cost is high,

and it may cause artificial fluctuations in the instantaneous
amplitude attribute; this is evident in the model study where
one may find that the EEMD reconstructed model trace is
interfered with by some noise due to the remaining white
noises resulting from the EEMD algorithm. Statistically, the
added white noises will not be completely removed unless the
ensemble members’ number is infinitive, which is impossible
in practice.

In this study, we find that there is no significant differ-
ence between the results of EMD and EEMD. The possible
reasons are that we do not depend too much on selecting
particular IMFs with physical meaning to reconstruct data,
and the mode mixing problem of our experimental EEG data
is not serious. Another concern of the EMD algorithm is the
orthogonality; however, it is not a necessary criterion for a
non-linear decomposition like EMD [40]. Actually, in most
cases, particularly when the intermittence is not a matter, the
leakage due to the non-orthogonality is small.

A few studies reported that when the working mem-
ory task’s difficulty increases, the prefrontal Alpha activity
decreases, whereas Theta activity increases [4], [63]. How-
ever, some investigators argued differently from the other
discussions. The EEG phenomena of Alpha and Theta could
vary with age, neural noise, and electrode positions [11], [67].
Although we don’t discuss the Alpha rhythm in this study,
a preliminary examination of our data reveals that the Alpha
rhythm seems to exhibit the same phenomenon as the Theta
rhythm. In other words, it is possible that the prefrontal Alpha
activity is consistent with the Theta activity. It is proba-
bly premature to take our stand on this subject, but further
investigations are certainly needed. The possible correlation
between Alpha and Theta rhythms reflects the complexity
of the relations between cognitive load and those two brain
electrical activities.

VIII. CONCLUSION
The non-linear and non-stationary data analysis is a trend in
processing naturally occurring signals, including biomedical
data. We introduce the EEMD-MHHS algorithm which is
exactly developed from the non-linear and non-stationary
system theory. The proposed method successfully resolves
the connection between the signal of prefrontal electrical
activity and cognitive load, particularly on the topic of Theta
rhythm and cognitive load. The F-test value at 99% confi-
dence level and the K-W test value at 95% confidence level
show that the proposed method is effective in and appropri-
ate to the EEG data processing. Besides, more significant
features of the EEG signal can be extracted accurately as
the MHHS algorithm is adopted. With further developments,
we believe that the application of our findings will benefit the
practice of learning and instruction at all levels of education.

Our results on the prefrontal Theta rhythm are gener-
ally consistent with other researchers’findings on the frontal
study. The Alpha rhythm holds some interesting topics for
researching the brain’s electrical activity. Further non-linear
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and non-stationary investigations on the factors in gender,
age, and educational background should be decisive.
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