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ABSTRACT Epilepsy is a chronic brain disorder that affects the quality of life of many patients even
when this disease is being controlled. If we want to improve those lives affected, we need to perform
real-time epilepsy detection with constant monitoring of the electroencephalogram (EEG) signal. Typically,
the statistical behavior of the EEG signals presents heavy-tail phenomena, therefore their analysis must be
particular in order to define a strong framework based on statistical parameters to detect seizures. In this
article, the heavy-tail characterization of EEG signals is studied, a simple real-time epilepsy detection
using an alpha-stable estimator is proposed, and the false-positive rate is analyzed. The performance of the
proposed estimator is compared to others previously reported in the literature, and we show that one of the
signal parameters characterized as an alpha-stable distribution, serves as an indicator of epilepsy episodes
more efficiently. Furthermore, the proposed algorithm presents low sensitivity to noise below the 3.8 dB.

INDEX TERMS Alpha stable parameters, epilepsy detection, false-positive rate, long tail characterization,
real-time epilepsy detector.

I. INTRODUCTION
Epilepsy is a chronic neurological brain disorder, which
affects more than 50 million people in the world throughout
several years of the patient’s life, [1]. Even if the patient
is being treated for this disease, spontaneous seizures may
occur. For this reason, an epilepsy patient involves constant
monitoring, see [2] and [3]. Therefore, for treatment pur-
poses, a system that detects seizures and sends alerts to
hospitals and specialists in real time is critical. This detec-
tion system may assist medical professionals to analyze this
information and perform the required actions to guarantee
the well-being of the patient, [2]. However, seizure detection
represents a challenge for researchers, as each new com-
putational algorithm must provide faster and more accurate
detection, as well as robustness to noise.

Currently, several biomedical monitoring approaches are
available to detect an epileptic seizure. The most com-
mon procedures are based on the abnormalities in the
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electroencephalogram (EEG) signal, [3]–[5]; moreover, other
methods make use of techniques such as electromyogra-
phy (EMG), accelerometry, motion sensing, electrodermal
activity monitoring, audio/video recording, and combinations
of two or more of these to improve seizure detection, [3]
and [4]. Once the signal is collected, the success of the
system depends on the design of the algorithm to ana-
lyze the information. Different models, such as the wavelet
transform (WT) [6]–[10], Detrended Fluctuation Analysis
(DFA) [5], [11], machine learning techniques [12]–[15],
time-frequency analysis [16], canonical correlation analy-
sis [17], [18], entropy of the EEG signal [19], or stochastic
modeling [4], [20]–[22], are used to analyze signals. Their
evaluation is based on detection rate, false alarm rate, positive
predictive value, etc., [23].

Most of the EEG information analysis is carried out
through visual inspection, thus the signal features are impor-
tant to be modeled. The EEG signal characteristics have been
modeled based on power-law spectrum in different scenarios,
see [5] and [24]. In addition, in [25] an attempt to model
EEG signals using a mixture of distributions is presented.
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On the other hand, in [26] an experiment of the brain activity
while the patient is playing videogames is designed. In [27]
the EEG and EMG are recorded when the patient follows
an avatar’s motion. After that, in [28], a Convolutional Neu-
ral Network (CNN) is designed to screen depression using
the EEG signal of the patient. Next, in [29], the Global
Optimal Constructed ICA (GocICA) is considered for the
neurorehabilitation and the movement intention detection of
a person. At this point, it is important to note that those
papers do not address epileptic seizures based on modeling.
Reference [30] introduces an automated patient-specific clas-
sification for long-term electroencephalography extracting
the epilepsy phenotypes. In [4], a Cauchy-based state-space
model for detection of epileptic seizures is introduced.
Nevertheless, the computational complexity of the algorithm
is high, and as a result, detection tends to be off-line.

In this article, we follow a statistical approach and propose
a novel algorithm to model EEG signals using parameters
of alpha-stable distributions and determine the parameters
that are sensitive to the presence of seizures in an EEG data
set. We also introduce a real time epilepsy seizure detection
technique. In addition to those aforementioned, this algorithm
is feasible for implementation in portable devices and it
has a reduced computational complexity. Furthermore, when
the detector was evaluated in noisy environments, which is
common in this sensing scenarios, good performance of the
detection technique was achieved.

The remainder of this article is divided as follows:
Section II introduces the model of the signal with the
alpha-stable distribution. Section III presents the seizure
detection using alpha-stable parameters. Section IV describes
the detector, while Section V contains the main results.
Section VI presents results on false positives and finally,
section VII shows the conclusions and future work.

II. EEG SIGNAL MODELING BASED ON ALPHA-STABLE
PARAMETERS
A random signal is considered to have a heavy tail when
the tail of its distribution decays slower than that of the
exponential distribution. It represents a high variability signal
with numerous peaks during the process realization, [29].
Signals with heavy tail distributions can be located in dif-
ferent environments [31], such as in ocean engineering [32],
meteorology science [33], human action behavior [34],
or hydrology [35], among many others. Also, an EEG signal
is generated by the superposition of millions of random
variables in the form of synchronous electrical potentials
induced by neurons, [36]. As the evoked potential of each
neuron is individual, the potentials associated to such random
variables are considered to be independently and identically
distributed (IID). The electrical potential in neurons is trans-
mitted in the form of peaks, causing the signal to have a heavy
tail distribution, see [14], [37], and [38]. This means that
observed voltages in these signals present more variation than
a Gaussian process and it is common that values depart far
away from the central or mean value. The generalized central

limit theorem describes the superposition of independent ran-
dom variables as Gaussian. Now, with independent heavy tail
random variables, as in the case of the EEG signal modeling,
it is suitable the use of alpha-stable distributions, [39].

The method to determine if a signal has a heavy tail is
based on the behavior of the complementary cumulative dis-
tribution function (CCDF). The CCDF of an EEG signal is
depicted in Fig. 1 together with the theoretical CCDF of three
different models: Gaussian, exponential, and Pareto. It can be
observed that the tail of the EEG signal has a similar decay as
that of the Pareto distribution, which validates that the EEG
signal has a heavy tail. The database analyzed in Fig. 1 was
collected at the Children’s Hospital Boston, and it consists
of EEG recordings from pediatric subjects with seizure diag-
nosis. The patients were observed for several days with no
medication to control epilepsy, [40].

FIGURE 1. CCDF of the EEG signal.

For this EEG signal, the calculation of the alpha-stable
parameters is highly demanding in regard to computational
resources. Although the simulated characteristics result in
a more realistic environment than that when the Gaussian
method is used, [41]. The alpha-stable parameters can be
expressed by the characteristic equation for random variable
X, reported in [42]–[44] and [45] as

EejθX =

 e{−δ
α |θ |α(1−jβ(sign(θ)) tan πα

2 )+jγ θ}, if α 6= 1,

e

{
−δ|θ |(1+jβ 2

π
(sign(θ)) ln|θ |)+jγ θ

}
, if α= 1,

(1)

where

sign (θ) =


1, for θ> 0,
0, for θ= 0,
−1, for θ< 0.

(2)

The full stable class S(x;α, β, γ, δ) is characterized by
four parameters described in [39]. They consist of the index
of stability parameter, α ∈ (0, 2]; the skewness or symmetry
parameter, β ∈ [−1, 1]; the shift or dispersion parameter,
γ ≥ 0; and the position or scale parameter, δ ∈ R.
Different characteristics of the distributions result when
parameters α and β change. For different values of α,
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i.e., when S(x; 2, β, γ, δ), S(x; 1, β, γ, δ), or S(x; 0.5, β,
γ, δ), we get the Gaussian, Cauchy, or Levy distribu-
tions, respectively. When β changes, the symmetry of the
distribution changes.

Nonetheless, a signal could have different characteris-
tics that can be modeled if the alpha-stable parameters are
changed. Here, we evaluate the alpha-stable parameters in an
epileptic seizure whichmodifies the hyperactivity of neurons.
Thus, the next section presents an analysis of the impulsive
EEG signal.

III. EPILEPSY DETECTION
Alpha-stable parameters provide valuable information about
the EEG signal which can lead to the detection of impor-
tant diseases. For instance, when a patient has an epileptic
seizure the distribution of the EEG signal presents some
fluctuations, [46]. In [4], Support Vector Machines (SVM)
are used to compare the distribution of the EEG signal with
Gaussian and Cauchy distributions. In [47], the Automated
aRTifacts handling in EEG (ARTE) method, which is based
on wavelets is presented. In [48] the multiscale radial basis
functions (MRBF) and a modified particle swarm optimiza-
tion (MPSO) framework of the time-frequency feature extrac-
tion for epileptic EEG signals is shown. Nonetheless, these
processes require a high computational cost.

In order to facilitate the calculation of the alpha-stable
parameters, different estimators have been reported, see
[39], [49], and [50]. Initially, Nolan Stable library for
MATLAB is used to compute the parameters
(x;α, β, γ, δ), [51]. For analysis purposes a particular set of
EEG signals from the MIT database was considered [40],
in which the amplitude of the signal without seizures is
50 µV, the amplitude of the signal with seizures is 600 µV,
and the sampling frequency is 256 Hz. All the experiments
were conducted using MATLAB. The method to obtain the
parameters is described as follows: first, a 1-second length
window of the signal is used in the computation of the
alpha-stable parameters. After that, the window is shifted
0.36 seconds and the process is repeated. The outcome of
the experiment is shown in Fig. 2.

Fig. 2a shows an EEG signal with two epileptic seizures
in seconds 250 and 1450. Figs. 2b, 2c, 2d, and 2e repre-
sent the α, β, γ , and δ parameters, respectively. It can be
observed that the collected electric signal associated to EEG
Fp1 and F7 electrodes derivation presents 2 seizure events,
the first in the time interval (250, 350) and the second one
between 1,450 and 1,500 seconds. Although large values are
frequently found in these kinds of signals, sometimes they are
due to patient movements or noise in the electrodes. These
results show that α and β parameters are not sensitive to
changes in the EEG signal. Parameter α is always varying
within a range of values between 1.5 and 2, showing that the
EEG signal has a finite average; but it does not provide rele-
vant information to detect an epileptic seizure. In contrast, see
Fig. 2d, the value of the amplitude of parameter γ increases
by a factor of four or five when an epileptic seizure occurs,

FIGURE 2. Alpha-stable parameters (a) Original EEG signal,
(b) parameter α, (c) parameter β, d) parameter γ , and (e) parameter δ.

thus, providing useful information to accurately detect an
epileptic seizure.

On the other hand, variance could be a good detector, [52],
however in heavy tail scenarios, when the tail index is below a
value of 1, the variance does not converge. Other approaches
such as Entropy, [53], Lyapunov, [54], and nonlinear predic-
tion [55] detectors are options for seizure detection. Fig. 3
compares the proposed Gamma Method, with the Entropy,
and Lyapunov detectors.

FIGURE 3. EEG seizure detection method comparison (a) Noiseless
original EEG signal, (b) EEG signal with noise -3.8dB, (c) and
(d) Normalized seizure detectors: Gamma, Entropy, and Lyapunov
Methods, (e) and (f) Zoom of detections.

We can see in Fig. 3f that the Gamma method proposed
is the most robust to noise with respect to other meth-
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ods reported in the literature. The methods evaluated in
Figure 3 were tested in different scenarios: noiseless and
noise observed EEG signals. It can be seen that the methods
evaluated have a good performance for the casewithout noise.
However, in the case of noisy signals, the Gamma method
(proposed) is the one with the best performance, so it is more
robust than the other methods reported.

Three of the most commonly used algorithms to estimate
alpha-stable parameters are McCulloch, [39], Stablecull, [49]
and [50], and Nolan, [51]. We conducted an experiment
to identify the best algorithm to estimate the parameter γ
in terms of computational complexity, and the McCulloch
proved to be the most suitable when α > 1 and it
matches with the α behaviors in observations, [36] and [51].
Fig. 4 shows the results of this comparison. Nolan algo-
rithm presents good performance; however, it doesn’t provide
an open source code for future implementation in portable
devices. In addition, open code such as McCulloch and Sta-
blecull presents good results for EEG signal analysis. In this
work the estimators that can be replicable, are compared
based on the processing time, and it is shown in Table 1.

FIGURE 4. Comparison of estimators (a) EEG signal with two seizures,
(b) McCulloch algorithm, and (c) Stablecull algorithm.

TABLE 1. Comparison time between estimators.

In the two cases of Table 1, the accuracy of the estima-
tors is similar; therefore, the processing time was evaluated
to determine the best estimator. The remaining results are
based on the McCulloch estimator, which presents a good
performance of processing time and an acceptable accuracy
for EEG seizure detection purposes.

In addition, when the detector is evaluated in other data
sets with seizures, we obtain similar results. Fig. 5 shows

FIGURE 5. Gamma value in different data sets (a), (c), (e), and (g) EEG
signal with seizures, (b),(d),(f), and (h) Gamma estimation.

outcomes of the estimation of parameter γ for four different
EEG signals with seizures and their corresponding estimation
of the parameter γ . One can see that the parameter γ estima-
tion is very sensitive to seizures in the EEG signal.

IV. DESCRIPTION OF SEIZURE DETECTOR
Since the parameter γ is sensitive to changes in the EEG sig-
nal for epileptic seizure events as shown in previous section,
we propose an algorithm where the parameter γ is estimated
first using the McCulloch estimator which relies on signal
quantiles. Later, it is smoothed in order to improve the pre-
cision of detection. This smoothed version is then used in a
detection stage to determine the number of seizures present
in the EEG signal. The complete diagram of the system is
presented in Fig. 6.

FIGURE 6. Block diagram of the algorithm.

This structure of the system uses the McCulloch algorithm
and EEG signal from theMIT database, [40]. First, the system
calculates the parameter γ , which is then smoothed out to
reduce the influence of noise. Finally, in order to detect
epileptic attacks, the signal is analyzed using the detector
block. The description of every block is discussed next.
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A. γ ESTIMATOR BLOCK
Initially, window length is set, and it is shifted 0.003 seconds.
Then, the γ parameter is computed with McCulloch estima-
tor. The experimentation window length was considered as a
degree of freedom and we observed the best processing time
when window length was of 0.16 seconds.

B. SMOOTHER SYSTEM BLOCK
In order to obtain a cleaner signal, the parameter γ must
be smoothed-out. In this part, a window of the parameter γ
is obtained. Then, the window is smoothed out using an
averaging filter and shifted by 0.03 seconds and the process
is repeated. The total processing time for this process is
0.089 seconds.

C. DETECTOR BLOCK
The last block of the algorithm consists of the detector, which
considers two thresholds to avoid false positive and true
negative detections. When consecutive estimated γ values
increase significantly, first seizure threshold is set, this rise is
taken as a reference for the rest of the signal. In practical terms
when the parameter γ becomes five times the value of the
previous sample, then an epileptic seizure is detected. After
that, the system waits for the amplitude of the parameter γ to
return to normal levels. If the amplitude of the parameter γ
does not return to the normal amplitude, then the system can-
not detect more seizures. This part is considered as the second
threshold.

V. RESULTS
In this section, the signals from every block in the sys-
tem previously shown in Fig. 6 are presented. In order to
determine the best performance and reduce the processing
time without losing accuracy, we analyzed different scenarios
considering as degrees of freedom the window length of
the estimator and the smoother system. Finally, the com-
plete system performance is discussed in the last part of this
section.

A. γ ESTIMATOR BLOCK
Three different window lengths are considered to analyze
the EEG signal: 0.03, 0.39, and 1.95 seconds. After that,
in all cases, it is set to 0.03 seconds. The results from the γ
estimation are shown in Fig. 7.

Fig. 5b and 5c show the amplitude of the parameter γ with
an epileptic seizure, note that for windows of length 0.03 and
0.39 secs, it is at least 4 times larger than that without a seizure
and up to 5 times larger. On the other hand, Fig. 5d shows that
the amplitude of the parameter γ is 5 times larger than that
without a seizure. As a result, we can define a threshold value
of 5 for parameter γ ; meanwhile, the window length for the
estimation of parameter γ is not important given that, in all
three cases, the epileptic seizure is detected.

The evoked potential collected is associated to
1,800 seconds. Thus, in order to compare a feasible window

FIGURE 7. Estimation of parameter γ , (a) EEG original signal,
(b) estimation of the parameter γ using a window length of 0.03 seconds,
(c) 0.39 seconds, and (d) 1.95 seconds.

TABLE 2. Comparison of the processing time with different moving
window lengths.

length, the overall trace is divided into bins of 0.03, 0.39, and
1.95 seconds. Table 2 compares the processing time of the
proposed algorithm for different window lengths. It can be
observed that the relationship between processing time and
window length is not linear and note that the worst detection
delay is viable for this health application.

B. SMOOTHER SYSTEM BLOCK RESULTS
After the gamma parameter is estimated it could be smoothed
out in order to reduce the influence of noise. In this part, as in
the previous section, a window of parameter γ is designed.
During experimentations, we observe that a simple averag-
ing filter improves the results. Thus, we considered for the
smoother system block the mean values of 0.03, 0.19, and
0.39 seconds of γ estimations. The resulting signals from the
smoother block are presented in Fig. 8.

Fig. 8 shows that window size reduces the γ parameter
estimation variation. However, the smoothing block depends
on the Moving Average structure which affects the outcome
presenting certain inertia. While large windows reduce the
performance time, results are committed to the characteristics
of the filter. The best results were obtained when windows
were set at 0.03s.
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FIGURE 8. (a) Parameter γ , and smoothed parameter γ using a
window-length of (b) 0.03, (c) 0.19, and (d) 0.39 seconds.

C. DETECTOR BLOCK RESULTS
The number of epileptic seizures is detected by this block,
it compares the smoothed γ parameter with a threshold (an
increase of 5 times the typical value of γ ). The results from
the experiments show that the system is accurate at detect-
ing epileptic seizures. In addition, the processing time to
scan the smoothed γ signal for a 30-minute experiment is
0.0041 seconds. Finally, the overall processing time of the
complete system is 0.1725 seconds.

VI. FALSE POSITIVE RATE
In this section, the probability to detect a false positive by the
proposed algorithm is presented. Theoretically, the detector
considers an ideal EEG signal without noise. However, sen-
sors, muscles, and the environment generate noise, which is
mixed with the EEG signal. The relationship between noise
and the EEG signal is presented in Figure 9.

FIGURE 9. The relation between the EEG signal and the evoked potential
noise.

In Fig. 9, the EEG signal is represented by e(t) which,
as mentioned above, is associated to a particular alpha-stable
distribution S(α, β, γ, δ); n(t) is the noise of the different
evoked potentials, and it is modeled by a Gaussian random
variable N (µ, σ ), where σ is the standard deviation and µ is

the mean value of the noise. Finally, s(t) is the observed EEG
signal affected by noise. The signal s(t) is modeled as

s (t) = e (t)+ n (t) . (3)

If the amplitude of n(t) is large, the detector is being
affected by noise and as a consequence, it produces a false
detection. Hence, in order to determine the noise sensitivity
of the proposed algorithm, it is necessary to set the detection
threshold appropriately in order to guarantee the detection
of seizures by the algorithm. An epileptic seizure is detected
when the gamma parameter is increased at least 5 times, this
detection can be affected by background noise. The threshold
was discussed in the section of the γ estimator block, and it is
set to a value of 5, this threshold is defined by the following
equation

γ̂ = 5γTrue (4)

where γTrue is the parameter γ of the signal without noise,
and γ̂ is the estimated value of the observed signal s (t) that
is affected by the noise amplitude. The estimation of the
parameter γ̂ is conducted using the McCulloch algorithm
given by, see [39],

γ̂ =
Ŝ0.75 − Ŝ0.25
θ(α̂, β̂)

(5)

where Ŝ0.75 and Ŝ0.25 are the quantiles 75 and 25, respec-
tively of the observed signal (Ŝx such that P (S ≤ s) = x),
the function θ (α̂, β̂) is defined in [39]. However, the seizure
detection is associatedwith the increase of γ̂ , thus the value of
θ can be considered as a constant. Note that e(t) and n(t) are
independent sources; one of them is produced by the human
body and the second by thermal voltage. The observed EEG
signal s(t) is a combination of noise n (t) and actual value e(t);
therefore, the PDF is given by

P (S ≤ s) =
1
2π

s∫
−∞

∞∫
−∞

e−(γ
α |ω|α(1−iβ(sgn(ω))) tan( πα2 )+iµω)

·eσ
2ω2
· e−jωsdωds, (6)

with a characteristic equation 8s(ω) = 8e(ω)8n(ω). Note
that8e (ω) does not have a closed form, and as a consequence
neither does 8s (ω). In order to determine P (S ≤ s) , we
approach the relation in (6) numerically. When the value of
σ of the noise is higher, then γTrue could have the same value
as γ̂ and the system will detect an epileptic seizure when
it actually does not exist. For this reason, it is important to
determine the maximum value where the algorithm detects
seizures correctly. Thus, a numerical approximation was real-
ized, and it is shown in Fig, 8.

In heavy tail scenarios, when 1 < α < 2, the cen-
tral moment is infinite. Moreover, when 0 < α ≤ 1 the
tail of the distribution presents a very slow decay and as a
consequence, the mean and variance values are theoretically
infinite. In Fig. 10, it can be observed that the system is more
sensitive to false positive results when small values of α in

VOLUME 8, 2020 208175



J. G. Servin-Aguilar et al.: Epilepsy Seizure Detection: A Heavy Tail Approach

FIGURE 10. Numerical approximation of the EEG signal, where γ̂ = 5γ .

EEG signal occur. Several methods consider the amplitude
of the EEG signal for epileptic seizure detection. However,
the noise affects the amplitude of the signal, which may result
in the system detecting false positives. Additionally, other
papers in the literature report higher computational process-
ing requirements to detect seizures. In this article, we show
that using quantiles is a fast and robust technique for seizure
detectionwith low computational requirements, which results
in a reduced computational processing and detection time.
In the case of the proposed algorithm in this article, the main
computational processing load takes place when sorting the
information and obtaining the quantile values. This requires
multiple comparisons and data exchange. On the other hand,
other methods that have been proposed that we compared in
this article, require complex mathematical functions or sta-
tistical calculations that could delay the outcome. Quantiles
are directly proportional to the width of the pdf, which is less
vulnerable to noise. Besides, the variance of noise is related to
the power amplitude. Fig. 10 shows that if the value of alpha
is growing, then parameter σ of the noise must be larger for
the system to fail. In this case, the system could increase the
false positive rate.

It is observed that false positives appear in some of the
scenarios evaluated when the background noise is greater
than 3.8dB, which is the equivalent to have γ̂ = 5γ .
Thus, to avoid false detection in those cases caused by the
background noise, and in order to be sufficiently sensitive,
the threshold value is set to 5.

VII. CONCLUSION
In this article, an accurate algorithm to detect epileptic
seizures is designed. The algorithm is less sensitive to noise
and swifter than others reported in the literature.

The best performance to estimate the gamma parameter
is obtained using the Nolan estimator. It was proven that
the length of the window to calculate the gamma parameter

is not important as in three different cases the detection
was accurate. As an alternative, the McCulloch estimator,
an open algorithm which encourages the implementation in
portable devices, shows good results. For practical purposes,
a good performance is obtained with a window-length of
1.95 seconds.

It was demonstrated numerically that the designed algo-
rithm is robust to the influence of noise and has low com-
putational processing. The algorithm uses quantiles, which
makes it more robust to noise, thus increasing the accuracy
of the detection. For those interested, the program codes and
a flowchart of the main algorithm are in [56].
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