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ABSTRACT Lithium-ion batteries have become the most appropriate batteries to use in modern electric
vehicles due to their high-power density, long lifecycle, and low self-discharge rate. The precise estimation
of the state of charge (SOC) in lithium-ion batteries is essential to assure their safe use, increase the battery
lifespan, and achieve better management. Various methods of SOC estimation for lithium-ion batteries
have been used. Among these methods, the model-based estimation method is the most practical and
reliable. The accuracy of the utilized model is a crucial factor in realizing better SOC estimation in the
model-based method. In this paper, an enhanced battery model is proposed to estimate the SOC precisely
via an optimized extended Kalman filter. The model considers the most influencing factors on the estimation
accuracy, such as temperature, aging, and self-discharge. The parameterization of the model has defined the
dependency of sensitive parameters on state estimation. As a fundamental step before estimating the SOC,
the capacity degradation is evaluated using a straightforward approach. Later, a particle swarm optimization
algorithm is utilized to optimize the vector of process noise covariance to enhance the state estimation. The
performance of the proposed method is compared to recent techniques in the literature. The results indicate
the effectiveness of the proposed approach in terms of both accuracy and computational simplicity.

INDEX TERMS Lithium-ion battery, state of charge, capacity estimation, extended Kalman filter, PSO
algorithm.

I. INTRODUCTION
Batteries are the best energy storage systems for various
essential applications such as smartphones, computers, elec-
tric vehicles (EVs), power system enhancements, medical
applications, drones, and satellites. Batteries are diverse in
characteristics and prices according to their applications. The
most common rechargeable batteries are lead-acid, lithium-
ion, and metal-nickel-hydride. Recently, lithium-ion batteries
have become the preferred choice in modern EVs due to their
high power density, long lifecycle, broad temperature operat-
ing range, fast charging ability, and low self-discharge [1].
Accordingly, a significant factor in improving EV perfor-
mance is handling the management and estimation issues for
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the essential states of lithium-ion batteries. Estimating the
state of charge (SOC) in lithium-ion batteries is a crucial issue
to satisfy safe use and better battery management.

Numerous approaches have been used to estimate the
SOC of lithium-ion batteries. The direct open-circuit voltage
(OCV) based method is straightforward and cost-effective.
This approach works by assigning an SOC value for each
value of the battery output voltage in the open-circuit
state [2]–[4]. The most appropriate manner of applying the
OCVmethod is by using a 2D lookup table of SOC and OCV
values [5]. Generally, the OCV-based method requires a few
simple components to be implemented. However, obtaining
an accurate OCV when the battery is under operation is
not achievable for most batteries. Lithium-ion batteries need
long relaxation time to obtain an accurate OCV after discon-
necting the battery. Additionally, the OCV-based method is
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profoundly affected by the aging process of the battery [6].
The current integrating (Coulomb counting) method can be
used to calculate the descent or growth of an SOC based
on the energy transferred from or to the battery [7], [8].
This method works efficiently for online SOC estimation.
However, estimation errors can occur due to measurement
noise and battery self-discharging, especially during a long
battery rest [9]. Furthermore, this approach requires know-
ing both the initial SOC at each operation and the state
of health (SOH) to update the current capacity of the bat-
tery [10]. Estimating the SOC based on measuring the chem-
ical impedance by means of applying an AC current through
the battery at different frequencies is an efficient method
that is more precise than both previous methods [11], [12].
However, this method is not universal and not easily used
in online applications. Intelligent algorithm-based SOC esti-
mation methods (i.e., artificial neural networks ANNs and
neuro-fuzzy networks) have been proposed in [13]–[15].
These methods require intensive training offline to be appro-
priately used online. Indirect model comparison-based meth-
ods are considered the most practical methods to estimate
an accurate SOC. These methods calculate and mitigate the
error of SOC estimation by comparing the output parameters
of the original battery to a designed battery model via a PI
controller, Lagrange multiplier, or Kalman filter configura-
tion [16]–[18]. The method complexity and the difficulty of
obtaining a realistic model for the battery are two vulnera-
bilities of this method. Hence, finding a precise and straight-
forward model is a vital issue that demands the model-based
method be utilized for estimating the SOC broadly [19]–[23].
A recent trend to estimate the correct SOC that utilizes the
hybrid combination of two or more of the previous estimation
methods was proposed in [6], [24]. This trend ensures high
accuracy at different operating conditions; however, some
restrictions arise in the use of this method, such as low relia-
bility and high processing burden due to the simultaneous use
of multiple estimation techniques [25]. In general, three main
aspects must be considered to improve the SOC estimation of
lithium-ion batteries, the precision of current and voltage sen-
sors, the reality of the battery model to match the original bat-
tery under different operating conditions, and the accuracy of
capacity estimation. Estimating the capacity is a fundamental
step for the dynamic process of accurate SOC assessment.
Additionally, knowing the degraded capacity aids in defining
the SOH of the battery. The differential capacity rate (dQ/dV)
has been used for detecting the aging process and assessing
the degraded capacity in [26]–[28]. As this rate changes
with the energy capability of the battery for a specific SOC
range, this approach is considered one of the most effective
techniques for capacity estimation. Such an approach uses
curve fitting and regression techniques to define the peak of
the dQ/dV curve, which is used to assess the current capacity.
A shortcoming of this method is related to the need for the
dQ/dV curve of the used battery, which may be attained via
a supplemental and time-consuming analytical process such
as cyclic voltammetry. Other studies have used the direct

Coulomb counting method to estimate the capacity degrada-
tion with the aid of a Kalman filter, forming a model-based
estimating structure [29], [30]. First, the capacity is measured
by integrating the discharging current for a specific period
due to the corresponding change in SOC (1SOC). Second,
a Kalman filter is applied to extract the measurement noise
and track the actual capacity. Regardless of increasing the
complexity by adding an extra Kalman filter, these methods
necessitate the availability of the correct 1SOC or at least
a 1SOC with a tiny error that can be minimized due to the
closed loop of two observers because the SOC itself relays
primarily on the estimated capacity. Another approach has
utilized the direct Coulomb counting technique supported by
the recursive total least square (RTLS)method to calculate the
battery capacity [31], [32]. This approach requires interaction
with an algorithm to detect the capacity loss (e.g., observing
the charging-time shortness).

To this end, we believe that the mentioned methods for
estimating both the SOC and capacity of lithium-ion batteries
have involved a tradeoff between the estimation accuracy
and complexities of both design and computation. This paper
aims to address two of the aforementioned aspects to enhance
the SOC estimation for the lithium-ion batteries potentially
used in EVs, namely, the batterymodel precision and capacity
estimation accuracy. A precise lithium-ion battery model is
developed that considered the effects of operating temper-
ature, aging process, and self-discharge. The model takes
into account the research gaps in the literature to enhance
the estimation accuracy with avoiding design complexity and
reducing the computational burden. The proposed model is
supported by a new approach to estimate the capacity degra-
dation that utilizes, in a closed-loop manner, both voltage
decay and measured capacity via Columb counting. Later,
a sensitivity analysis is conducted to determine which param-
eters of the proposed model have severe impacts on state
estimation. The proposed model and capacity estimation can
be used with different state observers (e.g., any of Kalman
filters family or particle filter (PF)) to estimate the SOC accu-
rately. However, the extended Kalman filter (EKF) is chosen
among other types of filters because it deals effectively with
slightly nonlinear systems compared to the basic Kalman fil-
ter. Additionally, the EKF obtains a better match to this prob-
lem compared to the PF and other types of nonlinear Kalman
filters in considering both computational cost and simplicity
aspects, as will be outlined in Section III. Two adjustable
parameters affect the estimation performance of EKF; the
measurement noise covariance (R) and the process noise
covariance (Q). R can be set by attaining multiple measures
from the sensor due to a constant input and then discounting
the mean value so that the noise covariance can be acquired.
Q can be set intuitively or by the trial and error method, which
is tedious and inaccurate; this can lead to filtering divergence
over a long operating time, especially when R is set relatively
small [33]. Thus, several optimization algorithms are applied
to attain the optimal vector of Q that ensures precise esti-
mation, such as the genetic algorithm (GA) [34], differential
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evolution (DE) [35], and biogeography-based optimization
(BBO) [36]. However, none was applied to tune observers
for battery states estimation. In this paper, particle swarm
optimization (PSO) is used to optimize the Q vector and
enhance the performance of the EKF because it is consid-
ered faster in convergence and relatively simple [37]. PSO is
applied to determine the optimal Q through a fitness function
that reduces the estimation error covariance (P) of the EKF.
Finally, the effectiveness of the proposed approach is verified
via simulation results in the MATLAB/Simulink environ-
ment. Taking into account the mentioned points, the main
contributions of this paper are as follows:

1) Propose an enhanced lithium-ion battery model to esti-
mate the SOC that addresses the effects of operating
temperature, aging process, and self-discharge.

2) Introduce a new and straightforward approach to esti-
mate the degraded capacity of the battery, which sup-
ports the SOC estimation.

3) Present a modification in the use of the extended
Kalman filter by exploiting PSO to optimize the vector
of process noise covariance.

4) Conduct a sensitivity analysis to assign the sensitive
model parameters that need to be tuned carefully to
ensure model accuracy.

The remaining of the paper has organized as follows:
Section II describes the standard lithium-ion battery mod-
els along with detailing the proposed model. In Section III,
the use of the EKF to estimate the SOC of lithium-ion batter-
ies is presented along with clarifying the reason to consider
the EKF a preferred choice for this problem. This section also
comprises the optimization of the process noise covariance
via PSO to support the precise SOC estimation. Section IV
presents both the parameterization process to set the optimal
model parameters and the sensitivity analysis to assign the
sensitive parameters and their influence on state estimation.
SectionV covers case study scenarios, their results, study lim-
itations, and performance discussion that involves the accu-
racy and computational complexity. Whereas the proposed
work has concluded in Section VI.

II. ENHANCED BATTERY MODEL
A. MODEL STRUCTURE
Researchers have proposed and employed several models
for lithium-ion batteries that emulate the operational
behavior. In general, the models fall into two types; the first
uses the electrochemical characteristics of the lithium-ion
cell [9], [38].

This type uses equations to describe the electrochemical
reactions in lithium-ion batteries, such as intercalations,
diffusions, and migrations. The application complexity, the
necessity for specialized experience in chemistry, and the
need for particular modeling for each type of lithium-ion
battery make utilizing this model inconvenient. The second
type is equivalent circuit-based modeling. Table 1 shows the
most common equivalent circuit models for SOC estima-
tion and battery management systems (BMSs). The use of

TABLE 1. Types of Lithium-ion battery equivalent circuit-based models.

voltage sources in all presented models is associated with the
open-circuit potential. The series resistor is used to mimic
the internal electrochemical resistivity and ionic conductivity
of the battery, whereas the parallel set of resistor and capac-
itor is used to emulate the hysteresis effect or the delayed
response of theOCV in both charging and dischargingmodes.
Nevertheless, increasing the number of parallel capaci-
tors will raise the computational challenge and increase
the number of tuned parameters. Therefore, the basic
resistance-capacitance (RC) model is used as the elementary
model in this paper. The parameterization of the proposed
RC model will be described in Section IV. The SOC can be
formulated by its conventional definition as [19]:

SOC = SOC0 −

∫
idt

Qact
(1)

where SOC0, Qact , and i are the initial value of the SOC,
the actual capacity of the battery, and the current of the bat-
tery, which is positive in the discharging mode and negative
in the charging mode. The potential difference between the
terminals of RC components in the proposed RC model can
be clarified as:

VC =
(
i− C

dVC
dt

)
R1 (2)

The dynamic equations of the battery model can be defined
as:

V̇C =
1
C
I −

1
R1C

VC (3)

˙SOC = −
1

3600Qact
I (4)

Vt = VOC − VC − Rint I (5)

The temperature influence is added to the battery model,
as shown in Fig. 1-b. The thermal model in Fig. 1-b refers to a
heat exchange block that generates the temperature supposed
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FIGURE 1. Lithium-ion battery: (a) Proposed battery model, (b) Proposed
internal resistance model.

to achieve from the thermal sensor, which relies primarily
on ambient temperature (Tambient ) and wasted power in the
internal resistance (Ploss), where Ploss = Rint I2. The output
temperature (T ) can be given by solving the heat equilibrium
equation [42]:

CP
dT
dt
= Ploss −

T − Tambient
RT

(6)

where CP and RT are the specific heat capacity and thermal
resistance, respectively. Taking the Laplace transform for (6)
gives

T =
RTPloss + Tambient

1+ CPRT s
(7)

The self-discharge is mainly dependent on the off-period
during the rest time and the internal temperature. Thus, the
self-discharge is considered by means of inserting a large
resistor (Rself ) in parallel with the battery cell, and thus a
minimal current will pass through it at the resting stage.

The proposed model thus considers the aging effect of the
lithium-ion battery. Different reasons lie behind the aging
process, such as the active mass loss, cyclable lithium con-
sumption, and size increment of the surface layer. All these
reasons contribute in one way or another to the proportional
growth of electrochemical resistance [31]. Thus, to compile
the aging effect, a slight increment in the internal resistance
needs to be added correspondingly. This increment is deter-
mined based on the difference between the manufacturing
capacity and the estimated capacity at each operating cycle.
Therefore, a simple loop of a proportional controller is added
to the initial internal resistance with a relatively small propor-
tional gain (Ra) as:

Rint = R0 + Ra(Qinit − Qest ) (8)

where Qinit , Qest , and R0 are the manufacturing capacity,
the estimated capacity, and the initial internal resistance of
the battery, respectively. R0 is built as a function of the battery
temperature and SOC and formed via a lookup table. Ra can
be tuned when other variables in (8) are known for particular
temperatures and SOCs. For specific temperature and SOC,
the actual Rint is considered the ohmic internal resistance
of the battery, which can be measured via the AC current
injection method.

B. DEGRADED CAPACITY MODEL
Currently, there are several methods used to recharge lithium-
ion batteries. Among these methods, constant current–
constant voltage (CCCV) and multistage constant current
(MSCC) are the most common, and they are considered
references for further modifications [43]. Fig. 2 describes
the typical voltage-current profiles of both methods. In this
work, the MSCC method is employed because it requires a
shorter charging time, and it can reach full capacity even at
low temperatures [1]. In MSCC charging, a large constant
current (e.g., 1 C-rate) is applied at the beginning to charge
more than half of the capacity. When the voltage reaches
a maximum limit, the constant current moves to a lower
level according to the number of stages. Each stage ends
when the voltage reaches the same maximum limit to avoid
cell damage. In general, considering both the MSCC and
CCCV methods, the charging current decreases gradually
when the battery is nearly fully charged. At the same time,
the maximum voltage of the battery for the current cycle can
be attained.

FIGURE 2. Voltage-current profiles during the charging mode of
Lithium-ion batteries.

The basic concept of modeling the current capacity in
this paper is straightforward as it relies on the available
information from the charging mode at each cycle. Given
that a slight decay in the battery maximum voltage (Vmax)
occurs during the natural degradation of capacity due to the
increment in internal resistance, which results in reducing
the power density [44]. Therefore, if Vmax can be measured
accurately at the end of the charging mode, the rate of degra-
dation in the capacity can be modeled. Taking into account
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five stages of MSCC with currents of 1, 0.5, 0.4, 0.3, and
0.2 of the nominal charging current (Inom), respectively. At the
beginning of stage 5, when the charging current becomes
0.2 of Inom, Vmax can be measured (see Fig. 2). At stage 5,
dV/dt is the smallest, and even if it is not zero, the voltage
growth at this stage is temporary due to the charging current,
and it will fade when the charging current is cut off at the
full charge. The acquired Vmax in stage 5, after noise extrac-
tion via a low-pass filter (LPF), is considered as the current
Vmax of the particular cycle. The modeled degraded capacity
(Qmodel) of the battery can be defined as a function of the
current Vmax at each cycle in (9). To ensure that the modeled
capacity is converging to the actual capacity, a recalibration is
needed based on the measured capacity by charging-current
integration in stage 4. The measured capacity between the
beginning SOC (SOCb) and ending SOC (SOCe) at stage
4 is defined in (11). Eventually, both modeled and measured
capacities participate in estimating the current capacity of
the battery via a PI-based closed-loop compensator, as given
in (12). Because a very slight capacity loss occurs during
each cycle, when the charging process ends before stage 5,
Vmax can be considered the same as the previous cycle.

Qmodel = Qinit
(
Vm
/
Vmax(manf )

)
(9)

Vm =
ωc

ωc + s
Vmax (10)

Qmeas =
I

s(SOCe − SOCb)
(11)

Qest = Qmodel +
(
Kp +

Ki
s

)
(Qmodel − Qmeas) (12)

where Vmax(manf ), Vm, ωc, Kp, and Ki are the manufacturing
value of the maximum battery voltage, the maximum voltage
of the current cycle after passing through an LPF, the cutoff
frequency of LPF (i.e., 10 rad/s), the PI proportional gain (i.e.,
0.43 × 10−3), and the PI integral gain (i.e., 0.08 × 10−3),
respectively.

Note that the PI proportional and integral gains are tuned
via the trial and error method with several iterations since
the capacity convergence can be easily observed during
gains tuning. The newly estimated capacity will be set dur-
ing the transition between charging and discharging modes.
A schematic diagram to clarify the procedure of capacity
estimation is depicted in Fig. 3. The estimated capacity will
be used to determine Rint and replace Qact in (1) in order
to estimate the SOC. The suggested battery model ensures
that the internal resistance, terminal voltage, and capacity will
be influenced in accordance with temperature change, which
emulates battery performance under a real-world scenario.

III. IMPLEMENTING THE OPTIMIZED EXTENDED
KALMAN FILTER
Fig. 4 clarifies the typical structure for SOC estimation in
model-based methods. In general, all model-based methods
are feedback-based state observers where the SOC repre-
sents the deduced state of the system based on the available
knowledge of measurements and the known dynamics of the

FIGURE 3. Schematic diagram of the capacity estimation procedure.

FIGURE 4. Typical structure for model-based SOC estimation approach.

system. One of the suggested observers for this issue is the
PI observer, which is applied in [20], [21]. Regardless of the
simplicity of PI structure and the low cost of implementation,
the PI observer estimates the state of a linear system. For a
nonlinear system, an additional technique may need to be
implemented to decompose the nonlinear system to several
linear subsystems, and that may require adaptive PI gains.
Given that the battery model has some randomness, including
the process and measurement noises, the system state of
the battery can be considered stochastic. A Kalman filter is
primarily designed for stochastic systems, and thus it is more
applicable for such estimation issues [45], [46]. However,
the basic Kalman filter assumes a Gaussian distribution that
should come from a linear function. In a lithium-ion battery,
the relation between the output terminal voltage and the SOC
is nonlinear, and thus the distribution may not be Gaussian.
In this case, the basic Kalman filter may not appropriately
estimate the system state. Development in the application
of the linear Kalman filter has been proposed by locally
linearizing the battery model using a piecewise linearization
method [17], [18]. This approach necessitates the number of
breaking intervals for piecewise linearization to be small in

208326 VOLUME 8, 2020



R. M. Imran et al.: Enhanced Lithium-Ion Battery Model for Estimating the State of Charge and Degraded Capacity

order to avoid a heavy computational burden. As a result, with
a minor error in the initial state, the combination of locally
linearized Kalman filter (LLKF) works perfectly. Consider-
ing a significant error in the initial state, the LLKF takes a
longer time to minimize the error and reach the actual state
estimate, which will be proved in the Results section. The
EKF and unscented Kalman filter (UKF) are the developed
versions of the Kalman filter, these can be used for nonlinear
systems [22], [23], [39]. The UKF creates a new distribution
for the nonlinear function based on weighted points called
sigma points (σ ). The new sigma points form a new mean
that makes a new Gaussian distribution. The main drawback
of using the UKF is the need to accurately propagate a
large number of sigma points with their weights, which is a
costly procedure. In contrast, the advantages of the EKF are
the relative ease of implementation and low computational
cost. Both filters are implemented on embedded systems with
limited computational resources. For many systems, the Jaco-
bian matrix can be easily derived analytically, which makes
the EKF implementation straightforward. Another area of
potential advantage is the relative ease of tuning. The UKF
has at least three tuning parameters: a sigma point spread,
measurement noise, and process noise. Whereas the EKF has
only two tuning parameters (measurement noise and process
noise), these are well known from the universal Kalman filter.

The PF has been less used in SOC estimation until
recently. A PF is primarily designed for nonlinear systems
and non-Gaussian noise distribution [47]. A PF is a Monte
Carlo-based estimation algorithm that uses a set of weighted
particles (samples) to assess the posterior distributions of a
stochastic-system state. Estimation via a PF includes four
steps: initializing random particles, sampling the particles
according to the new observations, resampling the particles
based on assigned weight (negligible weight particles are
replaced by higher weight particles), and normalization of
weights to unity. A PF has four tuned parameters, namely,
the number of particles, the initial particle location, the mea-
surement noise covariance, and possibly process noise covari-
ance. A PF offers the highest accuracy and fastest response
(state update) when there are large initial state errors.
However, with a correct initial state when the estimated state
totally converges to the actual state, the accuracy of a PF is
same or even lower than both the EKF and UKF, especially in
the range of SOCwhen SOC-VOC curve is almost flat because
the weight of all samples is almost the same [48]. In terms of
processing complexity, a PF is more complex than a UKF and
requires a high-performance microcontroller to be applied
because the Monte Carlo method employs a large number
of weighted samples to form the distribution. Considering
the above comparisons and given that the nonlinearity of
SOC-VSOC relationship is slight, the use of the EKF is the
perfect choice for this state estimation issue because it works
perfectly for quasilinear (slight nonlinear) systems [49].
Table 2 shows a comparison between the aforementioned
model-based methods of SOC estimation, which is reached
according to the above discussion and previous reviews [9].

TABLE 2. Common model-based observing methods for SOC.

According to Table 2, the LLKF shares the same merits as
the EKF in terms of the low computational cost and dealing
with slight nonlinearities, except for the slow response of the
LLKF associated with a large initial state error. To depict the
superiority of the EKF over the LLKF, the performance of
both filters under different operating conditions is compared
in Section V.

Assuming that the state vector is [VC SOC]T, the system
output is Vt , the process noise is w, and the measurement
noise is v, the discretized dynamics of the nonlinear system
can be expressed in the following equations. Note that both w
and v are vectors, independent, Gaussian, and having covari-
ance matrices Q and R, respectively.

xk+1 = f (xk , uk )+ wk (13)

yk = g(xk , uk )+ vk (14)

The EKF linearizes both state function and output func-
tion around the mean of the current state estimate (x̂)
using a first-order Taylor series. The Taylor expansion for
(13) and (14) evaluated at the current state estimate (x̂) can
be expressed as:

xk+1 ≈ f (x̂k , uk )+ Ak
(
xk − x̂k

)
+ wk (15)

yk ≈ g(x̂k , uk )+ Ck
(
xk − x̂k

)
+ vk (16)

where Ak and Ck are the partial derivatives (Jacobian matri-
ces) of f (xk , uk ) and g (xk , uk ) with respect to xk and
evaluated at x̂k as:

Ak =
∂f (xk , uk )
∂xk

∣∣∣∣
xk=x̂k

(17)

Ck =
∂g(xk , uk )
∂xk

∣∣∣∣
xk=x̂k

(18)

The EKF uses the system model along with the error
between the measurement and the prediction to acquire the
next state estimate. At each time step, the operation of
the EKF can be summarized in two stages: initializing and
updating. In the initializing stage, the state estimate and the
estimation-error covariance of the previous time step can be
attained as in (19) and (20), where the notation ‘‘−’’ indicates
that the variable is considered priorly. In the updating stage,
the Kalman gain (K ) is calculated in a way that minimizes P,
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and then it is applied to find the final state estimate and to
update the current P as in (21)-(23) [22].

x̂−k = f (x̂k−1, uk−1) (19)

P−k = Ak−1Pk−1ATk−1 + Q (20)

Kk =
P−k C

T
k

CkP
−

k C
T
k + R

(21)

x̂k = x̂−k + Kk
[
yk − g(x̂

−

k , uk )
]

(22)

Pk = (I − KkCk)P
−

k (23)

Fig. 5 clarifies the mechanism of Kalman gain to reduce
the P in a loop structure. Note that R and Q are the only
adjustable terms in the loop, and they play a vital role in the
state convergence. Practically, R can be set based on multiple
measures from the sensor after applying constant inputs from
a precise power supply and taking out the mean values so
that the noise covariance can be acquired. In the simulation
scenario, R is set relatively small because only a slight sensor
noise has been added. Q can be set intuitively; however, this
may lead to filtering divergence over a long operation time,
especially when R is set relatively small [33]. Therefore,
in this paper, Q is set to be elected via a PSO algorithm
from a preset searching range. PSO is a stochastic-based opti-
mization algorithm that emulates the swarming and searching
behavior of birds [50].

FIGURE 5. The dynamic mechanism of computing Kk and Pk of the EKF.

PSO has been used for a long time and been proven effec-
tive at searching for solutions in stochastic domains and find-
ing optimums for both offline and online problems. PSO is
initialized with a population of particles at random positions
in the search space to look for the best position in the same
space. The search space in our problem is supposed to have
the best vector of the process noise covariance that satisfies
the minimum state error covariance of the EKF for a com-
prehensive scenario of battery charging and discharging. The
PSO is set to initialize with 50 random particles and to update
particle positions at each iteration, where the iteration takes
an undefined number of time samples. The PSO algorithm has
to be applied offline because it requires a number of iterations
to attain the optimal solution. Accordingly, the EKF has to

execute once at each iteration. At each iteration, each particle
updates its position and travels toward the best particle posi-
tion (Pbest) and the best global position (Gbest). Thus, the next
PSO iteration will be initialized based on the best positions.
After completing the specified number of iterations, the vec-
tor of process noise covariance [Q1,Q2] will be set to the final
Gbest vector. The performance evaluation is determined based
on the fitness function, which uses the summation of absolute
errors (SAE) formula. As the estimation-error covariance is
a 2 × 2 matrix, the fitness function will only consider the
diagonal terms in the matrix, as these are related to the main
error not the mutual error of both states (VC and SOC). The
fitness function can be formed as a definite integration for the
summation of the P diagonal terms, between the beginning
time (t1) and ending time (t2) of an iteration, as:

fitness =

t2∫
t1

|p11| + |p22| (24)

The entire PSO operation to optimize the vector of the
process noise covariance [Q1, Q2] can be illustrated in the
following steps:

Step1: Initialize random particles for the population
Step2: Evaluate the initial fitness for Q1 and Q2
Step3: Compare the evaluated fitness to the overall Pbest to

obtain the Gbest
Step4: Save the Pbest and the Gbest at each iteration
Step5: Update repeatedly particle position and velocity

according to Pbest and Gbest
Step6: Stop the algorithm after completing the specified

number of iterations
Step7: Set the Gbest vector to Q1 and Q2 of the EKF
Step8: End.

IV. MODEL PARAMETRIZATION AND SENSITIVITY
ANALYSIS
The proposed battery model has five adjustable parameters—
VOC , R0, R1, Rself , and C—as shown in Fig. 1. Each param-
eter is supposed to be configured as a lookup table with
four breakpoints for temperature (0◦C, 15◦C, 25◦C, and
40◦C) and nine breakpoints for SOC (0, 10, 25, 35, 50,
65, 75, 90, 100). The optimal parameters of the battery
model have to be assigned via the parameterization process.
The parameterization process is supposed to be repeated
four times, according to the considered temperatures. First,
a fully charged LiFePO4 lithium-ion battery is experimen-
tally exposed to a pulse discharge current of 15 A under the
four temperatures. Table 3 lists the manufacturing parameters
of the utilized LiFePO4 lithium-ion battery. Considering the
25◦C temperature as an example, the corresponding drop in
the battery output voltage and the time-dependent recovery
due to the discharge current is depicted in Fig. 6 in red.
The parametrization process sets the optimal parameters
for the battery model that can achieve a similar voltage
profile to the experimental voltage profile when applying the
same pulse current. Some studies have employed different
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TABLE 3. Parameters of the utilized Lithium-ion.

FIGURE 6. Voltage profiles during the parameterization process for the
temperature of 25◦C.

optimization methods, such as PSO and GA, to define the
optimal parameters of a lithium-ion battery model [40], [41].
This study uses a ready library in MATLAB, known as the
Simulink design optimization that utilizes multiple optimiza-
tion algorithms to assign the optimal parameters of a model.
Simulink design optimization requires a reference profile that
is mostly derived from experimental data. The experimental
voltage profile is imported intoMATLAB/ Simulink and used
as the reference profile.

By using the Simulink design optimization, the simulated
model is run many times to reduce any mismatch between
the simulated and experimental voltage profiles and find the
optimal parameters of the model from a prespecified range.
The initial and final voltage profiles are shown in Fig. 6 with
green and blue colors, respectively. Table 4 (column:
Reference values) lists a sample of the model optimal param-
eters for SOC = 50% at 25◦C.

TABLE 4. Parameter sensitivity of battery model.

Second, a sensitivity analysis is conducted to investi-
gate the effect of parameter variation on state estimation.
Conducting a sensitivity analysis contributes in focusing on

the key parameters during the tuning and preventing wast-
ing time with the nonsensitive parameters. Also, assigning
the sensitivity opens up prospects for finding correlations
between sensitive parameters and external factors in the bat-
tery, such as battery capacity, thereby increasing the flexibil-
ity of the battery model to be used for different types or sizes
of lithium-ion batteries. A common approach for sensitivity
analysis, the one factor at a time (OFAT) method, is used.
This approach tests the influence of varying each parameter
individually when the other parameters remain fixed. The
variation range comprises 21 cases, including a case for the
reference value, ten above it, and ten below it. Therefore,
the simulation is run 21 times for each of the four parameters.
The variation step of each parameter is 2.5% of its reference
value. The particular sensitivity (Si) at each case can be
derived in (25) when Ts is the number of time samples during
the entire execution, and SOCref is the estimated SOC at the
reference value of the parameter. The overall sensitivity of
each parameter (SP) can be defined in (26) withN equal to 21.

Si =
1
Ts

∫ ∣∣SOCref − SOCi| (25)

SP =
N∑
i=1

Si (26)

Table 4 describes the final parameter sensitivity results at
25◦C. The results denote a sensitivity gradient from very high
to very low. VOC primarily relies on SOC and does not have a
tangible effect due to temperature change, so it is not counted
in the sensitivity analysis. The initial internal resistor (R0),
followed by the hysteresis capacitor (C), exhibits the highest
sensitivity among the parameters. Hence, the values of these
two parameters attained in the parameterization process are
depicted in Fig. 7 to show their reliance on variations of tem-
perature and SOC. According to Fig. 7, R0 has a high depen-
dency and inverse proportionality to the temperature change.
In contrast, C has relatively less dependence on temperature
and more dependence on the SOC change. Nonetheless, both
sensitive parameters need to be assigned carefully to ensure
model accuracy.

Note that the sensitivity of the self-discharge resistor
(Rself ) is very low. Therefore, there is no need to design (Rself )
as a lookup table since the slight change due to the variation
of temperature or SOC will not affect the model accuracy.

V. RESULTS, DISCUSSION, AND LIMITATIONS
The original battery, the battery model, and the optimized
EKF have been simulated in the Simulink and Simscape
environments of MATLAB R2019b on an Intel core i7 CPU
running 64-bit Windows 10 with 8 GB of RAM.

A. VERIFICATION RESULTS
Four major scenarios are considered to show the effectiveness
of the proposed work.
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FIGURE 7. Parameter reliance on the variation of temperature and SOC:
(a) Initial internal resistance (R0), (b) Hysteresis capacitor (C).

1) SOC ESTIMATION WITH THE PROPOSED BATTERY MODEL
This case study presents a short-term SOC estimation using
the proposed battery model. The battery model is applied to
estimate the SOC using both the EKF and LLKF at tempera-
tures of 0◦C, 20◦C, and 40◦C. The LLKF approach applies
the linear Kalman filter along with the battery model for
SOC estimation. The SOC-VOC relation can be represented
as VOC = λ SOC +b [17]. To address the model nonlinear-
ity, the LLKF approach considers only the slope (λ) in the
SOC-VOC relation changes online at each local point, while
the intercept (b) is constant. Except for λ, which is multiplied
by the SOC to map the VOC , the state space matrices are
derived normally from the dynamics of the battery model in
(3)–(5). Two initial SOCs (50% and 100%) are considered for
both the LLKF and EKF, whereas the actual initial SOC of the
battery was 90%. The case study comprises discharging and
charging scenarios between SOC = 90% and SOC = 30%.
To emulate a realistic scenario in both charging and discharg-

FIGURE 8. Charge-discharge current during verification scenarios.

ing modes, the discharging current is generated randomly for
the range between 0.3 and 3 of the rated discharge current,
whereas the charging current is assigned to be a typical
MSCC current profile. Fig. 8 depicts the battery current under
charging and discharging modes for the verification scenario.

Setting an initial SOC of 50%, the results identify a signif-
icant estimation error at the beginning when using the LLKF,
as shown in Figs. 9, 10, and 11.

Additionally, the LLKF requires more execution time to
compensate the error and reach the original SOC because its
procedure comprises two phases of linearization and estima-
tion at each breaking interval. Although the error is reduced
by reducing the initial SOC error, a large initial SOC error
can be expected in any real scenario. By using the EKF
with the proposed method of capacity estimation, the aver-
age estimation error under all temperatures is minimized by
approximately 6.4% when the initial SOC is 50% and by
approximately 1.9% when the initial SOC is 100%. More-
over, by running each approach individually, the simulation
of the EKF with the proposed battery model and capacity
estimation method requires less execution time compared to
the execution time needed for the LLKF (see Figs 9-d, 9-f,
10-d, 10-f, 11-d, and 11-f). This means that the computational
cost of the proposed approach is more acceptable than that of
the LLKF.

2) BATTERY CAPACITY ESTIMATION
The proposed estimation technique of battery capacity degra-
dation is applied and compared to the method of using an
extra Kalman filter to track the actual capacity [29], [30].
The extra Kalman filter is used to eliminate the measurement
noise and estimate the actual capacity from the measured
capacity via the Coulomb counting approach when both
initial and final SOCs for all cycles are known. Two aging
conditions are considered: 90% and 100% of the initial
capacity. The comparison comprises 18 charge-discharge
cycles. Along with the obvious simplicity, the proposed
technique shows its effectiveness in estimating the current
capacity of the battery accurately. The absolute error between
the capacity values estimated by both methods is shown
in Figs. 12-c and 12-d. Considering the 100% aging condi-
tion, the error between the real capacity and the estimated
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FIGURE 9. SOC estimation for the proposed model via EKF and LLKF for temperature = 0◦C: (a) One-cycle SOC for initial SOC = 50%; (b) One-cycle
SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%, (e) Average
estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%.

FIGURE 10. SOC estimation for the proposed model via EKF and LLKF for temperature = 20◦C: (a) One-cycle SOC for initial SOC = 50%,
(b) One-cycle SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%,
(e) Average estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%.

capacity is mitigated with the proposed approach. According
to Fig. 12-e, the average absolute error of the capacity
estimation during 18 cycles is reduced to half compared to
the method using the extra Kalman filter. Considering the
90% aging condition, Fig. 12-g reflects an increment in the
average absolute error via the proposed method, which pri-
marily relates to the first cycle. The reason behind this error
increment comes from setting the new capacity at the end of
the charging mode in the proposed approach. In contrast, this
is set at the end of discharging mode in the approach using the
extra Kalman filter. By running each approach individually
and considering only the first cycle, the execution time of the

proposed estimation technique of battery capacity is reduced
by approximately 1.25s compared to the method using
the extra Kalman filter during both aging conditions (see
Fig. 12-f and Fig. 12-h). This corroborates that the imple-
mentation of the proposed approach requires comparatively
less processing resources (time and memory).

3) OUTPUT VOLTAGE ESTIMATION ERROR
In this subsection, a comparison between themeasured output
voltage and the estimated output voltage via the optimized
EKF is conducted and shown in Fig. 13. The effective esti-
mation of the optimized EKF and the proposed model can
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FIGURE 11. SOC estimation for the proposed model via EKF and LLKF for temperature = 40◦C: (a) One-cycle SOC for initial SOC = 50%,
(b) One-cycle SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%,
(e) Average estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%.

FIGURE 12. Capacity estimation by the proposed method and the method using extra Kalman filter: (a) Capacity via both methods for 100% aging
condition, (b) Capacity via both methods for 90% aging condition, (c) Absolute estimation error for 100% aging condition, (d) Absolute estimation
error for 90% aging condition, (e) Average estimation error during 18 cycles for 100% aging condition, (f) Execution time for the first cycle considering
100% aging condition, (g) Average estimation error during 12 cycles for 90% aging condition, (h) Execution time for the first cycle considering 90%
aging condition.

be measured through the capability of matching both output
voltages andminimizing the voltage-estimation error towards
zero. Fig. 13-b demonstrates the voltage estimation error that

increases during the discharging mode due to the irregular
discharge current. Even with the irregular discharge current,
the voltage estimation error lies between -0.1 V and 0.09 V
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FIGURE 13. Verifying the output voltage estimation: (a) Measured voltage
and estimated voltage via the EKF, (b) Voltage estimation error.

in the worst cases. Therefore, an estimation divergence is not
expected to occur during different operating conditions.

4) SOC ESTIMATION VIA EKF WITH UTILIZING PSO
ALGORITHM
The reference SOC of the battery is acquired by using the
Coulomb counting method with the accurate values for both
initial SOC and capacity degradation rate, and compared
with the estimated SOC via the EKF along with the pro-
posed battery model. The comparison includes 12 repeated
charge-discharge cycles, as shown in Fig. 14-a. Fig. 14-b
depicts a slight estimation error for the SOC, within 0.7%,
which verifies the excellent performance of the entire system
(EKF and battery model). However, this estimation error

FIGURE 14. Verifying the long-term SOC estimation: (a) Estimated SOC by
the optimized EKF and the real SOC, (b) SOC estimation error.

was acquired when using the optimal vector of the process
noise covariance [Q1,Q2] after completing 60 iterations. The
PSO algorithm was applied offline to optimize the vector
of the process noise covariance, and it was initialized with
50 random particles in the searching space. The algorithm
required less than 30 minutes to reach the optimal vector of
the process noise covariance. Fig. 15-a and Fig. 15-b show
the optimal values of the process noise covariance Q1 and Q2
at each iteration, respectively.

FIGURE 15. Application of PSO Algorithm to Optimize Q1 and Q2:
(a) Optimal values of Q1 at each iteration, (b) Optimal values of Q2 at
each iteration, (c) The fitness function development, (d) The accumulated
absolute error of SOC at each iteration.

Fig. 15-c shows the development of the fitness function
at each iteration, which clarifies the gradual decrement of P.
Finally, Fig. 15-d illustrates the accumulated absolute error of
the SOC during the entire time of iterations. Giving that the
algorithm is initialized with a random vector of the process
noise covariance, the fitness function, which comprises the
vector of the accumulated absolute error covariance, was
minimized to the lowest possible vector. Moreover, the accu-
mulated SOC error at the last iteration was reduced by almost
20% compared to the first iteration.

B. PERFORMANCE DISCUSSION
1) ESTIMATION ACCURACY
According to Figs. 9, 10, and 11, the SOC estimation error
for the proposed combination of the battery model and the
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optimized EKF lies between 0.5% and 1.25% for all tested
temperatures. This verifies that the proposed model has
enabled its state estimator to capture the dynamics of the
real battery even when essential parameters change due to
altered temperature. This is crucial because without careful
handling of the temperature effect, the temperature change
can influence the internal resistance directly and thereby
affect the model accuracy. In addition to the estimation accu-
racy, the optimized EKF ensures a fast response for state
updating when starting with a significant initial error. The
reason behind the fast convergence is that the optimized EKF
uses a ready-made system in which its dynamics are lin-
earized at each time sample. Hence, the state update changes
correspondingly at each time sample.Whereas the LLKF uses
a piecewise or another linearization approach, the model tra-
jectory itself is divided into several linear pieces priorly. The
slow convergence when starting with a significant error in the
initial state occurs due to the inability of the Kalman gain to
compensate for the error, especially at the end of each piece
or interval. Moreover, the results of the optimization process
depict two facts. The first fact is that the slight change in the
vector of estimation error covariance away from its optimal
values can significantly affect the estimation accuracy. There-
fore, such optimization is necessary to assign the P vector for
each particular sensor with a specific R. The second fact is
that the suggested fitness function has a strong correlation
and direct proportion with the accumulated estimation error.
Thus, the fitness function can ensure reaching the lowest
possible estimation error for the given parameters.

2) COMPUTATIONAL COMPLEXITY
Improvements in estimation algorithms for battery states
should avoid increasing the computational burden or even
reduce it. The SOC estimation approach is compared to the
LLKF approach, which shares many attributes with the EKF,
especially considering the computational burden, as shown
in Table 2. This shared property is verified via the results,
which can also be elucidated by considering the complex-
ity order of both approaches. The EKF has almost the
same typical complexity as the basic Kalman filter, which
is O(n2.376) [51]. Nonetheless, additional complexity may
come from the observation equations and process update. The
complexity of the linearized process update is O(n), while
the complexity of the observation function is nearly con-
stant [51]. The additional complexity for the EKF with dis-
counting the complexity of theKalmanfilter can be defined as
max (O(n),O(1)), which isO(n). For the LLKF, the complex-
ity of piecewise linearization should be taken into account.
Thus, the additional complexity for using the LLKF with
discounting the complexity of the Kalman filter is no less
than O(mn), where m is the breakpoints of the pieces [52].
The number of breakpoints needs to be assigned carefully
to maintain reasonable performance by balancing between
accuracy and complexity. Figs. 9, 10, and 11 interpret this
tradeoff between accuracy and computational complexity of
the LLKF in which the number of breakpoints is suitable for

a small initial error. For a significant initial error, the number
of breakpoints should be increased, which will increase the
processing time as well. Based on Figs. 9-d, 9-f, 10-d, 10-f,
11-d, and 11-f, the use of the optimized EKF reduces the
execution time for all temperatures by approximately 2 s on
average when the initial SOC is 50% and by approximately
1.3 s on average when the initial SOC is 100% compared to
the use of the LLKF. For the entire system, the computational
complexity is minimized via both the state observer and
the battery model structure, including the capacity model.
The utilized RC model requires the lowest computational
complexity in terms of model structure. For the capacity
assessment, replacing the linear model and the Kalman filter
by a comparator and PI compensator interprets reducing the
execution time by approximately 1.25 s for 100% initial aging
and by approximately 1.4 s for 90% initial aging, as shown
in Fig. 12.

C. STUDY LIMITATIONS
This study encountered some limitations that can be
addressed in the future:

1) The experimental data are achieved for a specific type
of lithium-ion battery (i.e., LiFePO4). More types may
be examined to generalize the approach further.

2) The self-discharge resistance (Rself ), which is set dur-
ing the overall parametrization procedure, needs to be
more specified and parameterized individually through
a time-consuming procedure to obtain the precise
value.

VI. CONCLUSION
This paper proposed an enhanced model for lithium-ion bat-
teries used in the precise estimation of battery SOC and
capacity. The proposed model involved several factors, such
as addressing the issue of nonlinearity introduced by the
influence of the operating temperature and adopting a simple
technique to emulate the aging process. The use of the EKF
is verified to be the perfect choice for the SOC estimation of
lithium-ion batteries since it copes with the slight nonlinearity
of SOC-VSOC and requires less computational cost compared
to other linear and nonlinear versions of the Kalman filter.
This paper proposed a modification in the use of the EKF
that exploits the PSO algorithm to optimize the vector of
process noise covariance and avoid any estimation divergence
that may occur due to accumulated errors during longtime
operation. The performance of the proposed approach for
SOC estimation is verified under different temperatures and
compared to the LLKF approach. The simulation results have
shown significant enhancement in state estimation compared
to the LLKF, especially for large errors in the initial SOC.
Concerning the degraded capacity estimation, the proposed
approach has shown its effectiveness for different aging con-
ditions. The proposed approach was also verified to be com-
putationally efficient compared to the method that uses an
additional Kalman filter for capacity estimation.
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