IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 28, 2020, accepted November 11, 2020, date of publication November 17, 2020,

date of current version November 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3038453

A Real-Time and Adaptive-Learning Malware
Detection Method Based on API-Pair Graph

SHAOIJIE YANG', SHANXI LI', (Member, IEEE), WENBO CHEN',

AND YUHONG LIU“2, (Member, IEEE)

!School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

2Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Corresponding authors: Shanxi Li (lisx @lzu.edu.cn) and Wenbo Chen (chenwb@1zu.edu.cn)

ABSTRACT The detection of malware have developed for many years, and the appearance of new machine
learning and deep learning techniques have improved the effect of detectors. However, most of current
researches have focused on the general features of malware and ignored the development of the malware
themselves, so that the features could be useless with the time passed as well as the advance of malware
techniques. Besides, the detection methods based on machine learning are mainly static detection and
analysis, while the study of real-time detection of malware is relatively rare. In this article, we proposed
a new model that could detect malware real-time in principle and learn new features adaptively. Firstly,
a new data structure of API-Pair was adopted, and the constructed data was trained with Maximum Entropy
model, which could satisfy the goal of weighting and adaptive learning. Then a clustering was practised to
filter relatively unrelated and confusing features. Moreover, a detector based on Lont Short Term Memory
Network (LSTM) was devised to achieve the goal of real-time detection. Finally, a series of experiments
were designed to verify our method. The experimental results showed that our model could obtain the highest
accuracy of 99.07% in general tests and keep the accuracies above 97% with the development of malware;
the results also proved the feasibility of our model in real-time detection through the simulation experiment,
and robustness against a typical adversarial attack.

INDEX TERMS Malware detection, adaptive learning, real-time detection, API-pair graph, deep learning.

I. INTRODUCTION

Since the last few decades, malware has become a common
threaten for cybersecurity. Malware will be transferred in
computers without the permission of their owners and will
harm computers, networks as well as steal target information
since malware plays a vital role in damages of cyberspace.
Defending of malware had almost appeared with the growth
of malware, which will also promote anti-detection tech-
niques of malware.

Most solutions for defending malware were based on two
main techniques. Static detection, including signature-based
detection and heuristic-based detection, has sound effects
on detecting known malware. Moreover, dynamic detection,
such as behavior-based detection and pattern-checking-based
detection, have a specific rate on both known and unknown
malicious program [1]. Additionally, deep learning-based
detection has become an essential approach in the research

The associate editor coordinating the review of this manuscript and

approving it for publication was Mervat Adib Bamiah

208120

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of recognizing malware, which would be applied widely in
the future.

However, in contrast to the development in malware detec-
tion, technologies refer to malware anti-detection that was
proposed and used year by year, which even developed far
faster than the detection methods. Many techniques are pro-
posed to avoid detection solutions. Encryption is one of the
most straightforward approaches for malware authors to cam-
ouflage their program [2]. For malware that was encrypted,
it consists of two modules to encrypt and decrypt the program.
Once encryption is done, the key will be included in the
malware for decryption. The aim of encryption is mainly
to avoid static detection based on signature match and code
analysis. It could also be used to impede related surveys.
Obfuscation is another technique that makes a program harder
to understand [3]. For malware, the obfuscation is applied to
defend both static detection and dynamic detection. Different
approaches are proposed to achieve the target. The easiest
way is the insertion of junk code, a series of code that has no
meaning except deceive detecting solution. The insertion will

VOLUME 8, 2020

https://orcid.org/0000-0001-8056-3206
https://orcid.org/0000-0002-3717-427X
https://orcid.org/0000-0001-5692-9992

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

not affect the purpose of the program. Other methods include
instruction substitute, which means replace some sensitive
instruction by others that have similar functions [4]. Finally,
even deep learning-based detection has not been applied
diffusely; some anti-detection methods are proposed, which
focus on attacking deep learning detection models. One of
them is to generate adversarial samples to evade detectors
which utilized deep learning or machine learning models; the
approach could even decrease the accuracy of detection into
zero, which means destroy the whole model.

Recently, researchers have shown an increased interest in
the detection based on more fundamental signatures, like API
and opcode. Some related works focus on dynamic malware
detectors based on system-calls [S]. They have analyzed
existed malware and generated system call sequences or calls
flow graph (CFG). Then they abstract some dependency
maps from the orders or graphs with statistics methods and
trained with machine-learning tools to finish a behavior-
based detector. However, all of those researches had a basis
that samples have been executed, and all their behaviors have
been recorded, which means some experimental black-box
environments like sandbox or virtual-machine are needed.
Furthermore, all analyses have to begin after execution fin-
ished, which could be a risk for production environments. For
instance, if victims have infected with ransomware, the mal-
ware could behave caused damages before detector detectors
identify recorded all its behaviors and finish the analysis. All
these methods could be classified as static detection, which
might not satisfy the need for real-time detection.

Besides the development of anti-detection technologies,
the development and generation of new types of mal-
ware increased incredibly in recent years, especially ran-
somware [6]. A report shows that ransomware attacks grew
by 118% in the first quarter of 2019 [7]. Unfortunately,
both static detection and dynamic detection are based on
known features, and only after manual analysis for a new
type of malware can those approaches identify them. How-
ever, ransomware is a type of malware that blackmails vic-
tims by locking their data [8]. For the victims, the solution
is too late after traditional approaches get features from
human analysis results and can detect the ransomware. In
this article, we devise a novel real-time malware detector,
which can analyze, record, and identify behaviors of mal-
ware automatically. Our method based on system calls and
focuses more on real-time detection and adaptively update
of features. The detector consists of three parts: a weight-
ing model, a cluster for feature filtering, and a real-time
malware detector. These systems aim to solve the following
problem:

o Which information would be used for detection that

could copy with the development of malware?

o How to extract and update features for detection auto-
matically, considering that new types of malware con-
tinuously appeared?

« How to implement real-time detection while keeping the
performance?

VOLUME 8, 2020

o How to detect unknown malware as well as adversarial
samples that aim at evasion of detectors?

Firstly, to process the features conveniently as well as keep
more correlation information, we adopted a new structure
based on API call sequences and Markov Chains. For each
API call in the series, a vector would be mapped with the
API to construct a two-dimension pair as a basic unit so
that every sequence would be split into a set of tuples with
the maintenance of connection information among calls. The
transformation would decrease the difficulty of analyzing and
provide a condition for real-time detection.

Besides, we take a maximum entropy model to extract
features from the pair graphs, training features and achieve
adaptive learning. The model attempt to keep all possibility
for predicting uncertain results and the prediction should
satisfy all constraints, which is suitable for malware detection
and new malware prediction.

Moreover, to defend adversarial attacks as well as improve
the performance of real-time detection, a clustering algorithm
was adopted to split malicious and benign pairs based on the
sequence of calls invoked, so that benign features, junk codes,
and disguised calls which were used to deceive detectors
would be filtered. The essential malicious pairs would be
retained, which could increase the accuracy of the detection
and decrease the time consumption of the detector.

Finally, a real-time detector was devised based on an
improved LSTM structure, the detector could receive features
generated in real-time and give the judgment instantly so
that malware could be detected before the execution finished,
and more loss could be avoided, which is important for
ransomware defending.

Experiments show that our approach could detect malware
in normal conditions with a highest accuracy of 99.33%.
Besides, with time-series development of malware, our model
could keep accuracy above 97%. The model also had a certain
effect in detecting unknown samples. Moreover, the model
was tested with several adversarial samples to validate the
robustness of our model against evasion attacks; the result
presented that our model could retain the accuracy above 96%
when meeting adversarial attacks. Our contribution is listed
as follows:

1) We adopted a two-dimension structure of data
(API-Pair) to process with API call sequences, which
was based on the thought of Markov Chain. The struc-
ture could format variable length API call sequences
as well as keep the connection characteristics between
calls. Then we adopted an effective model to achieve
the goal of weighting to features and update of the
feature sets automatically to catch up with the devel-
opment of malware.

2) We proposed a sequence-based clustering approach to
remain the flows that are more suspicious and delete
the objects that might mislead the detector. Hence,
we could improve the effects of the detector and
increase robustness against adversarial attacks.

208121

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

3) We devised a novel behavior-based malware detector
for real-time detection. It utilizes sequence-based calls
edge flow and optimal weighted model to achieve real-
time and unknown malware detection.

4) We had evaluated our detector using real malware and
benign samples in the Windows environment. The test-
ing results proved the effectiveness of our model in
production conditions.

The rest of this article is organized as follows: Section II
would clarify our problems and key points. Afterwards,
we would introduce our method in Section IV. The whole
design of our model was then presented in Section III, and the
experiment details and results of the evaluation were reported
in Section V. Moreover, some discussions of our work were
presented in Section VI. Finally, we showed some related
work in Section VII and concluded our work in Section VIII.

Il. ANALYSIS OF THE PROBLEM

Malware is continuously evolved to avoid detection as well as
achieve new goals. On one side, some anti-detection methods
have been used in malware such as dynamic encryption and
decryption to avoid dynamic malware detection solutions.
As a result, the detection solution cannot identify malware
before they have finished. On the other side, detectors mainly
discover malware using known feature databases (such as sig-
natures and suspicious behaviors). However, malware would
be updated by changing their sources and implementation
mode so that detectors cannot compare them with known
features, and they will escape from detectors.

In this article, we proposed a novel malware detection
method to solve the problem described before. Our proposed
solution utilized a series of approaches and focused on two
main points.

A. REAL-TIME DETECTION

Nowadays, dynamic real-time detection generally moni-
tored some sensitive behaviors, file locations, and memory
addresses, which had effects over recent decades. However,
most techniques have focused on the single features, while
execution of malware includes a set of behavior chains so
that attackers could just change sensitive behaviors or fea-
tures with similar ones, and the malware would pass the
detection. The approach has been widely used in many anti-
detection methods, and detectors could only extend their fea-
ture database to solve the problem contemporarily. Moreover,
some malware, especially encryption ransomware, would
hide their behaviors with hook/injection or dynamic encryp-
tion/decryption technique, and key behavior would be per-
formed at the last moment [9]. When detectors discovered
exceptions, it is too late to stop malware, and the goals of
attackers have been finished.

According to those new threaten for detection, our prim-
itive objective is to define new units for detectors; the units
must have successive features and could be detected imme-
diately. API call sequences are a set of API of a program

208122

to finish specific functions. Usually, the call sequences of
malware have a strong purpose and can be used to analyze
its behavior [10]. Though some anti-detection methods would
insert some obfuscated API to hide the purpose of malware,
its critical calls that refer to its real goals have to be invoked
when execution. In a word, the call sequence is an effective
prototype for real-time detection.

B. ADAPTIVE UPDATE OF FEATURES

With the development of detection techniques, techniques for
anti-detection and a new type of attack also increased, which
need experts must analyze new malware and add their features
into databases. The problem is, detectors can have abilities
to identify new malware only after experts finished their
analysis. Before the manual analysis completed, the detectors
have no means to prevent new kinds of malware. Another
trend is that new types of malware and attack methods grow
explosively, which will take too much effort for specialists to
study, and detectors will be weak to the tremendous appear-
ance of new malware.

Considering the development of attacks and anti-detection
are based on existing methods, learning from current mal-
ware and get the ability to detect unknown types of malware
is feasible. Therefore, we proposed an adaptive model to
identify the malicious level of each behavior of detected
programs. Besides, the proposed model also enabled us
to learn behaviors and features from new appeared mal-
ware to improve the performance of predicting unknown
malware.

Ill. SYSTEM DESIGN OF THE MODEL
The full structure of our model is shown in Figure. 1.

Firstly, a target program would be executed in a monitor
environment. When the program invoked API calls, the mon-
itor would record the API and transferred it to the model.
Then the model would transform the API to API pair with
the previous API call.

After the transformation, the pair would be caught by
the Maximum Entropy Model to get the weight of the pair.
The weighted pair would then be identified by Sequential
Algorithmic Scheme. If the pair was identified as probably
malicious, it would be input to the LSTM-based detector.
If the result of the detector was malicious, the API pair would
be added to API-Pair Graph, and the graph would be trained
by the Maximum Entropy Model to update the weight, or the
detector would suspend and wait for next Pair input. If the
detection process is done, the detector, filter, and the graph
would be initialized.

Due to the weight would update with the input of API
sequence, the model could update adaptively with the devel-
opment of malware. Also, because of BSAS algorithm
and the characteristics that the weight would be decided
by all samples detected before, the model would have
the robustness to attacks that focused on deep learning
evasion despite the model fully based on deep learning
method.

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

l Benign
Invoked
call

Moniter

Weighted
API Pair

Weighting

Target
program

Maximum Entropy
Model

Previous
call

Sequential
Algorithmic Scheme

Malicious Detector Malware—»

Detection
completed
Train join

API Pair Graph

FIGURE 1. System design of the model.

IV. METHODOLOGY
Analysis of whole call graphs would be complex. It is too spe-
cific for a single malware and cannot extract general features
for all malware detection. Meanwhile, learning from every
single APIin API call sequences would be lost characteristics
of relevance among call sequences. Considering thoughts
of Markov chains, the method would focus on analyzing
connections between API in call sequences and reconstruct
the call graph of malware.

In this section, our method of extract features, adaptive
learning, optimization, and real-time detection would be pro-
posed.

A. API PAIR GRAPHS

Common API-based malware detection used a complete
system call sequence graph as inputs. However, the graph
cannot apply to real-time detection, for the detection must
identify every single behavior of samples. Another method
concentrated on single API invoke as detection point, which
will be regardless of important connection among API call
sequences. In our model, an API pair would be adopted as
meta for detection. The idea was based on the thought of
Markov chain and has been evaluated in [11], [12], which
defined each type of event as a system state, and the state was
represented as a graph to describe the state of change [13].
When some events were executed in a specific order, it may
clarify that some abnormal behaviors occurred.

Considering a sequence of invoked system-calls € =
{c1,c2,c¢3,c4,...,cn}, where ¢, referred to a system-call
invoked. Then an API Pair Graphs could be constructed as
p = {(s, c1), {c1,2), ..., {Cn—1, cn), {Cn, €)}, where s and e
refers to a hypothetical call of start and end. The target is
not focused on a single API or a full sequential call graph.
Instead, the approach adopted API pairs as targets to represent
behavior and the current state of a program.

Definition 1: An API Pair Graph G = (S, E) refers
to a directed graph, where S is a set of 2-length API call
sequences. £ = {ei,j|c,~ﬂ>cj, (ci, ¢j € €)}, where w; j means
weight (sensitivity) of behavior ¢; — ¢;.

VOLUME 8, 2020

Train

(a) Markov Chain-based API call sequences

Start,S,

W,

<8.,8,>

W2

<8,,8,> <S8, > <8,,8> < S5, End >

W3 Wia Was Wse

s SP002 7 L SO0 T L SO0 T L SO T L

(b) Weighted API-Pair Graph

FIGURE 2. Structure of API call sequences and API-Pair Graph.

E; j is a two-dimension set of API calls, so that an n-length
call sequence could be transformed to a set 2-gram oriented
graph. Figure. 2. showed the difference between HMM-based
sequence and API Pair Graph, the transformation from the
sequence to the graph could split complex chains into a group
of two-dimension units, which could retain the connectivity
of API calls.

Graph G was supposed to be Markov chains, which means
the next behavior Ej ; only associates with the current behav-
ior E; j and is unrelated with the previous part. However,
in Markov chains, a weight w;; of ¢; — ¢; refers to the
probability from state s; to s;, and the probability could be
computed as follows:

Cci —> Cj
P Ta—>g

The equation presented that the weights of Markov chains
are only related to the frequency that edge s; — s; appeared
in known datasets, so that the prediction ability of Markov
chains is restricted by known samples. On the other hand, the
identification of malware is more sophisticated, which could
be influenced by many other factors. Moreover, malware
updates very frequently to avoid the detection of the anti-
malware solutions, which means past data would be outdated
in just a few times, and simple probabilities of sequences
would be a disadvantage. Besides, some crackers would add
some confusing instructions to mislead detectors or even
destroy the accuracy of the detectors; some related researches
have had some results. All the conditions showed that Markov
chains could only be considered as inputs; other approaches
for filtering and detection are needed.

ey

208123

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

B. WEIGHT COMPUTING

Our approach of weighting is based on the Maximum Entropy
model. The model is developed from entropy and maximum
entropy principle. The concept of entropy in information
science was proposed by Shannon [14], which could present
uncertainty of a set of random variables. Assuming that X is
a limited discrete random variable, and the probabilities of X
could be described as P(X = x;) = p; (i = 1,2, ...,n). Then
an entropy H of X could be defined as follows:

H(X)=—logp;)
i=1

The maximum entropy principle is widely applied in prob-
ability model learning [15]. The thought of the principle is
that the target model should satisfy known conditions, and
all other parts would seem as equiprobable without addi-
tional information. The principle judged equiprobability with
entropy maximization. Considering H(X) in 2, H(X) would
meet the following expression:

0 < HX) < log|X|

The maximum entropy model is a classification model
based on the maximum entropy principle. Giving a training
dataset D7 = {(x1, y1), (x2,¥2), - . ., (Xu, yn)}, the experience
distribution of joint distribution (X, Y) and marginal distri-
bution X are certain. Then the expectation of (X,Y) could be
computed as follows:

Ep(f) =) PO, y)f (x,) 3)

where P(x, y) is the experience distribution of joint distri-
bution (X, Y), f(x,y) is a characterristic function of joint
distribution (X, Y). Besides, the expectation of P(Y|X) and
X would be:

Ep(f) = Y PP(YIX)f (x.) @)

X,y

If the model could get enough information from the dataset
D7, then E;,(f) would be equal to E,(f), namely

Y P yf(x,y) =Y POPYIX)F(xy) (5)
X,y X,y

The equation (5) would be used as constraints of model learn-
ing. If the dataset has n characteristic functions fi(x, y),i =
1,2, ..., n, then the model has n cocnstraints.

Definition 2: A maximum entropy model M is a model
which have the highest conditional entropy H (P) in a model
set S, where

S ={P e PIE3(f) = Ep()} (6)
and
H(P) = =) P(x)P(ylx) log P(ylx) @)
208124

The learning process of the maximum entropy model is
a process of solving the maximum entropy model with (6)
and (7). The learning could be formatted to constrained
optimization, and Improved Iterative Scaling (IIS) is one
of the most applied optimization algorithms for learning of
maximum entropy model, and our algorithm is also based on
the optimization algorithm. After the API chains transformed
to API Pair Graph, the graph would be trained with weight
computing algorithm and finally get a probable weight of
being malicious and benign for each API pair.

Algorithm 1 Weight Computing Algorithm

Input: characteristic function fi,f2,...,f,; experience
distribution P(X, Y); model P,,(y|x).
Qutput: optimal weight wy,;, wp;; optimal model P,,.

foreachie {1,2,...,n}do
Wi =0, wp; =0
end for
while w,; is not converage do
foreachie {1,2,...,n}do
R,y = Y fix,y)
o; is the solution of the equation
Yy POPOIix, exploif*(x, y) = Ep(fi)
Wi = Wmi + Omi, Whi = Wpi + Opi
9: end for
10: end while

A A o

®

Weight Computing Algorithm: the proposed approach uses
weighted API-Pair Graph to represent the relationship among
API-Pair and API call sequences in each program. The model
adopts the Algorithm 1 to compute and update the weight
w; of each pair p;. The algorithm is a variant of the IIS
model, where f; presents the connection between API-Pair
and properties of the program, malicious or benign. For each
pair, the weight is the optimal solution of the formula that
follows the maximum entropy principle, which corresponds
with the occurrences of the pair in malicious and benign
program [16], [17].

The maximum entropy model could predict the probability
of a random event or event chain, which have been applied
in some study [18], [19]. The result would meet all known
constraints, and unknown conditions would be seemed as
equiprobable events. In our study, the weight of each API pair
can only be connected with known information, and it can
update with an increase of datasets. Hence, the weight could
adjust adaptively with the development tendency of malware.

C. CLUSTERING AND FILTERING

In this phase, we will present an adjusted Basic Sequential
Algorithmic Scheme (BSAS) algorithm for weighted API-
Pair, the proposed algorithm could be seen as a filter to screen
those most relevant API pairs and remove those API calls
which were added artificially to disguise detectors.

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

Malicious Pair

Benign Pair

:}m [e— —) | Malware
AP Graphf mlcioussmples .
Sequential

i
ed Detector

= =@ =| =

(a) Clustering of normal samples

§

§

APl-pair Graph of benign samples

Malicious Pair

Benign Pair

Distorted Pair

[— .—. —_— —> | Malware
Adversarial APl-Pair Graph of malicious samples
Sequential
ase:

Clustering

%

%

N =@ = e [Benien

File

Adversarial API-Pair Graph of benign samples

(b) Clustering of adversarial samples

FIGURE 3. Process of clustering graphs.

The basic sequential algorithm scheme is a clustering algo-
rithm that is based on the sequence of input data [20], which
is widely used in the scheme of clustering [21] and data
classification [20]. Generally, the constraints of the BSAS
algorithm are the maximum number of clusters, the threshold
of dissimilarity, and the dissimilarity that is mostly presented
by the distance between units and clusters [22]. The thought
of BSAS is to classify each unit to an existing cluster or create
a new cluster for the unit [23]. The classification is related to
the distance among clusters and units, and the distance would
be decided by all units included.

Generally, malware in the same category usually have sim-
ilar behavior patterns and execution sequences. Therefore, the
appearance number of API invoked in the behavior chain are
also related, and the API-Pair composed of those API would
have adjacent positions and weights. With BSAS clusters,
the API-Pair unrelated with malicious behaviors would be
dropped and those in the same behavior chains would be
retained, which would improve the efficiency of the model
and reduce the interference and consumption.

The main principle of adversarial attack is to add noise
to the samples so that it could hinder the identification of
the model. The BSAS algorithm could filter the inputs have
few relation with current API-Pair sequences. Hence, only
API-pair correspond to malicious bahavior chains would be
retained, and disguised items would be filtered. The diagram
of the BSAS process is presented in Figure. 3.

In our method, the number of clusters would be set as two,
which is malware and benign. The threshold is unneeded,
and classification would be transformed into a comparison
of the distance between new units and the central point of
each cluster. After classification, the central point would be
updated.

VOLUME 8, 2020

Algorithm 2 Clustering Algorithm
Input: API-Pair p; in API-Pair Graph G;
Output: p; if p; in Malicious Cluster C,, else None.

1: Initialize Malicious Cluster— C,,, Benign Cluster— Cp
2. forp; € G,ie(1,2,...,n)do
3. ifC, = @ or Cp, = @ then

4: if w,; < wp; then

5: Cn <~ Pi

6: else

7: Cp < pi

8: end if

o else D Wi D Wh

10: center,, < (m, m)mj € Cy

11: centery, < (S V;’Z, Zk—w;:),l?k €Cp

12: A, p; <« [=ldistané=el(centerm, Di)s dp p; <~
distance(centeryp, p;)

13: if d, p, < dp p; then

14: Cn < pi

15: else

16: Cp < pi

17: end if

18: end if

19: ifp; € C,, then

20: Return p;

21: end if

22: end for

Clustering Algorithm: The clustering algorithm would
classify the pairs in the same API-Pair Graph with their
sequences of appearance and the distance between their
weights and the central point of clusters. Each pair would be
clustered into the malicious cluster or the benign cluster, and
the pair belonged to malicious cluster would be output for the
next step of detection.

D. REAL-TIME DETECTION

The real-time detection approach of the model is based
on Lone Short-Term Memory (LSTM) network. Severe
researches have clarified that the model have a good effect in
detecting sequence-based malicious data [24], [25] and real-
time detection [26]. In our work, the structure of the network
would be improved to adapt to the aim of instant identifica-
tion. The input of the network would be API-Pair identified
by the filter algorithm, and the sequential sequence of API-
Pair could match with the execution of samples, so that the
model could achieve the goal of real-time detection.

The common structure of LSTM is presented in Fig. 4-a.
The structure is consists of a cell and three ““gates” to process
data. In the input phase, the sequence data x; of time ¢ will
be pushed in and combined with the long memory data c;
and short memory data h; to generate new data c;+1 and
h;41. In the output phase, the current short memory data h;

208125

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

LSTM Cell
>) >) >) >
G T \f T Cirp
h Input Oblivion Output J 7
4 gate gate gate t+1
t t)
X
(a) Basic LSTM structure
Result
output
malicious
e (e BN,
LSTM Cell LSTM Cell
@—> —@—b Softmax Identifier ma:‘::ous —@

© G

(b) Improved LSTM structure

FIGURE 4. LSTM structure.

would be processed with full connection and softmax layer
to generate the output matrix for identification.

Our improved LSTM structure is shown in Figure. 4-b.
In order to achieve the goal of real-time detection, a function
was added to determine whether the current sequence could
be seen as malicious. If the function gives a positive result
(malicious), the model will stop the process, and the output
would be presented, else the model would suspend temporar-
ily and wait for the next input.

V. EXPERIMENTS AND RESULTS

A. ENVIRONMENTS AND DATASETS

1) ENVIRONMENTS

The experiments are performed on a workstation with CPU of
Intel Xeon E5-2603 and RAM of 32 G.B., running on Ubuntu
18.04 operation system. To record the call sequences of sam-
ples, Cuckoo Sandbox was adopted to monitor the behavior of
the target program. A virtual machine with Windows 7 64-Bit
was installed to run and monitor the program. Considering
real-time monitor of API is complex, the call sequences were
split to single API, and each API was involved one time to
simulate real-time monitor and detection.

2) DATASET

In this work, we collected a dataset consists of 13624 samples,
which have 6686 malware and 6938 benign samples, the
concrete statistics were presented in Table. 1. The malicious
samples came from VirusTotal [27] and VirusShare [28],
and the benign samples are from system programs as well
as the Internet. The benign dataset would be split into five
parts evenly to fit malware dataset of each year, in our most
experiments. The datasets would be set 80% for training and
20% for evaluation.

208126

TABLE 1. Number of samples.

Dataset Number

2016 Malware Dataset 1606

2017 Malware Dataset 1247

2018 Malware Dataset 1656

2019 Malware Dataset 888

2020 Malware Dataset 1289

Benign File Dataset 6938

Total 13624

TABLE 2. Top 20 API-Pairs.
API-Pair Count

NtReadFile, NtReadFile 41188728
NtQuerySystemInformation, NtQuerySystemInformation | 25934325
NtDelayExecution, NtDelayExecution 22073863
GetAsyncKeyState, GetAsyncKeyState 15279121
ReadProcessMemory, ReadProcessMemory 15047064
CryptHashData, CryptHashData 14011791
GetKeyState, GetKeyState 13113138
NtWriteFile, NtWriteFile 10556980
GetKeyState, GetAsyncKeyState 9239945
GetAsyncKeyState, GetKeyState 9239945
LdrGetProcedureAddress, LdrGetProcedure Address 6413252
timeGetTime, timeGetTime 6340140
NtFreeVirtualMemory, NtFreeVirtualMemory 5209827
GetForegroundWindow, GetForegroundWindow 5127321
GetFileType, GetFileType 4910374
GetSystemMetrics, GetSystemMetrics 4835010
DeleteFileW, DeleteFileW 4632405
GetSystemTimeAsFileTime, GetSystemTimeAsFileTime | 4614812
NtReadVirtualMemory, NtRead VirtualMemory 4425495
LdrLoadDIl, SetErrorMode 4142028

B. EXPERIMENT STEP

1) GENERATING API-PAIR

Firstly, the invoked API call was transformed into a point.
Then the point could combine with the last point and became
a two-dimension point, which could be seen as API-Pair. The

top ten appeared most API pair in experiments were presented
in Table. 2.

2) TRAINING WEIGHT

In the weight training phase, each API-Pair Graph of samples
was imported in the Maximum entropy model. The model
would extract each pair and label of the graph and compute
two weights, each weight connected with a pair and a label.
Table. 3 presented ten API-pairs with the highest weight of
being malicious and benign. The NaN in the table meant that
the pair hadn’t appeared in related samples. Some API pairs
that have both malicious and benign weight are shown in
Table. 4. The tables indicated that API could be quite distinct
in the possibility of being malicious and benign.

In order to improve the accuracy of the identifier,
the weight would be processed with normalization before
detection. For each weight (wy,;, wp) of pair p;, new
weight(W,,;, Wp;) would be computed as:

Wmi
Wy = ———— 8
A —— 3
Whi
Wp = — 9
bi Wi + Wp; ()

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

TABLE 3. API-Pairs with highest weights.

Class API-Pair Malicious Weight Benign Weight
LdrLoadDIl, NtResumeThread 6.93147180560073E-05 NaN
NtCreateFile, ColnitializeSecurity 6.93147180559955E-05 NaN
URLDownloadToFileW, NtCreateFile 6.93147180559955E-05 NaN
NtProtectVirtualMemory, NtWriteFile 6.93147180559954E-05 NaN
NtCreateFile, URLDownloadToFileW 6.93147180559951E-05 NaN

Malicious pair NtOpenFile, NtDelayExecution 6.93147180559949E-05 NaN
PRF, LdrLoadDIl 6.93147180559948E-05 NaN
LdrLoadDIl, ColnitializeSecurity 6.93147180559947E-05 NaN
NtCreateFile, Olelnitialize 6.93147180559947E-05 NaN
CIFrameElement_CreateElement, NtResumeThread | 6.93147180559947E-05 NaN
CreateProcessInternal W, NtWriteFile 6.93147180559947E-05 NaN

GetAsyncKeyState, GetAsyncKeyState NaN 6.93147180559966E-05
NtClose, NtQuery ValueKey NaN 6.93147180559955E-05
RegOpenKeyExW, NtQuery ValueKey NaN 6.93147180559954E-05
GetFileAttributesW, FindResourceExW NaN 6.93147180559953E-05
timeGetTime, GetForegroundWindow NaN 6.93147180559953E-05
Benign pair NtEnumerateKey, NtClose NaN 6.93147180559952E-05
LdrGetDIllHandle, FindResourceA NaN 6.93147180559952E-05
GetSystemMetrics, LoadStringW NaN 6.93147180559952E-05
NtClose, NtOpenDirectoryObject NaN 6.93147180559952E-05
OpenServiceA, OpenServiceA NaN 6.93147180559952E-05
NtCreateKey, NtQueryKey NaN 6.93147180559951E-05
TABLE 4. API-Pairs with highest weights (two weights ver.).
Class API-Pair Malicious Weight Benign Weight

Malicious pair

NtCreateFile, NtOpenFile
NtCreateFile, ColnitializeEx
LdrLoadDll, NtOpenFile

NtCreateFile, CoUninitialize
NtOpenFile, LdrLoadDIl

NtOpenFile, NtCreateFile

LdrLoadDIl, CoUninitialize
NtOpenFile, NtAllocateVirtualMemory
NtProtectVirtualMemory, Olelnitialize
NtProtectVirtualMemory, CoCreatelnstance
NtCreateFile, CoCreatelnstance

6.93043887089331E-05
6.93004605172817E-05
6.92877851380088E-05
6.9284556692468 1E-05
6.92741768300694E-05
6.92665243769981E-05
6.92590335997946E-05
6.92538028024739E-05
6.92510845826390E-05
6.92507180538076E-05
6.92504424399545E-05

-8.48484083699043E-04
-8.16256377301072E-04
-7.52656369152654E-04
-7.41336733569528E-04
-7.11766160351444E-04
-6.94479136598714E-04
-6.80035564870549E-04
-6.71059923322954E-04
-6.66695679242923E-04
-6.66121514986156E-04
-6.65691930765097E-04

Benign pair

GetCursorPos, GetCursorPos
RegEnumKeyExA, RegEnumKeyExA
timeGetTime, timeGetTime
NtProtectVirtualMemory, LdrGetProcedure Address
NtEnumerate ValueKey, NtClose
LoadResource, FindResourceW
GetSystemInfo, GetFileAttributesExW
NtOpenKeyEXx, NtQuery ValueKey
NtClose, GetCursorPos

NtQuery ValueKey, NtQueryAttributesFile
RegEnumKeyExW, RegEnumKeyExW

-9.96690826165500E-04
-7.52940645783693E-04
-7.48134441198361E-04
-6.54678541076055E-04
-6.48004456192667E-04
-6.11368217983226E-04
-6.07534603108868E-04
-5.93141593124331E-04
-5.92958914338992E-04
-5.76832099579377E-04
-5.64803482991912E-04

6.93123716570861E-05
6.92878616035785E-05
6.92865391195753E-05
6.92429563019261E-05
6.92380015198174E-05
6.92040373584726E-05
6.91997094176709E-05
6.91818938624628E-05
6.91816508374217E-05
6.91583458583770E-05
6.91383407982208E-05

After normalization, most of weight would be situated in
section [—1, 1], which could improve the sensibility of the
weight and decrease the computation consumption of the
model.

3) FILTERING

For every API-Pair P with weights wm and wb, we considered
whole API-Pair Graph and split it into two clusters, C,, and
Cp, where C,, referred to API pair that could be malicious
or suspicious, and Cp included API Pari might be benign.

VOLUME 8, 2020

Figure. 5 presented some classic samples clustered. In most
cases, both malware and benign samples could invoke those
suspicious API pairs. However, some regular patterns could
be discovered between two kinds of samples. In a cluster map
of benign samples, the weight of being benign rarely smaller
than -2e6. While the weights in malware cluster maps always
get the value or lower than it.

To show the effect of the Clustering algorithm intuitively,
we collected 400 samples that have a call sequence length
lower than 400. Then the samples were processed with BSAS

208127

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

benign weight

benign weight

benign weight

benign weight

- Malicious API Pair
- Benign API Pair

- Malicious API Pair
- Benign API Pair

- Malicious API Pair
- Benign API Pair

- Malicious API Pair
- Benign API Pair

malicious weight

malicious weight

malicious weight

(a) Scatters of malicious files’ clusters

malicious weight

benign weight

benign weight

benign weight

benign weight

~ Malicious AP Pair
- Benign API Pair

~ Malicious API Pair
- Benign API Pair

~ Malicious API Pair
- Benign API Pair

« Malicious API Pair
- Benign API Pair

malicious weight

malicious weight

malicious weight

(b) Scatters of benign files’ clusters

FIGURE 5. Scatters of some target programs.

200

-All APL-Pair
| [

150

50

0 200 400 600 800
Number
FIGURE 6. Statistics of APl number.

clustering. The statistics of API-Pair and clustered malicious
pair are presented in Figure. 5.

As shown in Figure. 6, the count of malicious API-Pair
are higher than all API-Pair in the API-Pair number below
400. Besides, all number of malicious API-Pair were lower
than 500. The results presented that BSAS clustering had a
good effect in reducing the amount of data that needed to be
detected.

4) DETECTION

In this section, some detection results obtained from our
approach were presented and analyzed. The experiments
included the following cases:

208128

malicious weight

TABLE 5. Normal detection result.
Year | Accuracy Precision Recall ~ FI-Score
2016 0.9933 0.9969 0.9907 0.9938
2017 0.9792 0.9918 0.9640 0.9777
2018 0.9787 0.9819 0.9789 0.9804
2019 0.9715 0.9326 0.9940 0.9623
2020 0.8731 0.9167 0.8101 0.8601

1) normal detection for malware datasets, which consisted
of malware from different years.

2) sequential detection for each dataset with time series,
the aim of the experiment is to validate the adaptive
learning of the model.

3) detection of unknown malware dataset to test the per-
formance in predicting unknown samples.

4) detection for adversarial datasets to examine the
robustness of the approach against adversarial evasion
attacks.

5) performance of our model and other models to test the
accuracy as well as time consumption.

C. RESULTS AND ANALYSIS

1) NORMAL DETECTION

In this phase, datasets of different years were trained and
identified respectively to evaluate the general performance
of our model. The results were depicted in Table. 5, where
all datasets got an accuracy above 87%, and the accuracies
except the 2020 year dataset were all above 97%. The result
of the 2020 year dataset decreased obviously than other four

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

TABLE 6. Time series detection without adaptive learning.

Year | Accuracy Precision Recall FI-Score
2016 0.9933 0.9969 0.9907 0.9938
2017 0.9716 0.9757 0.9640 0.9698
2018 0.9656 0.9507 0.9880 0.9690
2019 0.9364 0.9071 0.9336 0.9197
2020 0.7836 0.7536 0.8178 0.7844

TABLE 7. Time series detection with adaptive learning.

Year | Accuracy Precision Recall FI-Score
2016 0.9933 0.9969 0.9907 0.9938
2017 0.9858 0.9911 0.9807 0.9859
2018 0.9879 0.9989 0.9778 0.9882
2019 0.9822 0.9962 0.9675 0.9816
2020 0.9713 0.9772 0.9640 0.9706

years’ datasets, we supposed that some new obfuscation or
disguised techniques might be applied between 2019 and
2020, which need to be verified further in the future.

2) TIME-SERIES DETECTION

In this phase, two experiments were adopted to evalu-
ate the effect of adaptive learning in our models. Firstly,
the 2016 year datasets were used as a primitive dataset to train
the model, then each years’ dataset as input for evaluation,
after the evaluation and before the evaluation of the next
year’s dataset, each dataset would be learned by weighting
model to update the weights automatically. As a compari-
son, the other experiment wouldn’t learn from the dataset
and update the weight adaptively, namely all datasets would
only use weights learned from the dataset of 2016 year for
detection.

Table. 6 presented the accuracy of every dataset with-
out adaptive learning. The results showed a good rate on
datasets of 2016 year, whereas the accuracy of other datasets
decreased with the sequence of years, and the accuracy
declined severely between the detection of 2019 and 2020
year, which might be attributed to the prevalence of new anti-
detection techniques. The change of the accuracies showed
that without the update of the model and features, the detec-
tion ability of a detector would decrease with the development
of malware, which is in line to reality. Table. 7 showed the
accuracy with the adaptive learning, where all evaluation kept
an accuracy above 97%.

The comparison between separate detection and adaptive
detection was showed in Figure. 7. The difference between
detections increased with the pass of years, which could
support the effectiveness of adaptive learning. Essentially,
the result would also decrease with the development of time,
while the accuracy fell much lower than the detection without
the adaptive learning process. The findings could be thought
that our dataset just simulated the consistent data with the
samples collected from each year. However, the datasets are
not consistent as well as abundant enough, so that some devel-
opment of malware would not be presented in the datasets,
and the model couldn’t be learned, either. The thought is just
one of many related hypotheses, which could be researched
in the future.

VOLUME 8, 2020

—=— Seperate accuracy|
—e— Adaptive accuracy

0.9

0.8

0.7

0.6

0.5 4

Accuracy

0.4

0.3

0.2 4

0.1+

T T T
2016 2018 2020
Year

FIGURE 7. Accuracy comparison with datasets of different years.

3) UNKNOWN MALWARE DETECTION

To test the performance of our model in detecting unknown
malware, we collected 1664 samples from Ali Tianchi contest
dataset to test the detection ability of the model on unknown
malware. The results presented that our approach got an
accuracy of 83.16% before adaptive training and 99.13% after
the training. The experiment showed that the model has a
detection capacity on unknown malware. However, only after
enough samples were collected, and the model was trained
adaptively so that the detection would have a good effect.
The facts highlighted that the constant input of samples is
necessary for our model so that it can improve the faculty
of detection with the development of malware techniques.

4) PERFORMANCE EVALUATION

In order to test the performance of our method, an experiment
was devised to compare the accuracy and time consumption
between our approach and several deep learning models.

In this section, we adopted Convolutional Neural Network
(CNN), Deep Neural Network (DNN), Recurrent Neural Net-
work (RNN) and normal Long Short-Term Memory (LSTM)
as a comparison to evaluate the performance of our approach.
For the comparison approaches, The sources were API call
sequences extracted from the execution of the programs.
Then the sequences would be vectored and be processed
with Primitive Components Analysis (PCA) model. The aim
of the process is to reduce the dimension of the sequences
and improve the performance of the detection. Finally, the
processed data would be input to the comparison models for
identification.

Table. 8 presented the detection results of each model. The
results indicate that all model had a relatively high accuracy in
detecting malware with API call sequences, and our approach
got the highest accuracy in all detections. The Receiver Oper-
ating Characteristic (ROC) curves of each detection were
shown in Figure. 8, it could be seen that our model had the
best performance in 2016, 2017 and 2018 years’ detection as

208129

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

True Positive Rate

True Positive Rate

Proposed Model AUC: 0.9969)|
|—— Proposed Model (AL) AUC: 0.9869

CNN AUC: 0.9607|
AUC: 0.9939|
AUC: 0.8429|
AUC: 0.9557

—— DNN
RNN
LST™M

0.8+

0.6

0.4+

Proposed Model AUC: 0.9907|
I—— Proposed Model (AL) AUC: 0.9869)
NN AUC: 0.9699|

0.2+

—— DNN
RNN
LST™M

AUC: 0.9894|
AUC: 0.8353|
AUC: 0.9793

0.8+

0.6

0.4+

True Positive Rate

Proposed Model AUC: 0.9912]
|—— Proposed Model (AL) AUC: 0.9897
CNN AUC: 0.9640|

0.2+

—— DNN
RNN
LSTM

AUC: 0.9607|
AUC: 0.8453|
AUC: 0.9401

T T T T
04 06 0.8 1
False Positive Rate

0 0.2

(a) Detection of 2016 year dataset

T T
04 06 0.8 1

False Positive Rate

T
[0.2

(b) Detection of 2017 year dataset

True Positive Rate

0.8
0.6

0.4+ ‘

True Positive Rate

T T
0 0.2

T T T
0.4 0.6 0.8 1

False Positive Rate

(c) Detection of 2018 year dataset

|—— Proposed Model

|—— CNN
—— DNN

AUC: 0.9854|

Proposed Model (AL) AUC: 0.9869|

AUC: 0.9814|
AUC: 0.9923

|—— Proposed Model
0.2+
—— CNN
——DNN

Proposed Model (AL) AUC: 0.9805|

AUC: 0.9271

AUC: 0.8844|
AUC: 0.9587|

RNN
LSTM

AUC: 0.8681
AUC: 0.9683

RNN
LST™M

AUC: 0.7900|
AUC: 0.8800

T T T
0.4 0.6 0.8 1

False Positive Rate
(d) Detection of 2019 year dataset
FIGURE 8. ROC Curve of detection.

TABLE 8. Accuracy of detection for each model.

T T T T
0.4 0.6

False Positive Rate

0.8 1

(e) Detection of 2020 year dataset

TABLE 9. Time consumption of detection for each model.

Accuracy Time (unit: second)
Year ["Our model CNN DNN RNN LSTM Year [Our Model CNN DNN RNN LSTM
2016 | 0.9933 0.9449 09766 0.9805 0.9349 2016 | 2245.51 22352.38 2235245 2235296 22352.17
2017 | 0.9792 0.9677 09715 0.9756 0.9469 2017 | 1437.42 1993433 19933.42 19933.47 19934.32
2018 | 0.9787 0.9491 0.9836 0.9805 0.9228 2018 | 964.70 22780.64 22782.01 22781.75 22780.83
2019 | 0.9715 0.9538 0.9824 0.9707 0.9143 2019 | 1320.04 1648590 16485.25 16484.44 16484.35
2020 | 0.8731 0.8675 0.9086 0.9122 0.8507 2020 | 2386.98 20938.28 20937.89 20938.27 20936.61

well as kept second-best performance in 2019 and 2020 years’
detection.

Moreover, we evaluated the real-time detection for our
method and other models. For technique reasons, the
detections were implemented with simulation experiments.
We collected execution time and invokes API numbers of our
datasets to compute an average time of each call invoked,
which is 0.051s. Then the datasets were processed with a
specific program so that each API would be released after

TABLE 10. Accuracy of the models with FGSM adversarial samples.

Accuracy
Distortion [Proposedmodel CNN DNN RNN LSTM
0 0.9825 0.9713 09392 0.9005 0.9643
1 0.9716 0.9596 0.9332 0.7265 0.9519
2 0.9712 0.9452 0.9299 0.7094 0.9509
3 0.9700 09269 0.9222 0.6897 09516
4 0.9687 0.9085 0.9051 0.6490 0.9522
5 0.9691 0.8921 0.8918 0.5728 0.9526
6 0.9687 0.8794 0.8754 0.5097 0.9536
7 0.9691 0.8654 0.8584 0.4683 0.9529
8 0.9691 0.8520 0.8400 0.4539 0.9542
9 0.9691 0.8373 0.8206 0.4519 0.9536

an average time. For comparison models of CNN, RNN and
LSTM, since the models are based on static detection, the
detection would activate after all API calls released.

The evaluation results were shown in Table. 9. For all
datasets, the cost time of our approach could be less than 4.2%
of other models in the best situation. The results validated
the performance of our model and indicated the feasibility of
real-time detection for malware.

5) DETECTION AGAINST ADVERSARIAL EVASION

As the conception of adversarial learning were proposed by
In this subsection, a usual adversarial attack method of Fast
Gradient Sign Method (FGSM) [29] was adopted to test our
model’s defending performance.

208130

In the test with FGSM, a distortion with upper limit
€ € [0, 9] was added to disguise the model. As a reference,
the maximum and minimum value (weight) of data used in the
proposed model are —18 and 280. Besides, the four models
constructed in the previous section were also evaluated for
comparison, while the maximum and minimum value (pro-
cessed with PCA) of data are -6040 and 13880.

The result of the test with FGSM was shown in Table. 10.
From the table, it can be seen that the accuracy of the pro-
posed model decreased from 98.99% to 96.91% with the
growth of €, which is relatively stable. On the contrast, the
accuracy of CNN, DNN and RNN decrease severely. What

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

is interesting about the result is that the accuracy of LSTM
decreased slower than our model, which was finally stabi-
lized near 95%. The reason for the phenomenon could be
that the adopted LSTM model has a multi-layer structure,
which has been verified by related works that could improve
the robustness of deep learning model against adversarial
attack. However, another similar model of RNN decreased
more severely among models, which might be related to the
gradients characteristics which needed to be leaned further in
the future.

The result of the experiments clarified that our model has
a certain effect in defending usual adversarial attacks, which
could retain an accuracy above 96.91%.

VI. DISCUSSION

A. COMPARISON WITH EXISTING APPROACHES

In this subsection, we compared other API-based methods
with our model in identifying malware, tough the works used
different datasets which were mostly collected by themselves.
Some of their works presented results with TPR and FPR,
others provided accuracy, precision, recall and FI1-Score.
Table. 11 presented a comparison of different evaluations.
As shown in Table. 11, the proposed approach showed
approximate results with [31] in TPR and FPR. Furthermore,
our approach outperformed other works in terms of accuracy,
precision and F1-Score. The reason for our model had a
better performance in these indexes is the weight of our data
would be updated adaptively with the increase of malware
datasets. Also, we adopted a sequential cluster algorithm to
filter the data, so that our model could avoid interference from
unrelated features, which would consequently improve the
specificity and identification rate of the detection.

Due to the clustering process, our model might be more
sensitive with several specific features and recognized some
benign targets as malware, such as critical system programs.
Hence, our model had a relatively low performance in FPR
and Recall than [31]. However, [31] adopted features based
on API call sequences after execution, indicating it must wait
for the run of programs finished. The distinction between
malware and systems is respectively more complex. Our
method could achieve the goal of real-time detection in prin-
ciple, which could realize both reducing detecting time and
prevent malicious targets from causing more damages when
it was implemented in practical application.

B. LIMITATION
In this section, some shortages of the model would be dis-
cussed.

Firstly, the proposed model needs the weight of the API
Pair to detect the program. So that the weighting approach,
the maximum entropy model must keep a balance between
the training of malware and benign samples. In this article,
to keep the approximate number of malware and benign
datasets, the number of samples in our experiments have to
be constricted to a small number, if the balance between

VOLUME 8, 2020

TABLE 11. Comparison with proposed model and other existing
approaches.

Detection Approach TPR FPR Accuracy Precision Recall ~ F1-Score
Smita et.al. [30] 0.9430 0.0460 0.9542 None None None
Tang et.al. [31] 0.9930 0.0009 None 0.9934 0.9930 0.9932
Zhang et al. [32] None None 0.9510 0.9570 0.9430 0.9500
Han et al. [33] None None 0.9439 0.9368 0.9311 0.9338
Burnap et al. [34] None None 0.9376 0.9460 0.9300 0.9380
Xiao et al. [35] None None None 0.9860 0.9920 0.9890
Zhang et al. [32] None 0.0410 0.9510 0.9570 0.9430 0.9500
Proposed approach 0.9907 0.0036 0.9933 0.9969 0.9907 0.9938

malware and benign was broken out, the model would lose its
use. Fortunately, in the production environment, the detected
malware and benign programs are tremendous enough to
avoid the problem.

Besides, in the filtering phase, some benign samples were
identified having too many malicious API pairs, while some
malware were just detected few malicious API pairs. The rea-
son for the phenomenon caused might because many benign
programs also invoked sensitive API chains, especially many
system programs, which is a considerable part of our datasets.
Also, some malware just call few critical API to reach their
goals, such as some shells or console trojans. Limited by
collection abilities for benign samples, some further work
should be implemented to check our assumptions.

Moreover, the model requires relatively high monitoring
demands, such as malware must be compliant with target
computer circumstances, and the monitor must work well.
Without the requirements, some anomaly conditions, like
malware invoked specific API endlessly or the monitor lost
some invoked calls, would interfere with the result of the
detection. In order to overcome these shortages, a fuzzy
detector or similarity analyzer could be designed to enhance
the robustness of the model. However, the extra phases would
cost additional computation time and might decrease the
accuracy of the identification.

VII. RELATED WORKS

A. API BASED MALWARE DETECTION

In recent years, many researchers focused on malware detec-
tion based on API sequences or graphs, especially connected
with machine learning. Some works have been presented as
follows:

Naval et al. [30] proposed a new model based on improved
API sequences. They proposed a definition called Ordered
System-Call Graph (OSCG) for information mining of API
sequences. Besides, they applied asymptotic equipartition
property (AEP) on the API call sequences to extract those
more significant series. The approach was tested by a series
of experiments, and the result was compared with existing
malware detectors. The performance presented in the solution
is effective in detecting malware.

Tang and Qian [31] proposed a new approach of static
malware detection based on API call sequences. They firstly
extract API sequences with dynamic analysis, then color
mapping was used to transform the sequences to feature
images that could represent malware behavior. Finally, a Con-
volutional neural network (CNN) was adopted to classify the

208131

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

malware into nine malware families. The result showed the
efficiency and classification statics all get over 99% with the
FPR. is under 0.1%.

Xiaofeng et al. [36] proposed two approaches for malware
detection based on API sequences. The first part is to extract
features from API sequences and train a model based on ran-
dom forest for classification. In the second part, they adopted
an improved LSTM model to learn the semantic of API
calls and detect malicious targets. The results of experiments
showed that both approaches worked well, and the framework
combined two models had a better performance, which had
an accuracy of 96.7% in classification. Ma et al. [37] ana-
lyzed malicious malware and designed a detection framework
based on API fragments. The framework utilized sliding
window operation to split API sequences into an N-length
API fragment. Then the fragments were learned by an LSTM-
based detection model. Finally, the detection result would be
filtered with a threshold. The author also researched the rela-
tionship between lengths and threshold. The result presented
that the framework is effective when the length and threshold
are appropriate, and the accuracy of detection could get a
maximum of 97.34%.

Wang et al. [38] proposed a malware detection framework
named “LSCDroid”, the framework could learn features
from datasets automatically as well as classify malware into
different families based on feature sets. In this article, they
firstly generated an API sequence graph. Then the graphs
were used to compute the weight of each API invocation
based on entropy. After that, the weighted graphs were
adopted for similarity calculation, and the feature set was
extracted. Finally, the feature set was learned by a machine
learning-based model. The result proved the effectiveness of
the framework, which had an accuracy of 98% for detection
and 96% for classification.

B. REAL-TIME MALWARE DETECTION

Over the past few decades, most research in real-time detec-
tion has emphasized on analytics of traffics. However, real-
time detection for malware is relatively few, and most of the
researches about real-time malware detection also assisted
with static detection. Some of the related particles are
described as follows.

Chen et al. [39] focused on the real-time detection for
Twitter spam. They primarily extract statistical features from
spam mail and normal mail. Then a scheme was adopted,
which consists of a learning layer and a training layer. The
learning layer could find changes in unlabeled spam tweets
and transfer the changed features to the training layer. The
training layers could learn new features in the training step.
The results showed that the scheme could increase the detec-
tion rate of spam in real-world detection. The research con-
centrated on spam. However, the thought of the study had
implications for real-time malware detection.

Kim et al. [40] have studied on real-time detection of ran-
somware and protection method. The approach analyzed the
operation procedure of the system and applied access control

208132

on significant operations. Besides, a whitelist was utilized
to manage the program getting access to the operations. The
method had a good performance in detecting and preventing
ransomware. However, the consumption is relatively high,
which could have a maximum CPU usage of over 70% and
memory of usage over 2500 MB. In conclusion, the approach
could only available in the host, which seen security as the
highest priority, and it is not reliable in common production
environments.

Gharib and Ghorbani [41] proposed a framework named
“DNA-Droid” to detect attacks from ransomware. The
framework consisted of two layers. One is a static layer to
extract text and image information from samples for clas-
sification and detection. The other is a dynamic layer that
would run programs in a sandbox to get API sequences and
transform the sequences to DNAs, a specific signature for
identifying a family of malware. The approach had a good
precision in detecting malware with a rate of over 98%, which
performed better than existing approaches.

C. ADVERSARIAL ATTACK AGAINST MACHINE LEARNING
Much of the current literature on security pays particular
attention to adversarial attacks to machine learning-based
malware detection. Since machine learning, especially deep
learning technique has been applied widely in most of the
fields, the risk and potential attacks has become a hot spot
for research. Chen et al. proposed a novel approach that
could attack the detection model by generating adversarial
samples. The approach applied optional perturbations onto
APK files and successfully deceived target machine learning
detectors. The authors used some current detectors to identify
the model, and the result presented effectiveness in disguis-
ing the detection models, which decreased the accuracy of
MaMaDroid from 96% to 0%, and Derbin from 97% to 0%.
Besides, the authors advised two approaches to defend adver-
sarial attacks and tested with experiments. The conclusion is
that both adversarial learning and ensemble learning methods
have effects on protecting machine learning-based models
from adversarial evasions.

Stokes et al. [42] investigated several adversarial attacks
and preserving methods, then an approach of the weight
decay defence was proposed and evaluated. The experiments
presented that all defending approaches could protect the
models from decreasing accuracy significantly when con-
fronted with adversarial evasion attacks. Besides, the authors
also discovered although adding hidden layers could not
improve the accuracy of detection evidently, it could increase
the robustness of the model to adversarial attacks.

Demetrio et al. [43] offered a state-of-art attack towards
black-box detectors. The approach utilized several manipula-
tions of protecting semantics to solve validation steps based
on computation. The authors also transformed attack into
a constrained minimization problem. The method had been
tested by some static detectors and have a good performance.
Besides, the method was also examined by several commer-
cial antivirus solutions, and the results showed some of them

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

IEEE Access

could be evaded by the attack. Finally, the limitation of the
attack was discussed that it might not work on the detection
method based on dynamic analysis, which might be studied
in the future.

Chen et al. [44] concentrated on the method of adversarial
attacking and proposed a new framework named ‘‘KuafuDet”
to solve the problem. The paper firstly studied the viability of
adversarial attacks against machine learning detection models
with constructed misleading malware samples. The authors
introduced several prevailing methods of generating adversar-
ial samples and concluded current challenges to defend adver-
sarial attacks. Then the paper proposed KuafuDet, a model
that has strong robustness against adversarial attacks. The
model consisted of two phases: the primary phase utilized a
similarity-based approach to filter suspicious samples and got
very benign and malicious individuals for the next training.
Then a detector was adopted, which was composed of an
online classification model and offline training model. The
offline model would train data sets to obtain features of the
application, and the feature would be input into the online
classifier for classification. The experimental results showed
that the model had a good performance in suffering attacks
against the model, which reduced false negatives as well
as improve the accuracy of detection by at least 15%. The
effectiveness of the model has been proved by experiments,
and all three tested approaches had stable results in detection.

Chen et al. [45] studied Android malware detectors based
on machine learning and API sequences. They concluded sev-
eral possible attacks that the models could suffer from attack-
ers. Besides, the authors proposed an approach of attacks
based on API call relevance of malware and benign appli-
cations. The test showed that the approach could be appli-
cable in different scenarios. Finally, an adversarial model
was designed to defend evasion attacks. The model used an
adversarial learning method to improve robustness against
evasion attacks. Also, the model maximized the cost of eva-
sion and minimized the loss of classification. The comprehen-
sive experiments were based on real sample datasets, and the
results presented that the model was robust enough against
the evasion attacks.

VIil. CONCLUSION

In this article, we proposed an adaptive approach for real-
time detecting malware using API call sequences invoked
by the target program. An API-Pair Graph was constructed
so that a sequence could be transformed into a graph with
the smallest unit of behavior chains; besides, a Maximum
Entropy Model was implemented to compute the weight of
each pair to be malicious or benign, which could keep the max
information for uncertainty, and learn adaptively from existed
data. We used an optimized cluster algorithm to increase the
accuracy of the detection and save time, and the final data
would be detected by an improved LSTM structure, which
could give results instantly after an API was input. Finally, all
the data would be transited to the weighting model to update
the weight data so that the model could learn adaptively

VOLUME 8, 2020

with the development of malware. We collected four datasets
from separate years to test the approach, and some simulated
datasets were used to examine the performance of the model
towards unknown malware. Results showed that our proposed
approach could reach the goal of real-time detection theo-
retically while keeping an ideal accuracy. Also, our model
could keep high rates with development of malware and have
an effort in identifying unknown malware. Additionally, our
approach could keep resistance against a common adversarial
attack, which could prove the robustness of our model.

Our work also has some disadvantages, which need to
be revised in our next work. Firstly, limited with time and
energy, the characteristic of real-time detection can only
be evaluated by simulating experiment, though the result is
ideal. Besides, our method has a restrict requirement in input
data, which must meet an approximate number of malicious
and benign datasets, which could be improved with several
advancements.

In the future, we will focus on the practical implementation
of the model to achieve the goal of application in industry.
Besides, some related solutions would be reproduced and
examined with the same dataset in our work to compare the
performance more precisely. Furthermore, we will learn fur-
ther in defence of machine-learning-based malware detection
against adversarial attacks.

ACKNOWLEDGMENT

The authors would be very grateful for getting the Ali TianChi
Malware dataset from Aliyun computing team. Besides, they
would like to thank VirusTotal and VirusShare for grant-
ing them complimentary access to malicious samples. They
would also like to thank the High-Performance Computing
Center, Lanzhou University, Lanzhou, China, for providing
the computation supports to the experiments.

REFERENCES

[1] O. Aslan and R. Samet, “A comprehensive review on malware detection
approaches,” IEEE Access, vol. 8, pp. 6249-6271, 2020.

[2] R. Tahir and V. U. o. P. Department of Computer Science, “A study on

malware and malware detection techniques,” Int. J. Edu. Manage. Eng.,

vol. 8, no. 2, pp. 20-30, Mar. 2018.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”

in Proc. Int. Conf. Broadband, Wireless Comput., Commun. Appl., 2010,

pp. 297-300.

[4] A. A. Selcuk, F. Orhan, and B. Batur, “Undecidable problems in mal-
ware analysis,” in Proc. 12th Int. Conf. Internet Technol. Secured Trans.
(ICITST), Dec. 2017, pp. 494-497.

[5] O. P. Samantray, S. N. Tripathy, and S. K. Das, “A study to understand

malware behavior through malware analysis,” in Proc. IEEE Int. Conf.

Syst., Comput., Autom. Netw. (ICSCAN), Mar. 2019, pp. 1-5.

Internet Security Threat Report Volume 24. Symantec. Accessed: 2019.

[Online]. Available: https://docs.broadcom.com/doc/istr-24-2019-en

Mcafee Labs Threats Reports August 2019. McAfee Labs.

Accessed: Aug. 2019. [Online]. Available: https://www.mcafee.

com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf

S. Kok, A. Abdullah, N. Jhanjhi, and M. Supramaniam, ‘“Ransomware,

threat and detection techniques: A review,” Int. J. Comput. Sci. Netw.

Secur., vol. 19, no. 2, p. 136, 2019.

Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey

on heuristic malware detection techniques,” in Proc. 5th Conf. Inf. Knowl.

Technol., May 2013, pp. 113-120.

3

[l

[6

—

[7

—

[8

—

9

—

208133

IEEE Access

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

S. Alqurashi and O. Batarfi, “A comparison between API call sequences
and opcode sequences as reflectors of malware behavior,” in Proc. 12th
Int. Conf. for Internet Technol. Secured Trans. (ICITST), Dec. 2017,
pp. 105-110.

F. Al Shamsi, W. L. Woon, and Z. Aung, “Discovering similarities
in malware behaviors by clustering of API call sequences,” in Proc.
Int. Conf. Neural Inf. Process. Berlin, Germany: Springer-Verlag, 2018,
pp. 122-133.

N. Huang, M. Xu, N. Zheng, T. Qiao, and K.-K.-R. Choo, “Deep Android
malware classification with API-based feature graph,” in Proc. 18th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun., 13th IEEE Int. Conf.
Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 296-303.

D. Chen, “Anomaly detection boundary based on the moving averages
of Markov chain model,” in Proc. 12th Int. Conf. Fuzzy Syst. Knowl.
Discovery (FSKD), Aug. 2015, pp. 1532-1536.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379—423, Jul./Oct. 1948.

X. Zhang, Q. Duan, and H. Yang, “Scale detection based on maximum
entropy principle,” in Proc. 24th Int. Conf. Autom. Comput. (ICAC),
Sep. 2018, pp. 1-6.

W. Yagqi, X. Yonghai, and W. Jinhao, “The maximum entropy probabil-
ity distribution and the improvement of its solving method for negative
sequence current of a traction substation,” in Proc. China Int. Conf. Electr.
Distrib. (CICED), Aug. 2016, pp. 1-5.

B. Luo, W. Wang, Y. Jia, and W. Gao, ““A segmentation method for spotted-
partten damaged Thangka image combining grayscale morphology with
maximum entropy threshold,” in Proc. 6th Int. Congr. Image Signal Pro-
cess. (CISP), vol. 1, Dec. 2013, pp. 561-565.

H. J. Landau, “Maximum entropy and maximum likelihood in spectral
estimation,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1332-1336,
May 1998.

C. Yin, J. Xi, and J. Wang, “The research of text classification technology
based on improved maximum entropy model,” in Proc. Ist Int. Conf.
Comput. Intell. Theory, Syst. Appl., 2015, pp. 142-145.

N. Ahmadi and R. Berangi, “A basic sequential algorithmic scheme
approach for classification of modulation based on neural network,” in
Proc. Int. Conf. Comput. Commun. Eng., May 2008, pp. 565-569.

X. Li, X.-C. Cong, G.-J. Wen, Y. Yang, Q. Zhang, and Q. Wan,
“Anisotropic image formation based on basic sequential algorithmic
scheme and non-quadratic regularization,” in Proc. IEEE Int. Conf. Com-
mun. Problem-Solving (ICCP), Oct. 2015, pp. 488—491.

M. Parthiban and P. Damodharan, “Basics sequential algorithmic scheme
clustering by exploring inter and intra task co-relations,” Int. J. Eng.
Technol. Sci., vol. 2, no. 11, Nov. 2015.

W. M. Ashour, R. Z. Muqat, A. B. AlQazzaz, and S. R. AbdElnabi,
“Improve basic sequential algorithm scheme using ant colony algorithm,”
in Proc. IEEE 7th Palestinian Int. Conf. Electr. Comput. Eng. (PICECE),
Mar. 2019, pp. 1-6.

T. Mu, H. Chen, J. Du, and A. Xu, “An Android malware detection
method using deep learning based on API calls,” in Proc. IEEE 3rd Adb.
Inf. Manage., Communicates, Electron. Autom. Control Conf. (IMCEC),
Oct. 2019, pp. 2001-2004.

Y. Fang, C. Huang, L. Liu, and M. Xue, “Research on malicious
javascript detection technology based on LSTM,” IEEE Access, vol. 6,
pp. 59118-59125, 2018.

J. Chatrath, P. Gupta, P. Ahuja, A. Goel, and S. M. Arora, “Real time
human face detection and tracking,” in Proc. Int. Conf. Signal Process.
Integr. Netw. (SPIN), Feb. 2014, pp. 705-710.

V. Total. Virustotal-Free Online Virus, Malware and URL Scanner.
Accessed: 2020. [Online]. Available: http:/www.virustotal.com
VirusShare. Virusshare. Com—Because Sharing is Caring. Accessed: 2020.
[Online]. Available: http://www.virusshare.com

1. J. Goodfellow, J. Shlens, and C. Szegedy, ‘“Explaining and harness-
ing adversarial examples,” 2014, arXiv:1412.6572. [Online]. Available:
http://arxiv.org/abs/1412.6572

S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti, “Employing
program semantics for malware detection,” IEEE Trans. Inf. Forensics
Security, vol. 10, no. 12, pp. 2591-2604, Dec. 2015.

M. Tang and Q. Qian, “Dynamic API call sequence visualisation for mal-
ware classification,” IET Inf. Secur:, vol. 13, no. 4, pp. 367-377, Jul. 2019.
J. Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, “A feature-hybrid
malware variants detection using CNN based opcode embedding
and BPNN based API embedding,” Comput. Secur, vol. 84,
pp. 376-392, Jul. 2019. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0167404818312902

208134

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

[44]

[45]

W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, and L. Mao,
“MalDAE: Detecting and explaining malware based on correlation
and fusion of static and dynamic characteristics,” Comput. Secur.,
vol. 83, pp. 208-233, Jun. 2019. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S016740481831246X

P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification
using self organising feature maps and machine activity data,” Com-
put. Secur., vol. 73, pp. 399-410, Mar. 2018. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/S0167404817302535

F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Malware detection based on
deep learning of behavior graphs,” Math. Problems Eng., vol. 2019,
pp. 1-10, Feb. 2019. [Online]. Available: https://www.hindawi.
com/journals/mpe/2019/8195395/

L. Xiaofeng, J. Fangshuo, Z. Xiao, Y. Shengwei, S. Jing, and P. Lio,
“ASSCA: API sequence and statistics features combined architecture for
malware detection,” Comput. Netw., vol. 157, pp. 99-111, Jul. 2019.

X. Ma, S. Guo, W. Bai, J. Chen, S. Xia, and Z. Pan, “An API semantics-
aware malware detection method based on deep learning,” Secur. Commun.
Netw., vol. 2019, pp. 1-9, Nov. 2019.

W. Wang, J. Wei, S. Zhang, and X. Luo, “LSCDroid: Malware detection
based on local sensitive API invocation sequences,” IEEE Trans. Rel.,
vol. 69, no. 1, pp. 174-187, Mar. 2020.

C. Chen, Y. Wang, J. Zhang, Y. Xiang, W. Zhou, and G. Min, “Statistical
features-based real-time detection of drifted Twitter spam,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 4, pp. 914-925, Apr. 2017.

D.-Y. Kim, G.-Y. Choi, and J.-H. Lee, “White list-based ransomware real-
time detection and prevention for user device protection,” in Proc. [EEE
Int. Conf. Consum. Electron. (ICCE), Jan. 2018, pp. 1-5.

A. Gharib and A. Ghorbani, ‘“‘Dna-droid: A real-time Android ransomware
detection framework,” in Proc. Int. Conf. Netw. Syst. Secur. Berlin, Ger-
many: Springer-Verlag, 2017, pp. 184-198.

J. W. Stokes, D. Wang, M. Marinescu, M. Marino, and B. Bussone,
“Attack and defense of dynamic analysis-based, adversarial neural mal-
ware classification models,” 2017, arXiv:1712.05919. [Online]. Available:
http://arxiv.org/abs/1712.05919

L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,
“Functionality-preserving black-box optimization of adversarial
windows malware,” 2020, arXiv:2003.13526. [Online]. Available:
http://arxiv.org/abs/2003.13526

S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An adver-
sarial machine learning approach,” Comput. Secur., vol. 73, pp. 326-344,
Mar. 2018.

L. Chen, S. Hou, Y. Ye, and L. Chen, An Adversarial Machine Learning
Model Against Android Malware Evasion Attacks (Lecture Notes in Com-
puter Science). Cham, Switzerland: Springer, 2017, ch. 5, pp. 43-55.

SHAOIJIE YANG received the bachelor’s degree in
geographic information science from Jilin Univer-
sity, in 2018. He is currently pursuing the master’s
degree with the Next Generation Internet Labo-
ratory, Lanzhou University. His research interests
include cyber security, reverse engineering, and
machine learning.

SHANXI LI (Member, IEEE) received the B.S. and
M.S. degrees in computer sciences from Lanzhou
University, in 2002 and 2009, respectively, where
he is currently pursuing the Ph.D. degree with
the School of Information Science and Engineer-
ing. His research interests include computer net-
works, computer security, artificial intelligence,
and machine learning.

VOLUME 8, 2020

S. Yang et al.: Real-Time and Adaptive-Learning Malware Detection Method Based on API-Pair Graph I E E EACCGSS

VOLUME 8, 2020

WENBO CHEN received the B.S. and M.S.
degrees in mechanics and the Ph.D. degree in
applied mathematics from Lanzhou University,
in 1993, 1996, and 2012, respectively. He is cur-
rently an Associate Professor with Lanzhou Uni-
versity, where he is also working with the School
of Information Science and Engineering. His
research interests include next-generation Inter-
net, high-performance computing, artificial intel-
ligence, and machine learning.

YUHONG LIU (Member, IEEE) received the B.S.
and M.S. degrees from the Beijing University of
Posts and Telecommunications, in 2004 and 2007,
respectively, and the Ph.D. degree from the Uni-
versity of Rhode Island, in 2012. She is currently
an Assistant Professor with the Department of
Computer Engineering, Santa Clara University.
With expertise in trustworthy computing and cyber
security, her research interests include developing
trust models and applying them on emerging appli-
cations, such as online social media, cyber-physical systems, and cloud com-
puting. She was a recipient of the 2013 University of Rhode Island Graduate
School Excellence in Doctoral Research Award and the Best Paper Award
at the 9th International Conference on Ubi-Media Computing (UMEDIA
2016). Her work on securing online reputation systems received the Best
Paper Award at the IEEE International Conference on Social Computing
2010 (acceptance rate = 13%).

208135

