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ABSTRACT With the increasing penetration of wind power in the power systems, the uncertainties in wind
power significantly challenge the reliable and economic operation of power systems. Recently, the worst
scenario-based robust optimization approaches have been employed to manage the uncertainties in the unit
commitment problem. To further improve the robustness and economic efficiency of power system operation,
this article proposes a flexible robust risk-constrained unit commitment formulation, inwhich flexible reserve
capacities of conventional generators and energy storage are allocated to cope with the uncertainty of wind
power. The proposed model optimizes the unit commitment and dispatch solutions for the base case while
guaranteeing that the flexible reserve capacity can be adaptively adjusted after wind generation realization.
In contrast to the predefined uncertainty set in the conventional robust unit commitment, the proposed model
constructs an adjustable and flexible uncertainty set via balancing the operational costs and the operational
risk. The model establishes worst-case constraints to optimally allocate the flexible reserve capacity. The
proposed model can be equivalently transformed into a single-level optimization problem using the strong
duality theory. Numerical case studies on a modified standard test system demonstrate the effectiveness and
the efficiency of the proposed model.

INDEX TERMS Flexible reserve capacity, energy storage, wind energy generation, robust optimization, unit
commitment.

NOMENCLATURE
INDICES
i Index for conventional units.
m Index for wind farms.
l Index for transmission lines.
d Index for load nodes.
t Index for time periods.

PARAMETERS
Nw Number of wind farms.
Ng Number of conventional units.
Ns Number of storage units.
T Number of time periods.
Fl,max Transmission capacity of line l.
Pld,t Load power of load node d in period t .
cur Upward flexibility reserve capacity cost

coefficient.
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cdr Downward flexibility reserve capacity cost
coefficient.

ai/bi/ci Generation cost coefficients of conventional
unit i.

cupi Start-up cost coefficient of conventional unit i.
T iU Minimal on time of conventional unit i.
T iD Minimal off time of conventional unit i.
P̂wm,t Forecasted output of wind farm m in period t.
Pi,min Minimum generating capacity of conventional

unit i.
Pi,max Maximum generating capacity of conventional

unit i.
RU,i Ramp-up limit of conventional unit i.
RD,i Ramp-down limit of conventional unit i.
Ej,0 Initial stored energy of stored energy j.
Ej,min Minimum storage capacity of stored energy j.
Ej,max Maximum storage capacity of stored

energy j.
ηC/ηD Input and output efficiencies of storage

unit j.
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Pchj,max Maximum power input of storage
unit j.

Pdhj,max Maximum power output of storage
unit j.

sj Operation cost coefficient of storage
unit j.

λi,l/λm,lλj,l/λd,l Power flow distribution factors of
conventional unit i/wind farm
m/storage unit j/load d for
transmission line l.

δshed/δspill Penalty coefficients of wind power
curtailment and load shedding.

0t Uncertainty budget of uncertainty sets.

DECISION VARIABLES
Pwum,t Upper boundaries of wind generation of wind

farm m in period t.
Pwlm,t Lower boundaries of wind generation of wind

farm m in period t.
ugi,t On/off decisions of conventional unit i in period t .
su,i,t Start-up variable of conventional unit i in period t .
sd,i,t Shut-down variables of conventional unit i in

period t
Pgi,t Output of conventional unit i in period t .
ruri,t Upward flexible reserve capacity of conventional

unit i in period t.
rdri,t Downward flexible reserve capacity of

conventional unit i in period t.
Pchj,t Charging power of storage unit j in period t .
Pdhj,t Discharging power of storage unit j in period t
cj,t binary variables indicating whether storage unit j

is in charging state in period t .
dj,t binary variables indicating whether storage unit j

is in discharging state in period t .
Ej,t Stored energy of storage unit j in period t.
rs,urj,t Upward flexible reserve capacity of storage unit j

in period t.
rs,drj,t Downward flexible reserve capacity of storage

unit j in period t.
rch,upj,t Upward flexible reserve capacity of storage unit j

in period t in charging state.
rch,dhj,t Downward flexible reserve capacity of storage

unit j in period t in charging state.
rdh,upj,t Upward flexible reserve capacity of storage unit j

in period t in discharging state.
rdh,dnj,t Downward flexible reserve capacity of storage

unit j in period t in discharging state.

ACRONYMS
UC Unit commitment
SO Stochastic optimization
RO Robust optimization
ED Economic dispatch

FRRUC Flexible robust risk-constrained unit
commitment

CVaR Conditional value-at-risk
AIWG Admissibility interval of wind generation
PDF Probability distribution function
MILP Mixed integer linear program
QP Quadratic programming
CUC Conventional unit commitment

I. INTRODUCTION
Unit commitment (UC) is a critical scheduling decision pro-
cesses performed by system operators to guide the power sys-
tem operation in the next dispatching day. The main objective
of the UC problem is to determine the on/off schedule and
generation plan of generators on the grid to minimize the sys-
tem comprehensive cost and meet the operation constraints,
such as system security and unit-wise constraints.
In recent years, wind power generation has rapidly devel-

oped all over the world due to its clean and renewable
characteristics. However, wind power is inherently volatile
and intermittent. The increasing penetration of wind gener-
ation brings significant technical challenges to power sys-
tem operation. The conventional deterministic optimization
method cannot ensure reliable and economic system opera-
tion because the power system uncertainty cannot be explic-
itly captured. In day-ahead scheduling, the UCmethod should
be improved to efficiently account for the uncertainties in
wind power generation.
Many inspiring works have been done to address the uncer-

tainty issues. The two main types of common methods for
handling uncertain decision problems in power system opera-
tion are stochastic optimization (SO) and robust optimization
(RO).
In the last decade, the SO have been applied to handle

uncertainties in power systems. In [1]–[3], several stochastic
unit commitment and stochastic economic dispatch models
have been proposed. The SO utilizes a probabilistic manner to
ensure security and economy for system operation. However,
the SO generates a dispatch strategy that incorporates a large
number of selected scenarios and suffers from the computa-
tional burden. Only limited sampling scenarios considered in
SO approach cannot ensure the feasibility for all the uncer-
tainties.
Recently, many researchers have utilized the RO theory to

deal with uncertain factors in power generation [4]–[6]. The
uncertainty set is used to depict the stochastic characteristic of
renewable energy, making the RO more tractable. Compared
with the stochastic UC model, the robust UC model is more
reliable as it can guarantee the operational feasibility for all
possible scenarios within the uncertainty set. In [4], a two-
stage robust UC model has been proposed to handle the
net load uncertainties. Another two-stage robust UC model
considering the worst scenario of wind power fluctuation
has been presented in [5], [6]. Other representative RO-
based methods have considered n-k security criterion [7],
dispatchable wind power [8], min-max regret concept [9], and
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the combination of SO and RO [10], [11]. The conventional
two-stage robust UC models immunize solutions against the
worst economic scenario in the prescribed uncertainty set.
However, the solution from the economical aspect is conser-
vative since the probability of the worst-case scenario is gen-
erally very low. Moreover, these two-stage approaches only
determine the UC strategy and cannot obtain the practical
economic dispatch (ED) decisions. These shortcomings limit
the practicability of the traditional two-stage RO methods on
power systems.

To deal with the conservativeness issue, various developed
models and methods have been offered. Some uncertainty set
adjustment methods are adopted to reduce the conservative-
ness of RO [12]–[14]. Dynamic uncertainty sets are adopted
to capture the temporal and spatial correlations of renewable
energy in [12]. In [13], several strategies for the adjustment
of uncertainty set based on uncertain information are devel-
oped. The inspiring concept of do-not-exceed limit has been
proposed in [14], in which the objective was to obtain the
largest uncertain set of variable resource. In [15], a multi-
stage unit commitment model has been presented to obtain
the optimal UC and EDplan under the forecasted case of wind
generation while ensuring the existence of dispatch strategy
after wind generation realization. In [16], the novel concept
of recourse cost requirement has been proposed to control the
adjustment cost in the re-dispatch stage. Furthermore, with
the operational risk, the optimization model in which UC and
ED solutions are co-optimized with uncertainty set has been
proposed in [17]. A risk constrained unit commitment model
with an adjustable uncertainty set has been developed in [18],
[19]. However, the previous research works rarely considered
the flexible reserve capacity supply and demand of power
system, which might lead to infeasibility in actual operation.

In this article, a flexible robust risk-constrained unit com-
mitment (FRRUC) formulation is proposed, which is a
bi-level robust optimization model. The proposed method
optimizes the UC and the ED for the base-case scenario.
Meanwhile, the proposed method ensures operation security
against wind generation uncertainty scenarios including the
worst-case scenario. The allocation of flexible reserve capac-
ity is considered for uncertainty accommodation. The bound-
aries of the uncertainty set are optimized in the proposed
model to create a tradeoff between the operational economy
and the robustness.

The contributions of this article are as follows. First,
the proposed method provides a comprehensive robust UC
framework in which both UC and ED solutions are robust
and a better trade-off between operation cost and robust-
ness is achieved. Second, the upward and downward flexible
reserve capacities are allocated in each time period, which
is critical in practical operations. Third, the boundaries of
wind generation uncertainty set are adjustable decision vari-
ables in the proposed model rather than the given parame-
ters. The variable uncertainty set can guarantee the model
always feasible and quantity the admissible uncertainties in
the system.

The organization of this article is as follows. Section II
presents the mathematical formulation of the proposed
FRRUC model. Section III describes the corresponding
solution methodology. The case studies are presented in
Section IV. Discussions and conclusions are provided in Sec-
tions V and VI, respectively.

II. MATHEMATICAL FORMULATION
In this section, the uncertainty set and the operational risk
are introduced, and then FRRUC is formulated as a bi-level
optimization problem.

A. THE UNCERTAINTY SET
The uncertainty set in the proposed FRRUCmodel is variable
and relevant to the availability of system flexible resources.
The scale and the position of the variable uncertainty set
depend on the system operation state and the flexible reserve
capacity. The variable uncertainty set of wind power is mod-
eled as:

�w =

{
P̃wm,t

∣∣∣P̃wm,t = P̂wm,t + v
+
m,tw

u
m,t − v

−
m,tw

l
m,t (a)

0 ≤ v+m,t ≤ 1, 0 ≤ v−m,t ≤ 1 (b)

v+m,t + v
−
m,t ≤ 1,

Nw∑
m=1

(v+m,t + v
−
m,t ) ≤ 0t (c)

wum,t = Pwum,t − P̂
w
m,t ,w

l
m,t = P̂wm,t − P

wl
m,t

}
(d)

(1)

where P̃wm,t is the power output of wind farm m in period t;
Pwum,t and P

wl
m,t are the upper and lower boundaries of wind

generation of wind farm m in period t , respectively; v+m,t and
v−m,t are the binary variables indicating the normalized posi-
tive and negative output deviations of wind farm m in period
t , respectively; 0t is the uncertainty budget that can adjust
the conservativeness of dispatch plan. When 0t is equal to 0,
the uncertainty set is reduced to the prediction case without
any uncertainty and the model is degraded to the conventional
UC model. With the increase of 0t , the proposed model will
allocate more flexible reserve capacity to cope with a higher
degree of uncertainty and becomes more conservative. 0t can
be decided by the feasibility probability α as follows:

0t = 8
−1(α)

√
Nw (2)

where Nw is the number of wind farms.

B. THE OPERATIONAL RISK
The conditional value-at-risk (CVaR) is used as a risk indi-
cator due to its coherence in measuring risk [20]. The upper
boundaries Pwum,t and the lower boundaries P

wl
m,t of wind gener-

ation constitute the admissibility interval of wind generation
(AIWG). In this article, the expectation of operational loss
due to the wind power variation beyond the AIWG is mea-
sured using the CVaR.

It is assumed that the probability distribution function
(PDF) of wind generation forecast error of each wind farm
follows a Gaussian distribution. An example of PDF is shown
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FIGURE 1. The PDF of wind generation forecast error of wind farm m and
operational risk corresponding to outside the AIWG.

in Fig.1 (Note that the other distribution types are also appro-
priate for the proposed model). The operational risk of the
power system under uncertainty is related to the boundaries
of AIWG and the wind power forecast error probability dis-
tribution.

For a wind farm numbered with m, if the actual wind
generation P̃wm,t is within the AIWG, the wind power can be
completely accommodated and the system will be reliable
and riskless. If P̃wm,t is higher than P

wu
m,t , the excessive wind

power will be spilled to keep system dispatch feasibility. The
operational risk corresponding to wind power curtailment is
calculated by (3).

Cup
w,t = δshed

∫ Pwm,max−P̂
w
m,t

wum,t

(
P̂wm,t + um,t − P

wu
m,t

)
× pdf (um,t )dum,t (3)

If P̃wm,t is lower than P
wl
m,t , load shedding may occur in the

next scheduling day. The operational risk corresponding to
load shedding is stated in (4).

Cdn
w,t = δspill

∫
−wlm,t

Pwm,min−P̂
w
m,t

(
Pwlm,t − um,t − P̂

w
m,t

)
× pdf (um,t )dum,t (4)

where δshed and δspill are the penalty coefficients of wind
power curtailment and load shedding, respectively; um,t is the
wind generation forecast error of wind farm m in period t .

C. FORMULATION OF FRRUC MODEL
The proposed FRRUC model considers both operational
economy and operational security. The solution in the model
is composed of binary on/off commitment decisions, the out-
put decisions of conventional generators, the AIWG of wind
farms, the charge/discharge decisions of storage units, and
the flexible reserve capacity scheme. The FRRUC model is
formulated as follows.

1) OBJECTIVE FUNCTION
The objective function is to minimize the system compre-
hensive cost, including the generation cost, the start-up cost,
the shut-down cost, the flexible reserve capacity supply cost

of conventional units, as well as the operation cost and the
flexible reserve capacity supply cost of energy storages, oper-
ational risk cost.

min
T∑
t=1

Ng∑
i=1

(ai(P
g
i,t )

2
+ biP

g
i,t + ciu

g
i,t + c

up
i su,i,t + c

urruri,t

+ cdrrdri,t )

+

T∑
t=1

Ns∑
j=1

(sjPchj,t + c
urrs,urj,t + c

drrs,drj,t )

+

T∑
t=1

Nw∑
w=1

(Cup
w,t + C

dn
w,t ) (5)

2) BASE-CASE CONSTRAINTS
a: POWER BALANCE AND NETWORK POWER FLOW
CONSTRAINTS
The system power balance is represented in (6). Constraint
(7) describes the network power flow limit by using a direct
current mathematical model.

Ng∑
i=1

Pgi,t+
Nw∑
m=1

P̂wm,t+
Ns∑
j=1

(Pdhj,t − P
ch
j,t )=

Nl∑
d=1

Pld,t , ∀t (6)

−Fl,max ≤

Ng∑
i=1

λi,lPi,t +
Nw∑
m=1

λm,l P̂wm,t

(7)

+

Ns∑
j=1

λj,l(Pdhj,t−P
ch
j,t )−

Nl∑
d=1

λd,lPld,t≤Fl,max, ∀t, ∀l

b: OPERATION CONSTRAINTS OF CONVENTIONAL UNITS
(8) is the start-up and shut-down constraints. Constraints (9)
and (10) express the minimum on/off time limits for genera-
tors. Constraints (11) and (12) indicate the generation capac-
ity limits. The ramp-up and ramp-down rates are constrained
by (13) and (14). Constraints (15) and (16) depict the flexible
reserve capacity limits.

ugi,t − u
g
i,(t−1) = su,i,t−sd,i,t , su,i,t+sd,i,t≤1,

∀t, ∀i (8)
t∑

τ=t−T iU+1

su,i,τ ≤ ugi,t , ∀T
i
U < t < T , ∀i (9)

t∑
τ=t−T iD+1

sd,i,τ ≤ 1− ugi,t , ∀T
i
D < t < T , ∀i

(10)
Pgi,t + r

ur
i,t ≤ ugi,tPi,max, ∀t, ∀i (11)

Pgi,t − r
dr
i,t ≥ ugi,tPi,min, ∀t, ∀i (12)

Pgi,t + r
ur
i,t − P

g
i,t−1 + r

dr
i,t−1 ≤ RU,i(1− su,i,t )

+Pi,minsu,i,t , ∀t, ∀i (13)

Pgi,t−1 + r
ur
i,t−1 − P

g
i,t + r

dr
i,t ≤ RD,i(1− sd,i,t )

+Pi,minsd,i,t , ∀t, ∀i (14)
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0 ≤ ruri,t ≤ RU,i, ∀t, ∀i (15)

0 ≤ rdri,t ≤ RD,i, ∀t, ∀i (16)

c: ENERGY STORAGE CONSTRAINTS
The energy storage device has advantages including fast
adjustment speed, flexible operation mode, and bidirectional
interaction with the power grid. It can store the surplus
wind energy in the low load, generate electricity at the
peak load to relieve the peak load regulation pressure of
the system, and provide flexible reserve capacity for the
system in order to stabilize the wind power output fluctu-
ation. Constraints (17) and (18) depict the conversion rela-
tion between energy and power for storage units and the
energy capacity limits of storage units, respectively. Con-
straint (19) guarantees that the initial stored energy is equal
to the final quantity of electricity. The charge and dis-
charge power of energy storage are constrained by (20) and
(21), respectively. Constraint (22) ensures that the storage
units do not input and output simultaneously in any time
period. Constraints (23)–(24) depict the limits of upward
flexible reserve capacity of storage units. Constraints (25)–
(26) depict the limits of downward flexible reserve capacity
of storage units. Considering the flexible reserve capacity
deployment, the upper and lower bounds of energy stor-
age capacity are constrained by (27)–(28). Constraints (29)–
(30) depict the overall upward/downward flexible reserve
capacities.

Ej,t = Ej,0 +
t∑

τ=1

(ηCPchj,τ −
Pdhj,τ
ηD

), ∀t, ∀j (17)

Ej,min ≤ Ej,t ≤ Ej,max, ∀t, ∀j (18)

Ej,T = Ej,0 (19)

0 ≤ Pchj,t ≤ cj,tP
ch
j,max, ∀t, ∀j (20)

0 ≤ Pdhj,t ≤ dj,tP
dh
j,max, ∀t, ∀j (21)

cj,t + dj,t ≤ 1, ∀t, ∀j (22)

0 ≤ rch,upj,t ≤ Pchj,t , ∀t, ∀j (23)

0 ≤ rdh,upj,t ≤ (1− ci,t )Pdhj,max − P
dh
j,t , ∀t, ∀j (24)

0 ≤ rch,dhj,t ≤ (1− di,t )Pchj,max − P
ch
j,t , ∀t, ∀j (25)

0 ≤ rdh,dnj,t ≤ Pdhj,t ,∀t, ∀j (26)

Ej,min ≤ Ej,0 +
t∑

τ=1

(ηC(Pchj,τ − r
ch,up
j,τ )

−
(Pdhj,τ + r

dh,up
j,τ )

ηD
), ∀t, ∀j (27)

Ej,0 +
t∑

τ=1

(ηC(Pchj,τ + r
ch,dn
j,τ )

−
(Pdhj,τ − r

dh,dn
j,τ )

ηD
) ≤ Ej,max, ∀t, ∀j (28)

rs,urj,t = rch,upj,t + rdh,upj,t , ∀t, ∀j (29)

rs,drj,t = rch,dhj,t + rdh,dnj,t , ∀t, ∀j (30)

3) WORST-CASE SCENARIO CONSTRAINTS
In the RO, the feasibility analysis for the worst-case scenarios
is an important feature. If there is a feasible solution for
the worst scenarios, the operation feasibility under any other
uncertainty scenario can be guaranteed. The flexible reserve
capacity and its allocation scheme determine the robustness
of power system. Sufficient and reasonable flexible reserve
capacity can ensure that the constraints including the system
flexible reserve capacity requirement and the network power
flow limit under all realizations of uncertain wind generation
are feasible to avoid unnecessary wind generation curtailment
and load shedding. Consequently, the following constraints
under worst-case scenarios should be met to ensure the sys-
tem robustness.

a: THE FLEXIBLE RESERVE CAPACITY ROBUST
CONSTRAINTS
(31) and (32) are the positive and the negative system flexible
reserve capacity constraints under the worst-case scenarios,
respectively. From the perspective of the system dynamic
response capability, the system should equip sufficient flexi-
ble reserve capacity to cope with the worst sudden change of
wind power output. The dispatch strategy should ensure that
the minimum reserve margins1put and1p

d
t of the system are

positive.



1put = min
P̃w,1m,t

(
Ng∑
i=1

Pgi,t +
Ng∑
i=1

ruri,t +
Nw∑
m=1

P̃w,1m,t+ (a)

Ns∑
j=1

(Pdhj,t − P
ch
j,t )+

Ns∑
j=1

rs,urj,t −

Nl∑
d=1

Pld,t ) ≥ 0

s.t. P̃w,1m,t ∈ �w (b)

(31)



1pdt = min
P̃w,2m,t

(
Nl∑
d=1

Pld,t −
Ng∑
i=1

Pgi,t +
Ng∑
i=1

rdri,t (a)

−

Nw∑
m=1

P̃w,2m,t −

Ns∑
j=1

(Pdhj,t − P
ch
j,t )+

Ns∑
j=1

rs,drj,t ) ≥ 0

s.t. P̃w,2m,t ∈ �w (b)

(32)

b: The network power flow robust constraints
(33) and (34) are the positive and the negative network
power flow robust constraints under the worst-case scenar-
ios, respectively. From the perspective of the power network
transmission security, the transmission line should have a cer-
tain transmission capacity margin to avoid the flow violation
caused by the random fluctuation of wind power. The dis-
patch strategy should ensure that the minimum transmission
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flow margins 1lut and 1ldt of the system are positive.



1lut = max
P̂w,3m,t

(
Ng∑
i=1

λi,lPi,t +
Nw∑
m=1

λm,l P̃
w,3
m,t (a)

+

Ns∑
j=1

λj,l(Pdhj,t − P
ch
j,t )−

Nl∑
d=1

λd,lPld,t ) ≤ Fl,max

s.t.P̃w,3m,t ∈ �w (b)

(33)



1ldt = min
P̂w,4m,t

(
Ng∑
i=1

λi,lPi,t +
Nw∑
m=1

λm,l P̃
w,4
m,t (a)

+

Ns∑
j=1

λj,l(Pdhj,t − P
ch
j,t )−

Nl∑
d=1

λd,lPld,t ) ≥ −Fl,max

s.t.P̃w,4m,t ∈ �w (b)

(34)

Equations (5)–(34) compose a bi-level robust optimiza-
tion formulation, in which constraints (6)–(30) constitute
the upper-level optimization problem for the base-case and
constraints (31)–(34) constitute the lower-level optimization
problem for the worst-case.

III. SOLUTION METHOD
The bi-level flexible robust risk-constrained optimization
model formulated in the previous section has the uncer-
tain variables and cannot be solved directly. In this article,
the proposed model is reformulated based on the strong
duality theory as a single-level robust mixed integer linear
program (MILP). The strong duality theorem states that if
a problem is convex, the objective functions of the primal
and the dual problems have the same value at the optimum
[21]. The duality theory is utilized to transform the ‘‘min’’
problem to its equivalent ‘‘max’’ formulation, and vice versa.
Then the max/min constraints can be reformulated as a
common constraint. The duality counterparts of constraints
expressed in (31), (32), (33) and (34) can be formulated as
follows.



Ng∑
i=1

Pgi,t +
Ng∑
i=1

ruri,t +
Nw∑
m=1

P̂wm,t −
Nw∑
k=1

xk,t

−

Nw∑
k=1

yk,t −
Nw∑
k=1

µk,t − 0tvt (a)

+

Ns∑
j=1

(Pdhj,t − P
ch
j,t )+

Ns∑
j=1

rs,urj,t −

Nl∑
d=1

Pld,t ≥ 0

−xk,t − µk,t − vt ≤ wuk,t (b)
−yk,t − µk,t − vt ≤ −wlk,t ,∀k ∈ Gw (c)
xk,t , yk,t , µk,t , vt ≥ 0 (d)

(35)



Nl∑
d=1

Pld,t −
Ng∑
i=1

Pgi,t +
Ng∑
i=1

rdri,t −
Nw∑
m=1

P̂wm,t

−

Nw∑
k=1

αk,t −

Nw∑
k=1

βk,t −

Nw∑
k=1

γk,t (a)

−0tϕt −

Ns∑
j=1

(Pdhj,t − P
ch
j,t )+

Ns∑
j=1

rs,drj,t ≥ 0

−αk,t − γk,t − ϕt ≤ −wuk,t (b)
−αk,t − βk,t − ϕt ≤ wlk,t ,∀k ∈ Gw (c)
αk,t , βk,t , γk,t , ϕt ≥ 0 (d)

(36)



Ng∑
i=1

λi,lPi,t +
Nw∑
m=1

λm,l P̂wm,t +
Nw∑
k=1

zk,t,l

+

Nw∑
k=1

δk,t,l +

Nw∑
k=1

φk,t.l (a)

+0tηt,l +

Ns∑
j=1

λj,l(Pdhj,t − P
ch
j,t )−

Nl∑
d=1

λd,lPld,t

−Fl,max ≤ 0
zk,t,l + φk,t,l + ηt,l ≥ λk,lwuk,t (b)
δk,t,l + φk,t,l + ηt,l ≥ −λk,lwlk,t ,∀k ∈ Gw (c)
zk,t,l, δk,t,l, φk,t,l, ηt,l ≥ 0 (d)

(37)



Ng∑
i=1

λi,lPi,t +
Nw∑
m=1

λm,l P̂wm,t −
Nw∑
k=1

ςk,t,l

−

Nw∑
k=1

τk,t,l −

Nw∑
k=1

υk,t,l (a)

−0tχt,l +

Ns∑
j=1

λj,l(Pdhj,t − P
ch
j,t )

−

Nl∑
d=1

λd,lPld,t + Fl,max ≥ 0

−ςk,t,l − υk,t,l − χt,l ≤ λk,lwuk,t (b)
−τk,t,l − υk,t,l − χt,l ≤ −λk,lwlk,t ,∀k ∈ Gw (c)
ςk,t,l, τk,t,l, υk,t,l, χt,l ≥ 0 (d)

(38)

where xk,t , yk,t ,µk,t and vt are the dual variables of (31); αk,t ,
βk,t , γk,t and ϕt are the dual variables of (32); zk,t,l , δk,t,l ,
φk,t,l and ηt,l are the dual variables of (33); ςk,t,l , τk,t,l , υk,t,l
and χt,l are the dual variables of (34).

The FRRUC model can be reformulated into a single-level
robust optimization problem as follows:
Objective: (5)

s.t.(1)− (4), (6)− (30), (35)− (38). (39)

By this means, the FRRUC model becomes a quadratic
programming (QP) that can be efficiently solved by several
QP methods.

Fig. 2 shows the flowchart of the solution procedure that
can be summarized as follow:
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FIGURE 2. Flowchart of the solution procedure.

Step1: Read the key system operation parameters required
for optimization.

Step2: Linearize the risk cost using the method in [22], and
obtain a transformed objective function.

Step3: Construct the uncertainty set and the system oper-
ation constraints, and solve the single-level FRRUC model
to determine the UC strategy and dispatch scheduling for the
following day.

Step4: Send the dispatch schedule to units and wind farms.
End.

IV. NUMERICAL EXPERIMENTS
In this section, the effectiveness and the efficiency of the
proposed FRRUC are investigated on the IEEE 39-bus test
system. This test system has 10 thermal generators, 2 storage
units, 2 wind farms and 46 transmission lines. The operation
parameters of thermal generators and transmission lines can
be found in [23]. The installed capacities of wind farms
#1 and #2 are 400MW, which are connected to the grid at
bus 2 and 21, respectively. The forecast curves of system load
and wind generation are shown in Fig. 3. The flexible reserve
capacity cost coefficients are $1/MW [24]. The penalties for
WGC and LS are set at $80/MWh and $200/MWh, respec-
tively.

All the experiments are programmed using YALMIP tool-
box in MATLAB on a personal computer with Intel(R)
Core(TM) i3 CPU and 8 GB of RAM. CPLEX12.8 is used
as a MILP solver.

FIGURE 3. Forecasted values of load and wind generation.

FIGURE 4. Flexible reserve capacities of the system under FRRUC and
CUC models.

A. ANALYSIS OF THE NUMERICAL RESULTS
In this section, FRRUC is compared with a conventional UC
(CUC) model in terms of operational cost, operational risk
and reserve scheme. The result of AIWG and the effect of
storage units are analyzed as well. The reserve services level
of CUC is 15% predicted wind generation. It should be noted
that the flexible reserve capacities should also address several
other types of uncertainty issues, such as generator outages.
However, these elements are omitted in the experiments for
clarity and concentration.

1) COMPARISON WITH CUC MODEL
The comprehensive operational cost is shown in Table 1. The
flexible reserve results are shown in Fig. 4. It can be seen
from Table 1 that both the total cost and the operational risk
of the FRRUCmodel are lower than that of CUC.Meanwhile,
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TABLE 1. System Operation Cost Under FRRUC and CUC Models.

FIGURE 5. Power output plan of storage units.

TABLE 2. Flexible Reserve Capacities of Storage Units.

the ED cost of FRRUC is $480050.4, which is slightly higher
than that in CUC. As shown in Fig. 4, the allocated upward
and downward flexible reserve capacities of FRRUC are
larger than that of CUC inmost periods, which reduce the sys-
tem operational risk. Compared with the CUC, the FRRUC
model has a better capacity to allocate flexible capacity of
flexible resources as well as mitigate the system operational
risk. It should be noted that the total upward reserve is more
than the total downward reserve, reflecting the risk attitude
of the operators on WGC and LS. The solving time of the
FRRUC model is higher than the CUC model.

2) IMPACT OF ENERGY STORAGE UNITS
The power outputs of energy storage units are shown in Fig. 5.
The positive output indicates discharging, and the negative
output indicates charging. The flexible reserve capacity in
each period is listed in Table 2. It can be observed from
Fig. 5 that the storage units charge to store electrical energy
when the net load is low (e.g., in periods 2-5, 16-17 and 22-
24) and discharge to generate power when the net load is high
(e.g., in periods 10-13 and 20-21). It means that the storage

FIGURE 6. Results of AIWG for wind farms #1 and #2.

units work as a power buffer by charging and discharging
synchronously with the change of net load, which can reduce
the peak-valley difference of the net load and increase the
peak regulation capacity of the grid. FromTable 2, the storage
units provide a certain size of flexible reserve capacity in
some periods that can relieve the regulating pressure of the
conventional units and increase the system robustness.

3) AIWG RESULTS OF WIND FARMS
The AIWG results of wind farms are shown in Fig. 6. The
CUC model cannot obtain the AIWG for the wind farms.
It can be seen from Fig. 6 that the AIWGofwind farms #1 and
#2 are optimized simultaneously with the dispatch plan,
rather than given. Moreover, the boundaries of uncertainty set
are asymmetric, denoted asAIWG. Therefore, the uncertainty
set in the proposed FRRUC model is variable, which reflects
the optimal allocation of flexible reserve capacity for flexible
resources as well as the operator’s risk preference.

B. IMPACT OF THE UNCERTAINTY BUDGET
In this section, the impact of the uncertainty budget is ana-
lyzed. The size of AIWG can be defined as follows:

wsize =
T∑
t=1

Nw∑
m=1

(wum,t + w
l
m,t ) (40)

Table 3 shows the optimization results of the proposed
FRRUCwith different values of the uncertainty budget. It can
be seen from Table 3 that both the total cost and the risk
cost increase simultaneously with the increase in 0t while the
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TABLE 3. Results of FRRUC Under Different Uncertainty Budget.

FIGURE 7. AIWG of wind farms and the total cost of the system under
different transmission capacities.

AIWG size decreases monotonously. The trade-off between
the price and the worth of robustness can be observed.
The price of robustness is the additional operational cost to
adjust the generation output scheme of flexible resources and
increase the flexible reserve capacity to capture the uncertain-
ties. Theworth of robustnessmeans the increase of robustness
level that considers more extreme uncertainties. As illustrated
by Table 3, the computing efficiency decreases with the
increase in 0t . The operator can balance the robustness and
conservatism by selecting appropriate 0t .

C. IMPACT OF TRANSMISSION CAPACITY
It is obvious that the AIWG and the dispatch plan will be
influenced by the transmission capacity. To illustrate the
impact, the transmission capacity of the system is varied from
0.9 to 1.1 of the original capacity. The total cost and the size
of AIWG under different transmission capacities are shown
in Fig. 7. As the transmission capacity increases from 0.9 to
1.1, the total cost decreases by 6.14%while the size of AIWG
increases by 12.79%. This is because the generation scheme
is also adjusted, which will influence the uncertainty set.
In this case, the load demand and the flexible reserve capacity
allocations among flexible resources are influenced by the
system transmission capacity, which will affect the total cost
and the robustness of system operation.

V. DISCUSSION
In this article, a novel robust UC model with large scale wind
generation and energy storage is proposed. The proposed
FRRUCmodel minimizes the system comprehensive cost for
the base-case scenario instead of the worst-case scenario to

reduce the conservativeness of the solution. In the proposed
model, the UC and the ED solutions are co-optimized with
variable uncertainty set. The operation plan is utilized as
dispatch signals for the flexible resources and the AIWG
serves as the operation signals for wind farms. The proposed
method optimizes the boundaries of the variable uncertainty
set, denoted as AIWG, to achieve a tradeoff between the
system comprehensive cost and the operation robustness.

Compared with the conventional UC model, the proposed
FRRUCmodel optimally allocates the flexible reserve capac-
ities of the flexible resources, such as conventional genera-
tors and energy storage, to ensure the feasibility of the re-
dispatch solution against the wind generation uncertainty.
The uncertainty budget 0t is an important parameter for the
proposed model. Table 3 shows that selecting an appropriate
0t can balance the robustness and the conservatism of the
dispatch scheme. Fig. 7 shows the influence of transmission
capacity on the optimization results. With the increase of the
transmission capacity, the load power and the flexible reserve
capacity of the system can be better allocated over the spatial
and the temporal domains. This can provide a reference for
the system transmission capacity expansion.

Recently, dynamic uncertainty set [12] and variable
uncertainty set [17], [18] have been proposed to adjust the
conservativeness of UC strategy. This article also considers
the variable uncertainty set. Compared with the robust opti-
mization methods in [12], [17], [18], the proposed approach
still statically deal with the uncertainty. However, the solution
of the proposed approach is more direct and simple that
can achieve higher computation efficiency while maintain-
ing its favorable properties. Compared with the practical
approach proposed in [25], the generator outages are omitted
in this article for clarity. However, the proposed approach
can efficiently handle wind power uncertainty. Compared
with the stochastic frequency constrained UC [26], the sys-
tem frequency stability is not included in this article. How-
ever, the proposed method also considers the operational risk
to ensure system security. More importantly, the proposed
model allows an optimal allocation of operational flexibility
of multiple flexible resources and operational risk mitigating
capability.

VI. CONCLUSION
In this article, a novel FRRUCmodel considering the flexible
reserve capacity of flexible resources and operational risk is
proposed. The proposed FRRUC is formulated as a two-layer
robust optimization problem. In the proposed model, the unit
commitment and the dispatch solutions for the base-case are
determined while the system operation security is ensured
in the worst-case. The proposed model is transformed into
a single-level optimization problem according to the strong
duality theory.

The proposed FRRUCmodel is applied to a 39-bus system.
First, the obtained outcomes demonstrate that the proposed
approach can optimally allocate the flexible reserve capaci-
ties of flexible resources to cope with the wind power uncer-
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tainty. In this connection, the risk cost of the FRRUC model
is lower than the CUC model. The obtained results highlight
the effectiveness of the proposed model in capturing the oper-
ational and adjustable flexibilities of storage units to supply
the variations of net load. Second, the size of the uncertainty
set is optimized to achieve a trade-off between the operational
risk and the operational cost. Moreover, the boundaries of
the uncertainty set are asymmetric. Third, both the total cost
and the risk cost increase simultaneously with the increase
in the uncertainty budget while the AIWG size decreases
monotonously. The operators can select an appropriate uncer-
tainty budget to balance the robustness and the conservatism.

In future work, the authors plan to expand the proposed
method to dispatch approach studies for bulk AC/DC hybrid
systems in order to promote the utilization of wind energy.

REFERENCES
[1] Q.Wang, Y. Guan, and J. Wang, ‘‘A chance-constrained two-stage stochas-

tic program for unit commitment with uncertain wind power output,’’ IEEE
Trans. Power Syst., vol. 27, no. 1, pp. 206–215, Feb. 2012.

[2] H. Quan, D. Srinivasan, and A. Khosravi, ‘‘Integration of renewable gen-
eration uncertainties into stochastic unit commitment considering reserve
and risk: A comparative study,’’ Energy, vol. 103, pp. 735–745, May 2016.

[3] F. Liu, Z. Bie, S. Liu, and T. Ding, ‘‘Day-ahead optimal dispatch for wind
integrated power system considering zonal reserve requirements,’’ Appl.
Energy, vol. 188, pp. 399–408, Feb. 2017.

[4] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, ‘‘Adap-
tive robust optimization for the security constrained unit commit-
ment problem,’’ IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52–63,
Feb. 2013.

[5] R. Jiang, J. Wang, and Y. Guan, ‘‘Robust unit commitment with wind
power and pumped storage hydro,’’ IEEE Trans. Power Syst., vol. 27, no. 2,
pp. 800–810, May 2012.

[6] P. Xiong and P. Jirutitijaroen, ‘‘Two-stage adjustable robust optimisation
for unit commitment under uncertainty,’’ IET Gener., Transmiss. Distrib.,
vol. 8, no. 3, pp. 573–582, Oct. 2013.

[7] A. Street, F. Oliveira, and J. M. Arroyo, ‘‘Contingency-constrained
unit commitment with n-K security criterion: A robust optimization
approach,’’ IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1581–1590,
Aug. 2011.

[8] G. Morales-España, Á. Lorca, and M. M. de Weerdt, ‘‘Robust unit com-
mitment with dispatchable wind power,’’ Electr. Power Syst. Res., vol. 155,
pp. 58–66, Feb. 2018.

[9] R. Jiang, J. Wang, M. Zhang, and Y. Guan, ‘‘Two-stage minimax regret
robust unit commitment,’’ IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 2271–2282, Aug. 2013.

[10] C. Zhao and Y. Guan, ‘‘Unified stochastic and robust unit commitment,’’
IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3353–3361, Aug. 2013.

[11] B. Fanzeres, A. Street, and L. A. Barroso, ‘‘Contracting strategies
for renewable generators: A hybrid stochastic and robust optimization
approach,’’ IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1825–1837,
Jul. 2015.

[12] A. Lorca and X. A. Sun, ‘‘Multistage robust unit commitment with
dynamic uncertainty sets and energy storage,’’ IEEE Trans. Power Syst.,
vol. 32, no. 3, pp. 1678–1688, May 2017.

[13] Z. Li, W.Wu, B. Zhang, and B. Wang, ‘‘Robust look-ahead power dispatch
with adjustable conservativeness accommodating significant wind power
integration,’’ IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 781–790,
Jul. 2015.

[14] J. Zhao, T. Zheng, and E. Litvinov, ‘‘Variable resource dispatch through
do-not-exceed limit,’’ IEEE Trans. Power Syst., vol. 30, no. 2, pp. 820–828,
Mar. 2015.

[15] M. I. Alizadeh, M. P. Moghaddam, and N. Amjady, ‘‘Multistage mul-
tiresolution robust unit commitment with nondeterministic flexible ramp
considering load and wind variabilities,’’ IEEE Trans. Sustain. Energy,
vol. 9, no. 2, pp. 872–883, Apr. 2018.

[16] H. Ye and Z. Li, ‘‘Robust security-constrained unit commitment and dis-
patch with recourse cost requirement,’’ IEEE Trans. Power Syst., vol. 31,
no. 5, pp. 3527–3536, Sep. 2016.

[17] C. Shao, X. Wang, M. Shahidehpour, X. Wang, and B. Wang, ‘‘Security-
constrained unit commitment with flexible uncertainty set for variable
wind power,’’ IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1237–1246,
Jul. 2017.

[18] C. Wang, F. Liu, J. Wang, F. Qiu, W. Wei, S. Mei, and S. Lei, ‘‘Robust
risk-constrained unit commitment with large-scale wind generation: An
adjustable uncertainty set approach,’’ IEEE Trans. Power Syst., vol. 32,
no. 1, pp. 723–733, Jan. 2017.

[19] C. Wang, F. Liu, J. Wang, W. Wei, and S. Mei, ‘‘Risk-based admissibility
assessment of wind generation integrated into a bulk power system,’’ IEEE
Trans. Sustain. Energy, vol. 7, no. 1, pp. 325–336, Jan. 2016.

[20] R. T. Rockafellar and S. Uryasev, ‘‘Optimization of conditional value-
atrisk,’’ J. Risk, vol. 2, no. 3, pp. 21–41, Oct. 2000.

[21] S. J. Kazempour, A. J. Conejo, and C. Ruiz, ‘‘Strategic generation
investment using a complementarity approach,’’ IEEE Trans. Power Syst.,
vol. 26, no. 2, pp. 940–948, May 2011.

[22] P. Li, D. Yu, M. Yang, and J. Wang, ‘‘Flexible look-ahead dispatch realized
by robust optimization considering CVaR of wind power,’’ IEEE Trans.
Power Syst., vol. 33, no. 5, pp. 5330–5340, Sep. 2018.

[23] W. Ongsakul and N. Petcharaks, ‘‘Unit commitment by enhanced adap-
tive lagrangian relaxation,’’ IEEE Trans. Power Syst., vol. 19, no. 1,
pp. 620–628, Feb. 2004.

[24] Z. Wang, C. Shen, F. Liu, J. Wang, and X. Wu, ‘‘An adjustable chance-
constrained approach for flexible ramping capacity allocation,’’ IEEE
Trans. Sustain. Energy, vol. 9, no. 4, pp. 1798–1811, Oct. 2018.

[25] H. Narimani, A. Azizivahed, E. Naderi, M. Fathi, and M. R. Narimani, ‘‘A
practical approach for reliability-orientedmulti-objective unit commitment
problem,’’ Appl. Soft Comput., vol. 85, Dec. 2019, Art. no. 105786.

[26] M. Malekpour, M. Zare, R. Azizipanah-Abarghooee, and V. Terzija,
‘‘Stochastic frequency constrained unit commitment incorporating virtual
inertial response from variable speed wind turbines,’’ IET Gener., Trans-
miss. Distrib., vol. 14, no. 22, pp. 5193–5201, Nov. 2020.

GAOHANG ZHANG received the B.S. degree in
electrical engineering and automation from the
School of Electrical Engineering, XinjiangUniver-
sity, Ürümqi, China, in 2016, where he is currently
pursuing the Ph.D. degree.

His research interest includes renewable energy
generation dispatch and operation.

FENGTING LI received the Ph.D. degree in
electrical engineering from Xinjiang University,
Ürümqi, Xinjiang, China, in 2011.

She is currently an Engineering Professor and a
Doctoral Supervisor with the School of Electrical
Engineering, XinjiangUniversity, where she deliv-
ers lectures to undergraduate and graduate stu-
dents in the college. Her current research interests
include renewable energy grid integration technol-
ogy and power system protection.

CHAO XIE (Graduate Student Member, IEEE)
received the B.S. degree in power and energy engi-
neering from Xi’an Jiaotong University, Xi’an,
Shaanxi, China, in 2010, and the Ph.D. degree in
electrical engineering from Xinjiang University,
Ürümqi, Xinjiang, China, in 2020.

He is currently a Lecturer with the School
of Electrical Engineering, Xinjiang University.
His current research interests include renewable
energy grid integration technology and power sys-

tem protection.

VOLUME 8, 2020 209241


