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ABSTRACT Due to the recent progress in Deep Neural Networks, Reinforcement Learning (RL) has become
one of the most important and useful technology. It is a learning method where a software agent interacts with
an unknown environment, selects actions, and progressively discovers the environment dynamics. RL has
been effectively applied in many important areas of real life. This article intends to provide an in-depth
introduction of the Markov Decision Process, RL and its algorithms. Moreover, we present a literature review
of the application of RL to a variety of fields, including robotics and autonomous control, communication
and networking, natural language processing, games and self-organized system, scheduling management and

configuration of resources, and computer vision.

INDEX TERMS Artificial intelligence, reinforcement learning, applications, healthcare, robotics, commu-
nication, natural language processing, computer vision, resource management, [oT.

I. INTRODUCTION
With the development in computing technology and the
inception of new intelligent algorithms, the goal of Artificial
Intelligence (AI) has become a step closer. Al is a simulated
intelligence on programmable machines and tries to mimic
the human brain. Machine Learning (ML) is a sub-field of Al,
which concerns with “the question of how to develop soft-
ware agents that improve automatically with experience” [1].

There are mainly three categories of ML.

1. Supervised learning

2. Unsupervised learning

3. Reinforcement learning

The first category i.e. supervised learning is related to
learning from a set of training data of labeled examples that
are provided by a domain expert who takes the role of the
external supervisor in the learning process. The goal is to
enable the learning agent with the capability to generalize
its responses to cases not included in the training set. Unsu-
pervised learning, instead, is related to finding hidden pat-
terns and knowledge into a dataset, without any supervision.
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Finally, Reinforcement Learning (RL) is the type of learning
guided by a specific objective. An agent learns by interacting
with an unknown environment, typically in a try-and-error
way. This is the most common way of learning for a child,
who does something and observes what it happens. The agent
receives feedback in terms of a reward (or punishment) from
the environment; then, it uses this feedback to train itself and
collect experience and knowledge about the environment.

Reinforcement Learning problems are related to learning
which is the best action to perform, situation-by-situation,
in order to maximize the aggregated reward. RL agent has
to learn a policy (i.e. a complete mapping between situations
and actions) by trying actions out without any domain expert
has told it, as in many other forms of machine learning.
Another relevant characteristic of a RL problem is that in
any situation the agent has to choose between exploiting its
current knowledge of the environment (perform an action
already tried previously in that situation) or exploring actions
never tried before in that situation.

In this paper, we present the widely used RL algorithms
in healthcare, robotics and autonomous control, communi-
cation and networking, natural language processing, games
and self-organized system, scheduling management and
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configuration of resources, IoT and computer vision. This
work aims to serve as a guideline for those who want to start
working in reinforcement learning.

The remaining document is organized as follows;
Section II gives an introduction to Markov Decision Pro-
cesses. Section III discusses several classes of RL algorithms.
Finally, we present applications of RL followed by the
conclusion.

Il. MARKOV DECISION PROCESS

Markov Decision Process (MDP), a reinterpretation of
Markov chains is used for the decision-making process in a
stochastic environment. The goal of MDP is to give the map-
ping of optimal actions for each state of an environment. MDP
based is on Markovian property which does not consider past
information and only the present matters. Prediction of the
next state is completely independent of past states. Things
or physics of the given environment are stationary, and rules
do not change. Chess is a good example where neither rules
change nor you need to remember your past moves to play
the next move. Moreover, many other applications may be
modeled as an MDP, like operation research, control theory,
statistics, games, econometrics, Al, robotics, dialogue con-
trol, optimal investments, medical tests, logistics bio-reactor
control, etc. Next, we define a few terms to completely under-
stand MDP and RL.

A. ENVIRONMENT

We need to define an environment for every RL problem.
Defining an environment means to list a set of rules i.e.
which action an agent is permitted to select, what states the
environment has, what will be the rewards or penalties.

As mentioned previously, for Reinforcement Learning you
have to define an environment. Creating an environment
essentially means defining a clear set of rules. What actions is
an agent allowed to take in this environment? What possible
states does this environment have? What are the definitions
of Rewards and Penalties?.

The Environment is the world where an agent or software
algorithm can interact or move. The input to the environment
is an agent’s action taken, current state while the environ-
ment’s output is the next state and reward. The environ-
ment can be anything that process and determines an agent’s
actions and corresponding consequences (reward, resulting
state). The environment may be a game, a healthcare setup
or a place where an agent lives.

B. STATES [S = Sp,S7,.--,Sn]

The set of states, places, positions in a given world/
environment where an agent can reach or visit is called a
state. For a controller, it can be pressure or temperature
value. For a navigating robot, the state may be a room or a
place. A State can be represented by coordinates, by simply
numbers or alphabets. the Number of states can be finite and
infinite. The non-transitioned out states or states which end
the process are called terminal states. When an agent moves
from one state to another state, it is called a visit and multiple
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visits i.e from the start state to any terminal state is known as
an episode.

C. ACTIONS [A =ay, ay, ..., an]

Actions or set of actions are anything which an agent or a
robot can imagine or allowed to do in an environment. For
example, in a grid world, an agent may go left, right, down,
up or can stay in the current state. In a single horizontal
line environment, an agent can move left or right. In general,
an agent may opt for any action that is available in a given
scenario.

D. TRANSITION MODEL

It describes the rules, dynamics or physics of the given envi-
ronment. Transition function T(s, a, s') consists of present
state, choosen action and new state. It gives probability what
will happen if you do an action in a state i.e. probability of
moving from state s (current state) to state s’ (new state) by
taking an action a and getting reward R. So the transition
model is independent of past i.e. states and action while
dependent on current state, chosen action and resulting state
(Markov property).

E. REWARD [R(s)]

The Reward function R (s) returns a numerical value that
an agent can get for being in a state after taking an action.
Rewards tell whether a state is useful or not such that agent
gets a higher reward when moving in useful states and lower
reward when moving in undesirable states. Reward acts as
feedback for an agent which can be positive or negative.
Nature or amount of reward has some effect on actions and
policy (definition of policy will be given later). Sometimes
minor changes make a big difference in agent behavior. The
cumulative future reward also called return is given as:

Ri=rnp+rnptrnps+... +reo (D

where subscript # denotes a specific time step. Here we need
to end a series of rewards instead of infinite returns. We are
more interested in episodic tasks and cumulative discounted
rewards. Episodic tasks are those which terminates after a
certain time step or when the agent reaches in a terminal state.
We may denote the long term discounted reward as a utility
of a state.

F. UTILITY FUNCTION
The agent receives a reward at every state and we can use it
to calculate the utility function of states history as defined in
equation (2).
Un = R(s0) + yR(s1) + ¥ *R(52)

+PRGs3) + .+ Y RGw) ()
y is discount factor between zero and one. The utility of a
single state is defined as follows:

Us)= Y v'Rs) 3)

t=0—o00
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Now we have two extreme values of y i.e. 0 and 1. If we set
y equal to 1 it represents a long-sighted algorithm, similar to
equation 1 and so all rewards are treated equally irrespective
of their arrival time. However, a value of y equal to 0 means a
short-sighted algorithm that gives more weight to immediate
rewards. Such algorithm ignores the impact of future reward
on total reward and only select actions that are currently best.
Up till now, we have defined an MDP framework. We con-
clude that the objective for a RL agent is to maximize its
aggregated reward by visiting desired states and avoid the
undesired states which can be achieved through policy.

G. PoLICY

A policy guides an agent which action to choose in a given
state. It is a mapping from a set of states to a corresponding
set of actions. An optimal policy gives long term optimized
reward which an agent could get in a lifetime. From policy,
one may infer a plan, but a policy is different from a plan.
A plan tells the sequence of actions from the start state to
the destination state. A policy tells what to do in whatever
situation you are in or which action is best an agent should
take in a specific state. This is due to Markovian property
which only depends on the present state. So a policy tells how
an agent should act. To find optimum policy we need to know
about Bellman equation which is presented next.

H. BELLMAN EQUATION

The famous Bellman equation invented in 1953, by Richard
Bellman has the most significant importance in solving MDP
and RL problems. The Bellman equation can be employed to
calculate utility function. It is a recursion for future expected
rewards.

U(s) = R(s) + ymax, »_T(s.a,s)U() )

I. PARTIALLY OBSERVABLE MARKOV DECISION

PROCESS (POMDP)

The POMDP is an extension of an MDP that plays an impor-
tant role when an agent cannot a make direct observation
about the underlying state. Like MDP, POMDP has proba-
bilistic transitions between a finite set of states and fellows
the Markovian property but not sure which state an agent is
in. In other words, POMDP has control over state transitions
but does not has complete control over state observability.

Ill. REINFORCEMENT LEARNING

Humans always try to improve their interaction with the
environment based on their previous experience. An artificial
agent in the RL setup tries to perform the same behavior.
As we have understood the concept of state, action, environ-
ment, reward and policy so technically we can define the goal
of an RL agent is to search an optimal policy for a given set
of states to maximize long-term reward. The general scenario
of RL working framework is shown in figure.l. The RL
being the most target-oriented branch of ML also incorporate
delayed rewards in very complex delayed responded setup
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FIGURE 1. The reinforcement learning problem [2].

where it is difficult to identify which action was beneficial
over a lot of time slots.

A. MULTI-ARMED BANDITS

The simplest case to solve by RL is multi-armed bandits
problems where each action available to an agent has some
reward based on probability distribution. For example, mul-
tiple one-armed bandits (slot or gambling machines) or one
major machine with many slots, where the target is to get
the maximum desired measure of reward over a time period
by ‘“gambling on slot-machines (or bandits)”” [3] that have
unknown and different expected outcomes. Similarly, the RL
agent also tries to obtained highest possible reward over a lot
of episodes.

B. EXPLORATION VS EXPLOITATION

A delicate balance between exploitation and exploration is
one major problem in RL which does no appear in other
machine learning algorithms. In exploitation mode, an agent
takes the best action out of already known knowledge while
in exploration, an agent may attempt stochastic action to
increase its information in order to get more reward. For
example, in a slot machine problem, you may try to find new
bandits under given probability distribution before finalizing
the best actions. But at the same time, this search for the
best choice may take you away from maximizing cumulative
reward. Similarly, in exploitation, you take the usual path to
travel from one place to another but you need to try other
possible paths for exploration.

C. VALUE FUNCTION

The state-value function and the utility function defined
before, are the same and both are used for the value of a
state. In [4] they called this term as the state-value function
or simply value function while in [5], it is referred as a utility
function. The value function of a state is represented by V (s)
and the under policy 7 is represented by V7" (s) i.e. outcome
by starting in state s and following policy 7 thereafter as given
in (5).

V(s) = (Rils1) &)

While Q7 (s, a) also known as action-value function gives
value when starting from state s by taking action a and
following & thereafter and is referred as Q-value.

Q" (s, a) = (Relss, ar) (6)
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TABLE 1. Difference between model-free methods and model based

methods.

Model-free

Model-based

1. Model free algorithms e.g. MC
Control, SARSA, Q-learning rely
on real samples from the environ-
ment and do not use generated pre-
dictions of next state and next re-
ward to alter behaviour.

2. Model-free approaches are based
on habitual conditions and learn
through trial-and-error methods.

3. Most state of the art algorithms
use model-free RL due to availabil-
ity of simulators that are able to
generate huge amounts of data.

4. The consequences of actions are
predicted by past experiences in
case of model-free approach.

5. The values and parameters of
Model-free approach change slowly
over time due to iterative updating
6. Extensive experience is required
by model-free approaches

7. Strong convergence is guaranteed
in case of model-free model.

1. Model based algorithms like DP
use the model’s predictions of the
next state and reward in order to
calculate optimal actions.

2. Model-based approaches are well
suited for goal-directed decisions
and learn through planning.

3. Model-based methods are ben-
eficial in applications where we
have strict restrictions on the sample
complexity.

4. The consequences of actions are
predicted by the structure of the
world in case of model-based ap-
proach.

5. Model-based approaches update
its values and parameters very fast

6. Computational requirements are
high in case of model-based ap-
proaches

7. Strong convergence is not guaran-
teed in case of model-based models.

Note that for the same environment, value function may
change with change in policy. The key to solve RL prob-
lems, as well as the goal of RL agent, will be to find these
value function for a specific problem. The Bellman equa-
tion for state and state-action value functions is given next
respectively.

V() = R&) + Y)_(y V() (N

Q" (s,a) = R(s)+ Y _(yQ"(s', ) ®)

IV. RL ALGORITHMS

Any of RL algorithm may be policy-based or value-based
or a combination of both i.e. actor-critic method. the RL
algorithms can also be classified as model free methods e.g.
Q-learning and model-based algorithms such as dynamic
programming, transition models and return function. In a
model-based algorithm, an agent does not rely on trials
instead it exploits already learned model. In model-based
RL, an agent can make predictions about different states and
corresponding rewards after learning.

the Model-free methods depend on trial and error to update
their experience and knowledge about the given environment
as they do not have knowledge of the transition model and
reward function. They have to learn the system dynamics
by interacting with the environment over a large number of
times. Some examples of the model free algorithms are Monte
Carlo (MC) and Temporal Difference (TD).

Table 1 presents a comparison between model-based and
model-free techniques [6]-[8] and [9]. The mutual weakness
of both approaches can be overcome by hybrid approaches
having properties of both [10], [11] and [12].
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FIGURE 2. Types of reinforcement learning algorithms http://wwwo0.cs.
ucl.ac.uk/staff/d.silver/web/Teaching_files/intro_RL.pdf.

A. DYNAMIC PROGRAMMING

Introduced by Richard Bellman, Dynamic Program-
ming (DP) is a mathematically solid technique to solve
optimization problems. The two properties of DP are opti-
mal substructure and overlapping sub-problems and MDP
satisfies these two properties. A complex and complicated
problem can be sequentially divided into simpler and smaller
subproblems. Like humans, it is also easy for a machine to
learn stepwise. So, DP searches every possible solution and
chooses one which is best at each computation. Similarly,
the aim of RL is to search for optimal policies or actions for
an agent to act optimally.

Being model-based, the DP algorithm needs the full
observable knowledge (transition model of and reward func-
tion). So, in some RL problems where the given environment
may be modeled as an MDP, DP methods (value iteration or
policy iteration) can be utilized to get optimal value function
or policy. In other words, DP may be applied for planning in
an MDP to solve either a control problem or prediction prob-
lem. Policy and value iteration algorithms are presented next.
In other words, DP may be applied for planning in an MDP
to solve either a control problem or prediction problem as
summarized in table 2. Policy and value iteration algorithms
are presented next.

TABLE 2. DP algorithms http://wwwo.cs.ucl.ac.uk/staff/d.silver/web/
Teaching_files/DP.

Problem Bellman Equation Algorithm
Prediction Bellman expectation equation Iterative policy eval-
uation
Control Bellman expectation equation Policy iteration
+ Greedy policy improvement
Control Bellman optimality equation Value iteration

1) VALUE ITERATION

It starts with a value function randomly and then by using
the Bellman equation, improve the value function recursively.
When the function reached the optimal value, then get the
policy from it i.e. the optimal policy for the given task. The
pseudo-code for Value Iteration Algorithm (VIA) as in [2] is
given in algorithm 1.
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Algorithm 1: Value Iteration Algorithm

Initialize V arbitrarily
Repeat
A<0
Foreachs € S
v < V(s)
V(s) < max, ZS/)rp(s’, rls, a)[r + yV(s)]
A <~ max(A, |v—V(s)])
until A < 6 (a small positive number)
output a deterministic policy, 77, such that
7 (s) = argmaxy ) g p(s', rls, )lr + yV(s)]

TABLE 3. Working of MC algorithms http://wwwo0.cs. ucl.ac.uk/
staff/d.silver/web/Teaching_files/DP.pdf.

First-Visit MC Policy Evaluation

Every—Visit MC Policy Evaluation

1. Increment counter when state s is
visited
first time in an episode
N(s) «— N(s)+1
2. Increment total return
S(s) «— S(s)+1
3. Estimate the value by using mean
return
V(s) = S(s)/N(s)
4. By law of large numbers
V(s) = Vm(s)as N(s) = oo

1. Increment counter when state s is
visited
every time in an episode
N(s) «— N(s)+1
2. Increment total return
S(s) «— S(s)+1
3. Estimate the value by using mean
return
V(s) = S(s)/N(s)
4. By law of large numbers
V(s) = Vm(s)as N(s) = oo

Primarily, the VIA determines the optimal state value func-
tion by improving V(s) estimation iteratively. This method
initializes V(s) to random values arbitrary. It continuously
performs updates on V(s) and Q(s, a) values function until
convergence. VIA guarantees the convergence to the optimal
values.

2) POLICY ITERATION

In the policy iteration, our target is learning of an optimal
policy by iteratively using the Bellman equation. The policy
algorithm has three steps. First, select any random policy and
perform policy evaluation. In the second step, improve the
policy by using the value function and finally repeat first two
steps until convergence. The pseudo-code for Policy Iteration
Algorithm (PIA) as in [2] is given in algorithm 2.

Algorithm 2: Policy Iteration Algorithm

1. Initialization
V(s) € Randr (s) € A(s)arbitrarilyforalls € S
2. Policy evaluation
Repeat
A <0
Foreachs € S
v < V(s)
V(s) < maxg ) g, p(s', rls, w(s)[r + yV(s")]
A <— max(A, |v—V(s)])
3. Policy imporvement
policy -stable < true
foreachs € S:
a < 7 (s)
7(s) = argmaxy ) o . p(s', rls, )lr + yV(s')]
if a # 7 (s) then policy stable < false if
policy-stable then stop and return V and r; else go to 2.

PIA manipulates the policy directly, instead of finding it
indirectly through optimal V(s) or Q(s, a). It is a method
in RL that assists in learning the optimal policy. A policy
that can maximizes the long term discounted reward. This
approach is more beneficial, where there are many options
to select from, and every choice has its own risks and
rewards.
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B. MONTE CARLO METHODS

the Monte Carlo (MC) technique utilizes randomness to solve
a problem. MC is a model free method that learns from
complete episode (no bootstrapping) using the idea of mean
return. MC approach may be divided into First-visit MC and
every-visit MC. Former is the average of the returns as given
in equation (1) by following the first visit to a state s over a
period of episodes whereas in every-visit MC, the average is
based on all visits to a state s. Pseudo codes of both algorithms
are given in table 3.

We may use the MC method for prediction and control
estimation and we say it passive and active RL respectively.
In passive RL, the goal of the agent is to learn the value
function by using a policy while in active RL, the agent
tries to find optimal policy when interacting with the given
environment. Advantages of MC methods over that of DP are
these:

-It may be applied with sample models (simulations).

-MC methods are easy to implement and for environments
with small subsets of states.

-MC finds solutions which are optima, via direct interac-
tion with the world.

The Utility and value functions in the MC method are
calculated by using equations (3) and (6) but with expectation
operator as rewritten in equations (13) and (10) respectively.

Us)=E ) 'R ©)
t=0—o00
O (s, a) = E(R;|s;, ar) (10
The True utility of state in equation (13) is guaranteed
to converge when we calculate and save returns for a large
number of times according to ’the law of large numbers”
[13]. From equation (13), we can calculate the utility of states
which may be used for prediction, but for control problem,
we need the utility of each action. The state-action value
function as given in equation (10) stores the utilities against a
specific action executed in a state. Initially, all state-action
pairs are filled the same way as evaluation in the policy
iteration algorithm and then we improve the policy greedily
as given in equation (11).

(11)

7 (s) = argmax,Q(s, a)
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It is important in MC control problems, to select start states
randomly along with actions having non zero probability.
Although, MC approaches can reach to optimal policy with-
out knowledge of transition model, reward function and given
policy but the MC methods have to wait till the completion of
an episode to update value function. This is a limitation of MC
method and solution to this limitation is Temporal Difference
methods where the update can be done after one step.

C. TEMPORAL DIFFERENCE METHODS

In the previous section, we noted a serious problem with
MC methods i.e. to wait for an update until an episode ends.
“In this section, the temporal difference method would be
discussed that is categorized a model-free RL approach and
will come to know how TD can solve this problem. TD tech-
nique learns by bootstrapping [14] from the estimation of the
present value function.

Generally, TD is employed for prediction of a quantity that
depends on the next values but in the RL problem, TD is
applied for a prediction about aggregated reward. TD is iden-
tical to DP as it does updates on the basis of current estimate
and identical to the MC technique when sampling [15]. The
generic rule for the TD method is given below:

New estimate <— Old estimate 4 « [Target — Old estimate]
(12)

On the right side of equation (12), the difference part is the
estimation error § and the target is a real value. The goal is to
reduce §. The symbol « is known as the learning rate or step
size between zero and one. The RL agent takes into account
more recent reward for « = 1 and learns nothing when o = 0.
In the last section, we calculated the utility function as the
expected return of a state as given in equation (13) and so is
the target calculated in equation (14).

Vi)=E > y'RGs) (13)
t=0—00

Target =K > y'R(s)) (14)
t=0—00

But in TD, we need to update the utility function after every
visit instead of all visits till the episode ends as we did in
MC method. However, in TD, we do not have all rewards and
have only estimated utilities and rewards at t 4+ 1. So here
comes the concept of bootstrapping by which we can get new
estimates by using estimates. We can explain this by the next
two equations as follows:

Target = E [rr+1 +y (rt+2 +yrgs+... --J/k_lrt+k+1)]
(15)
Target = E [rr41 + v U (s1+1)] (16)
So we are left with two known quantities and we can write
the final update rule as fellows:
V(se) < V(st) +olreer +yVise+1) — Viso)]
8 = rrp1 +yVisei1) — Visy)

a7
(18)
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Using equation (18), we can rewrite equation (17) as follows:

V(sy) = V(s;) + adse(sy) (19)

the TD technique in equation (17) also known as 7D(0)
waits only till next update. TD form a target immediately at
t + 1 perform an update based on current estimate V (s;41)
and observed reward r;4+1 as given in (17). To consider the
previous states we need to use eligibility traces which is short
term memory procedure to save track of visited states in
previous steps and it is defined as below:

ei(s) = yret — 1(s)
yiet — 1(s) + 1

if s # s,

if s = St

The parameter A € [0, 1] is the decay parameter and known
as the accumulating trace or trace decay. By using eligibility
traces, we may define weight to update each visited state.
We have TD(0) when A = 0 and updates are performed only
on immediately visited states while for TD(1) with A = 1,
all the visited states are updated equally. Eligibility traces
are more useful for environments with large state space and
sparse reward. a few advantages and disadvantages of MC and
TD methods are given in the table 4. Q-learning and SARSA
are popular TD methods which are being presented next.

TABLE 4. Difference between MC and TD.

MC TD

1. Learning only at the end of | 1. Learning at every step
episode

2. Only learns from complete se-
quences

3. MC only works for terminating
(episodic) environments

4. High variance, zero bias

5. Convergence, V (s) = Vn(s)
as experience = 0o

6. More effective in non-Markov en-
vironments

2. Can learn from incomplete se-
quences

3. TD works in non-terminating
(continuing) environments.

4. Low variance, some bias

5. Convergence, V' (s) = Vn(s)
as experience == 00

6. More efficient in Markov envi-
ronments

1) SARSA

State-Action-Reward-State-Action (SARSA) is introduced in
[16] as a modification of Q-learning because of resemblance
to Q-learning, Sutton in [4] called it SARSA. SARSA is
an on-line learning technique where an agent interacts with
the given environment and performs policy update based on
actions selected. The action value function Q is updated by
an error and adjustment is made by the « (learning rate) as
given in 20.

OC(st, ar) <= O(st, ag)+alri1+y OCsi+1, arr1) — OCsy, ar))
(20

The pseudo-code of SARSA is given in algorithm 3
wherein first step agent takes action and moves a step
onward and observes the reward in the second step along
with a new state and action. Then in the third step, SARSA
updates the Q function as in algorithm 3 and in the last step,
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Algorithm 3: SARSA Algorithm

Algorithm 4: Q-Learning Algorithm

1. Initialize
Q arbitrarily
Q (terminal) =0
Repeat
initialize s
choose a € € — greedy
Repeat
take action a, observe r, s’
choose a' € € — greedily
Q(ss, a;) <
OCst, ar) + alri41 + Y O(Se41, ar+1] — OCsr, ar)
s <5
a<~d
s is terminal
until convergence

the policy is updated at every visit by taking the action with
maximum Q value.

The convergence in SARSA maybe speeds up by employ-
ing eligibility traces to state-action pairs as performed
on states in TD(A). The eligibility traces are updated in
SARSA()) as given below:

er(s,a) = yret — 1(s,a)+1 ifs=s;

and a = a;

ei(s,a) = yret — 1(s,a) otherwise 21)

And the resulting update rule for the SARSA algorithm by
using trace is:

Or11(s,a) = O(s,a) + adie(s,a) forallse S (22)

Convergence in SARSA is guaranteed when all the pairs
(state-action) are observed for infinite times [5]. To consider
all states and actions, we may use €— greedy policy which
randomly takes the action with small probability € and other-
wise selects action with high values as described below:

n(s) = argmax, Q(s,a) ifo > €

a~ A(s) ifo <e

(23)

where 0 < o < 1. If the value of epsilon is high then SARSA
converges slowly as it does more exploration while with a
small value, visit of all state-action pairs is not guarantee and
this is a central exploitation-exploration dilemma in RL setup.
However, in most of the cases good choice for epsilon value
is 0.1.

2) Q-LEARNING
Q-learning is an off-policy forward learning and model TD
algorithm [17] for control. Its update rule is given as:

0 (s1,a) < Qs a) +0 [rin +ymaxQ(san | (24

Q-learning method learns to find an optimal policy by
observation which is to say off-policy learning [18]. Its
pseudo-code is given in algorithm 4.
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1. Initialize
Q arbitrarily
Q (terminal) =0
Repeat
initialize s
Repeat
choose d’ € € — greedily
take action a, observe r, s’
Q(ss, ar) <
OCsr, ar) + alri+1 + ¥y O(si+1, are1] — OCst, ar)
s <5
s is terminal
until convergence

In the Q-learning algorithm, the future action &’ is taken
using greedy policy i.e. choose an action which has maximum
Q-value of the next state. The convergence in Q-learning may
be speed up by using eligibility traces which are updated in
Q-learning(}) as follows:

ei(s,a) = Iss;dlaa; + yret — 1(s, a)
if Qi1 = maax Or—1(s1, a)
e;(s,a) = 0 otherwise (25)

Iss; is used here for identity indication. For s = s;, the I'ss;

and /aa, are equal to 1. The § for Q-learning is defined as:
85 = ri41 +r max Qr(si41, @) — Qr(sr, ar) (26)

The resulting update rule for the Q-learning algorithm by

using trace is:
Ori1(s, a) = O:(s, a) + adse(s,a) forallse S (27)

The difference between Q-learning and SARSA is shown in
table 5.

TABLE 5. Difference between Q-LEARNING and SARSA.

SARSA

1. Move one step selecting a; from
m(st)

2. Observe i1, St41, At41

3. Update the state-action function
Q(st,at)

4. Update the policy m(s¢) <«+—
argmax, Q(s¢, at)

Q-learning

1. Move one step selecting a; from
u(st)

2. Observe 1441, St+1

3. Update the state-action function
Q(st,at)

4. (optional) Update the policy
m(s¢) <— argmax, (s¢, at)

D. ACTOR-CRITIC ALGORITHM

Actor-Critic (AC) [19] is a hybrid approach based on both
policy and value function [20]. The value function is esti-
mated by critic as described by equation (28) while the pol-
icy is updated by actor based on the feedback from critic.
The AC method may be used for small as well as for
large state-action spaces. For problems having small state
and action space, the critic is estimated through Q-function
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Algorithm 5: Actor-Critic Algorithm [2]

Initialization

Rewards for state-action pairs R; 4

y =0.9

initialize s

1. select a; in s;

2. Get St4+1

3. Get Ry, 4,

4. Update state s; utility function (critic)
U(sy) <~ U(sy) + alri+1) + yUsi1)—us))

5. Update the probability of a, using error (actor)
8§ =rit1 + yU(sitn-u(s)

while the Boltzmann policy or e— greedy is used for actor
policy estimation.

VT (s') = Zn (s, a) Zp (s'ls,a) [R (s, s, a)
+yV7(s)] (@8
0" (s,a) = Zp (s'Is,a) [R(s,s",a) +yQ" (5. d)] (29

The working flow of the actor critic algorithm is given
in figure 3 and pseudo-code in algorithm 5.

o ———— T

reward action

Action

Utility S Temporal
selection

Function s differencing

P T a——

FIGURE 3. Actor-critic algorithm architecture.

State-action
function

action

The critic part of AC does estimation of the value function
which may be the Q value (action-value) or the V value
(state-value). While the actor performs updates on the pol-
icy distribution as guided by the critic (for example with
policy gradients). If both the actor and critic functions are
parameterized with NN then it is called Q Actor Critic. The
other useful variants of AC are Advantage Actor Critic (A2C)
and Asynchronous Advantage Actor Critic (A3C). These two
methods have potential applications in recent achievements
of RL.

E. BAYESIAN METHODS

Bayesian RL methods may be a natural optimization
solution to exploration-exploitation dilemma due to their
ability to capture uncertainty by probability distribution
[21]. Myopic value of information [17], policy gradient,
POMDP discretization, upper confidence bound, Bayesian
sparse sampling, BEETLE and Thompson sampling [22] are
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some of the famous methods that are used for Bayesian
approximations.

F. DEEP Q NETWORK

Deep Q-Network (DQN) is considered as the main utilizer
of Neural Network (NN) [2]. Main focus of this algorithm
was to deal with the different environmental variables hav-
ing large state space. Variable estimation is the main goal
to be addressed. The equation (30) focuses on deploying
Q-learning method for updating variables using NN.

rj+y max Q(gje1.a', 07) (30)
where, the ¢ is used for state s, while 6 is a parameter used in
the NN. RL based scenarios having high dimensional values
can be boosted up with the help of Neural Network (NN).
Newly arriving unpredicted states can be approximated with
the help of DQN. The behavior of functions based on active
values, when approximated with the help of nonlinear func-
tion provides models that are totally divergent from normal
values and behaves unstably. NN based non-linear actions can
be approximated in the same way.

Following are the issues that are directly related to such
behavior:

- Co-related sequence of data samples.

- Alteration in Q-values results into quick changes in
designed policy.

- Data switching from one location to another location is
possible.

- Back propagation of Naive Q-Learning gradient may
result into unstable solutions.

The Deep Q-Network (DQN) method is presented in
algorithm 6. Experience Replay keeps experiences which
contain action, corresponding state transitions and resulting
rewards and mini-batches are made for the update of NN.
Q value estimation requires model that has instability based
parameters. NN based Production of models results into esti-
mation of Q-value function. For this purpose, two NN are
utilized normally and named after Q-value and other is named
after target Q-Network.

Value estimation obtained from operations are almost iden-
tical to the values obtained from target Q-Network. In this
computational structure, target function based parameters are
adjusted with respect to target functions and these computa-
tional values are updated on current network during execution
of each step. Therefore, functionality of loss function can
be described as the error of squared network Q-Value and
target Q-value. As a result, fluctuation of desired operation
becomes less dramatic and provides smooth and stabilized
training.

From past few years, deep reinforcement learning has
attracted the attention of many researchers due to its abil-
ity to learn from the actions and to be able to work in
continuously changing dynamic environments [23], [24] and
[25]. Controlling a robotic manipulator like a helicopter or
playing a computer game are few applications of deep RL.
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Algorithm 6: Deep-Q Network Algorithm
Setup RM
Initialize Q(s,a)
Initialize target

repeat
Initialize sequence 51 = x| and prepocessed

sequence 67 = 0(s1)
repeat

Either choose randomly a; with probability € or
choose a; = argmax,(Q(¢(s;), a; 0))

Get rr41 and Xy 41

Se+1 = (8¢, ar, Xp41)

Gr1 = O(s141)

Store transition (¢, a;, r1+1, ¢r+1) in RM

Sample random minibatch of transitions
(¢, ar, re41, ¢r41) from RM

if episode ends at step k+1 then

Yk =Tk
else
Yk =1k +y maxy Q(@e+1,d',07)
end
Have a gradient descent step on ( yx - Q(¢x, ar,
0))
Every C steps set 0* = Q
untilt=1,T;

until Episode = 1, M

TABLE 6. Difference between deep Q learning and deep recurrent Q
learning.

Deep Q Learning

Deep Recurrent Q Learning

1. This approach cannot handle past
dependencies as agents in this net-
work cannot handle older things
than a fixed size.

2. This network is easier and faster
to train.

3. This network is not suitable for
partially observable environments
as more than one observations are
required to understand the current
state.

4. Can be used for those applica-
tions or games that require short
term planning like Traffic Light
Control.

1. This approach can memorize and
handle past dependencies.

2. This network is trickier and
slower to train.

3. It is suited to deal with partially
observable environments and can
estimate parameters in an environ-
ment like in a 3-dimensional video
game.

4.Can be used for those applications
or games that require long term
planning like 3D games.

A lot of deep reinforcement learning models have been pro-
posed, comparison of two widely used networks are given

in table 6.

V. APPLICATIONS

This section presents some important applications of rein-
forcement learning in healthcare, robotics and autonomous
control, communication and networking, natural language
processing, games and self-organized system, scheduling
management and configuration of resources, IoT and com-
puter vision.
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A. HEALTHCARE

Usage of machine learning has showed extraordinary results
in the field of health care. Researchers initially focused on
usage of machine learning algorithms to diagnose the condi-
tions or forecasting the outcomes of treatments. These tasks
are also important but determining the best treatment policy
to use for a specific patient is a challenging task and cannot
be performed using traditional approaches. Reinforcement
learning is a promising candidate for solving such problems
of health care.

Over the past years, RL has found important applications
in the healthcare sector [26]. For example, a few works on
the treatment of Epilepsy disease by using RL are: ( [27], [28]
and [29]). Cancer is a more threatening disease in human life.
Use of RL in cancer research is not new and have been used
in cancer detection, classification of tumors and diagnosis.
Many useful contribution of RL in the treatment of cancer
in recent years include: ( [30]-[35] and [36]). We have also
the seen use of RL in the treatment of schizophrenia, anemia,
and sepsis e.g. [37], ([38]-[41] and [42]) and ( [43]-[46] and
[47]) respectively.

RL and deep learning architectures have been used effec-
tively in analyzing medical images obtained from positron
emission tomography, CT scan, magnetic resonance, radio-
graphy, ultrasound, and microscope for segmentation, detec-
tion and classification. Few examples on use of RL in medical
imaging are: [48]-[54]. Moreover, ( [55]-[59] and [60])
highlight effective implementation of RL for the diagnostic
systems.

Now a days, clinicians are more keen to personalized treat-
ment of patients [61]. There are many important contributions
of RL which make personalized treatment more realistic and
gettable objective such as: ( [62]-[68] and [69]).

RL algorithms are commonly used in dialogue system and
chat-bots. Some of the good applications of RL in dialogue
systems are ( [70]-[83] and [84]). Similarly, there is potential-
ity of RL to be used in control systems. Few RL based con-
trol systems deployed in healthcare industry are: ([85]-[93]
and [94]).

The Rehabilitation process is an important part of the
treatment and we can see a few works of RL which provide
assistance in different types of rehabilitation i.e. motor reha-
bilitation ( [95], [96]; cognitive rehabilitation [97]-[99] and
gait rehabilitation [100] and [101]) respectively. RL may also
be applied for risk management the during nuclear medical
examination at hospitals [102] and healthcare examinations
centers ( [103] and [104]). Some studies using DL for cogni-
tive impaired people are found in [105] and [106].

Another critical aspect of the treatment process is the
use of medicines at home as advised by the clinician. But
post-hospitalization treatment at home may be challenging
for elderly persons and patients having cognitive or physical
disabilities which lead to medication error. In Europe, most
of the drugs taken by patients are done completely wrong,
causing the death of 195,000 per year according to a report of
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‘Cittadinanzattiva-Patient Rights Tribunal’. Recently, some
works have been presented to assist patients at home during
treatment process and minimize medication errors by using
RL and deep learning [107]-[109].

B. ROBOTICS AND AUTONOMOUS CONTROL

Many types of problems in autonomous control and
robotics may be model as reinforcement learning problem
([110]-[112] and [113]). Trial and error mechanism of
RL architecture helps a robot and control system to
autonomously learn an optimal behavior by interacting with
the environment ( [114] and [115]).

Some of the RL applications to solve robotic problems
by using model-based algorithms include ([116]-[118] and
[119]). These works were proposed to enable a robot for
the penalty kick, navigation task, vision-based mobile robot
docking task and the task of obstacle avoidance respectively.

Robotic applications using RL model free methods are
(120]-[127] and [128]). The RL method used in [120] trains a
dynamical system motor primitives for pouring water. A robot
is controlled by a human teacher to reach a task in [121].
Gaussian process regression is applied in [122], [128] and
[123] to learn grasping. a humanoid robot is enabled to learn a
pouring task in [124] and balancing a ball in a beam in [125]
respectively. The ’Brainstorner Tribots’ introduced in [126]
has won "Robocup 2006 Midsize league’ and can learn differ-
ent skills like: penalty shots, defenses, dribbling, interception,
kicking, motor speed and position control. A dog robot is
trained to learn transporting a ball in [127]. The work of [129]
solves the cart pole task in less than twenty seconds while a
visually driven block-stacking problem is learned in [130].

Soft robots have been getting significant attention in the
industrial sector in the last two decades due to their superior
efficiency and accuracy. Deep RL has been widely used for
different manipulation tasks such as: reaching, door opening,
picking and dropping ( [131]-[135]).

Deep RL has been successfully and effectively used in
soft robotic navigation to assist many control systems and
robots to perform functionality autonomously, for example,
autonomous driving tasks. Few important studies related to
use of Deep RL methods on navigation are: [136]-[144].

Moreover, balancing a two-wheel robot [145], learning
helicopter flight [146], selecting striking movements in a
table tennis [147], a robot dog learns a jumping behavior
and driving a radio-controlled car [148], setting the meta
actions for dart throwing [149] and learning of biped walk
patterns [150], [151] are all applications of RL in robotic and
autonomous control systems.

C. COMMUNICATION AND NETWORKING

Reinforcement learning, especially deep RL can be poten-
tially applied to solve many challenges and problems related
to communication and networking [152]. Modern networks
such as Unmanned Aerial Vehicle (UAV), Heterogeneous
Networks (HeNets) and Internet of Things (IoT) may be
autonomous, ad-hoc and decentralized if network entities
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i.e. UAVs, mobile users and IoT devices are able to take
autonomous decisions e.g. data rate selection, spectrum
access, base station association and transmit power control.
In recent years, deep RL has been applied in communications
and networks successfully to achieve the desired objective.

Applications of deep RL method related to interference
management and multiple radio access are analyzed in [153].
Methods to address network access and physical layer mod-
ulation problems are reviewed in [154] while [155] discuss
deep RL algorithms traffic network control. Potential uses of
deep RL in network cyber security are surveyed in [156].

Adaptive rate control, joint user association, spectrum
access and dynamic spectrum access are the important issues
which may be addressed by the use of deep RL. Deep Q
Network (DQN) architecture with Long Short-Term Mem-
ory (LSTM) [157], DQN using feed-forward neural network
[158], DQN with LSTM and actor-critic [159], DQN with
RNN and CNN [160]; and DQN with actor-critic [161] are
few examples related to the adaptive rate control issue. The
network access issue is considered in ( [162]-[170]).

A deep Q-learning method is presented in [171] for effi-
cient allocation of energy resources in green wireless net-
works. The method has also been applied for improvement
in the performance of Vehicular ad doc Networks (VN)
([172]-[174]). The same deep Q-learning technique for
VN then is generalized in [175] for smart city applications.
The two use cases of smart cities by using generalized deep
Q-learning are referred in [176] and [177]. A joint design of
computing, caching and communications in VN to minimize
cost is proposed in [178].

Caching and offloading are among the key processes of
information centering networking. Modeling, optimization
and wireless proactive caching are discussed in: [171]-[176],
[179]-[185]. Different policies using deep RL to address data
and computation offloading are proposed in: [186]-[191].

Moreover, RL algorithms may be used to protect net-
works from attacks e.g. cyber-physical attack, jamming
attack and denial of service. DQN is commonly used to
address network security issues. Few examples of DQN in
UAY, IoT and other networks are: [192]-[199]. Connectivity
preservation is another important parameter of any network.
Actor-critic method and DQN have been applied in commu-
nication networks to maintain connectivity. Few examples
on application of RL related to preserving connectivity are:
[57], [200]-[202].

In addition, few other miscellaneous applications of RL
related to communications and networking include user local-
ization ( [72], [203], [204]); direction of arrival estima-
tion [205]; data collection ( [206]-[210]); power control
([211]-[213]); signal detection [214] and traffic engineering
and routing ([214]-[221]).

D. NATURAL LANGUAGE PROCESSING

This section discusses the potential applications of reinforce-
ment learning in Natural Language Processing (NLP). NLP is
the process of extracting content out of araw and unstructured
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text. Although unsupervised learning methods are good but
they need a lot of data to acquire something meaningful and
consequently to extract the patterns out of the text. RL can be
the better method for NLP since RL based agent learns the
behavior of a trainer in a simulated world through trial and
error.

Many interesting tasks related to NLP like: text games
[222], language to program execution [223], extraction
of information [224], sentiment analysis [225], knowledge
graph reasoning [226], automatic query reformulation [227],
information retrival [228], summarization [229], [230] and
semantic parsing [231] where RL can contribute significantly.

Initially, RL was used mainly for synthetic language [232]
and small corpa [233] but advancement in representation
learning ( [234]-[236]) makes it possible to design models
that obtain knowledge from text corpa. The acquired knowl-
edge then may be integrated into subsequent decision-making
tasks. Few examples of transfer knowledge from word repre-
sentation to downstream language tasks are: [237]-[241].

The literature related to applications of RL in NLP maybe
divided into language-assisted RL and language conditional
RL [242]. In the former case, the language is used to
aid learning while the interaction with the specific lan-
guage in later case, is initiated by the task formulation at
hand itself. In some scenario, both categories may be used
together [243], [244].

Language-assisted RL then further may be categorized
into language for structuring policies and language for com-
munication knowledge. To discuss works related to the
first branch, a neural architecture for visual questions and
answers proposes by [245] is applied to RL problems in
[246] and [244]. Few other works on structuring policies are
[247]-[249] and [250] while some articles concerning the
communicating knowledge include [251], [252] and [253].

Integration of natural language in language conditional RL
is unavoidable and can be discussed as instruction following
RL agents. There is lot of work related to this specific area,
for example: [254], [254]-[260] and [261]. Furthermore,
RL agents can be used for optimization by inducing reward
with the use of instructions such as: [262]—[265] and [266].

Some of the recent works related to the text generation in
NLP are [267]-[269] and [270]. Machine translators based
on new deep learning techniques have been achieving dom-
inance over conventional machine translators. Some of the
examples of modern machine learning translators can be
found in [271]-[274] and [275].

E. AUTONOMOUS loT

The integration of autonomous control system and Internet
of Things (IoT) results in autonomous [oT (AloT) systems.
Reinforcement learning algorithms introduce ambient intelli-
gence into AloT systems through the provision of solutions
to the closed-loop tasks of processing the sensory data to
make control decisions [276]. AloT is relatively a new trend
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and it has not been studied adequately. We next present
some recent works on the applications of RL in autonomous
IoT system.

An IoT-enabled mobile robot to monitor plant health using
Q-learning and CNN based method is proposed in [277].
Q-learning based global routing agent is presented in [278]
to maintain a balance between the lifetime of the network
and overall delay. Q-learning also used for optimization of
energy consumption and the delay in [279]. AIOT systems
for energy storage management and energy trading process
are discussed in [280], [281] and ( [282]-[287]) respectively.
Some other applications of Q-learning for AIOT may be seen
in ([288]-[298]).

RL actor-critic have been widely used in AIOT systems to
learn stochastic polices mostly for continuous state or action
space problems and also for discrete state problems in few
cases. Moreover, actor-critic method may be used to train
deep RL models with fewer computational resources and
samples. Some examples on use of RL actor-critic methods
in AIOT systems are: ( [299]-[307]).

Deep Q-Networks (DQN)algorithms are most frequently
adopted in AIOT systems in recent years. A few applica-
tions of DQN and Double DQN (DDQN) in IoT commu-
nications systems are: [213], [308]-[310]and [311]; in IoT
Cloud/Fog/Edge computing are: [312]-[315] and [316]; in
autonomous IoT robotics are: [277], [317]-[319] and [320];
in IoT smart vehicles are: [174], [321] and [292] and in smart
grids are: [322]-[324] and [325] respectively.

F. COMPUTER VISION

Computer vision is an analysis of the process in which com-
puter machine gets understanding from videos and images.
More precisely, it is used for image analysis i.e. recogni-
tion, scene understanding and classification, motion analysis,
visual control and integration with natural language pro-
cessing. Image processing involves solving decision-making
tasks and some recent works are witnessed of successful use
of reinforcement learning to such problems.

Deep Q Networks attracted the attention of many
researchers for solving image processing tasks but their
usage was limited to simple applications. Introduction of
pixel-wise rewards in Reinforcement learning (PixelRL)
makes it a better choice to solve tasks like image restoration,
color enhancement and image denoising [326]. In PixelRL
approach, reinforcement learning (RL) is combined with
state-of-the-art image processing techniques like Convolu-
tional Neural Networks (CNN) to solve real-time complex
computer vision problems. Scheduling of important tasks or
finding a shortest path between two points in images are few
more examples where CNN extracts the features from images
and RL learns the optimized way to proceed and perform
scheduled task [326], [327] and [328].

Reading maps [329], face hallucination [330], view plan-
ning [331] and semantic parsing [332] are other applications
of RL in computer vision. We can also see the connection
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between generative adversarial networks, RL such as
actor critic algorithm and inverse RL in [333] and [334]
respectively.

A tree-structure RL method for sequential object search-
ing, attention aware deep RL algorithm to recognition in
video, multi agent RL for searching joint object, policy
search for detection of visual object, a hierarchical frame-
work for image classification, POMDP and deep RL methods
for motion analysis of the object, have been proposed in
[335]-[341] and [342] respectively.

G. GAMES AND SELF-ORGANIZED SYSTEMS
Reinforcement learning is playing a vital contribution in cre-
ating efficient algorithms for video games [343] and [344].
A lot of works are going on to train agents to interact with
their surroundings using automatic feature engineering to
outperform the human intelligence and achieved super intel-
ligence [345] and [346].

RL recently outperformed the human intelligence and
achieved super intelligence in strategic games [347]. These
strategical features can also be useful in self-organized sys-
tems (like cellular networks etc) to improve their perfor-
mances [348].

Reinforcement learning is revolutionizing almost every
category of games, from classic arcade games having
two-dimensional perfect information [349], [350] and [351]
to Real-time strategic games having three-dimensional
imperfect information [352], [353] and [354] from
single-agent 3D games like TORCS [355] to multi-agent
3D-games like Quake III [354].

This progress is only becoming possible due to the publicly
available research platforms [356]-[358] and [359] and com-
petitions [360] and [349] that are making a huge contribution
in the development of artificial intelligence in games.

Deep Mind of Google introduces a framework for writing
games and evaluating the performance of artificial intelli-
gence on a variety of benchmark games [361]. A software
platform, ViZDoom, is proposed in [362] for machine learn-
ing research that uses raw visual information for learning and
reduces the need of high-level information.

These platforms provide full control of the environment to
train an agent or bot for different situations. These strategical
features can also be useful in self-organized systems (like
cellular networks etc) to improve their performances [347]
and [348].

DeepMind’s StarCraft I [363] and Facebook’s TorchCraft
[364] Learning Environment respectively provide interfaces
to the StarCraft I and StarCraft real-time strategy games, pre-
senting challenges in long term planning and micromanage-
ment. To provide more flexible environments, (a). DeepMind
Lab was developed on top of the Quake III Arena first-person
shooter engine [365], (b) Microsoft’s Project Malmo exposed
an interface to the Minecraft sandbox game [366]. Both these
environments give customizable platforms in 3D environ-
ments to RL agents.
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H. SCHEDULING, MANAGEMENT AND CONFIGURATION
OF RESOURCES

Reinforcement learning plays an important role in schedul-
ing, allocation and management of limited resources ( [367],
[368] and [369]). These resources can be computational
power of processing units, available storage or network band-
width, etc. The RL algorithms are useful to configure the
network resources efficiently and to optimize the routing
capabilities. ( [370] and [371]).

Optimal resource allocation is key network capacity, sys-
tem enhancement and coverage. Resource allocation for radio
access network and space communication by using deep
Q-learning architecture are proposed in [372] and [373]
respectively. Applications of RL on the use of network slic-
ing for resource management are reviewed in [374]. Deep
Q-learning method is used in [375] for optimization of power
control at the based station which provides a better prospect
then the conventional power allocation methods e.g factional
programming [376]. A hierarchical deep RL architecture for
power management and resource allocation in cloud com-
puting is presented in [377] and the proposed method was
validated with Google cluster traces.

Efficient user scheduling in multi-user Multiple Input Mul-
tiple Output (MIMO) and massive MIMO systems are very
important for better utilization of available resources at base
station [378]-[380] and [381]. The RL policy gradient algo-
rithms studied in [382], are used for user scheduling in [383]
and for resource management of computer systems in [384]
respectively and shows superior performance. RL actor-critic
algorithm also used for scheduling in the real time data
flow processing system in [385] and [386]. Scheduling for
resource management to address multi-resource cluster with
policy gradient using deep RL proposed in [387] and the
proposed method was validated with simulation.

RL algorithms have been applied for actively detecting
localizing objects in scenes [388], multiple object searching
[389], visual tracking [390],selection of the best descriptor
out of given set of features and then choosing best classifier
from given set [391] and [392], processing of monocular
images to predict collision-free motor commands [393] and
predicting prominent features out of large scale visual fea-
tures using fast classifier [394].

I. MISCELLANEOQOUS APPLICATIONS

RL is an exciting machine learning field and the future of
applied Al in many areas. It is not only limited to only
above mentioned sectors. [395] and [396] can be use to study
education-related RL applications. Similarly, some appli-
cations related to finance and business management are:
[397]-[403] and [404]-[407] respectively.

Q-learning based applications in the small grid are [293]
and [408] and used on electric power system control and for
the decision process. RL applications addressing industrial
problems are discussed in [409] and [410]. Works of [411],
[412] and [37] discuss the role of RL related to security
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and privacy. Moreover, RL has potential uses in intelligent
transportation such as self driving cars [413], [413] and [414].

J. CHALLENGES

Reinforcement learning is showing outstanding results in
real-world scenarios, however, there are a lot of challenges
and difficulties that make implementation of reinforcement
learning difficult [110], [415], [416] and [417]. By identify-
ing the challenges and addressing the issues, more applicable
RL approaches can be developed for real-world scenarios.
Few of the challenges and difficulties are discussed below:

Efficiency of samples is an important parameter that needs
to be considered in reinforcement learning [415]. If the data
samples are limited in numbers in case of a real-world sce-
nario, the learning algorithm would have very low exploration
of the environment from training data as the information and
states are not fully covered in used samples. To handle this
issue, the efficiency of data should be good enough or a
reinforcement learning approach should be sample-efficient
to learn the environment from limited amount of data [418]
and [419].

There can be a large number of action and state spaces
in complex real-world scenarios that can make the imple-
mentation of a RL approach difficult [415] and [420].
A lot of approaches have been proposed to divide such
high-dimensional states among different candidates to reduce
the complexity of a given task [421].

Satisfying the safety guidelines is also an important con-
straint and challenge that should be considered before using
a specific decision-making algorithm or approach [415] and
[422]. Following safety constraints during the operation
phase as well as in the exploratory phase are important
for reinforcement learning approaches, so a system cannot
destroy itself or and its environment in a real-world scenario.

As mentioned earlier, non-stationary environments are
a critical issue for reinforcement learning [415]. Most of
the real-world applications have partial observability and
the complete information related to environment and con-
ditions is not available, therefore, this type of tasks is dif-
ficult to handle. Furthermore, slow response by agents in a
computationally-intensive application and system delays also
affect the realization of reinforcement learning [415].

Bias (B) and variance in RL is a significant issue that may
affect significantly the results of a learning process [423] refer
also to how well the reinforcement signal represents the actual
reward function for the given environment [424].

Let us focus on the value function (analogues considera-
tions hold for the action value function). Being v, (S;) the
actual value function, iterative methods estimate V,(S;) by
iterating the following formula:

Va(St) < Va(St) + a(Tg — Vz(Sh) (€29)

On every update, the estimate gets closer to the Target (Tg),
but there are different ways to define the Target depending on
the method adopted.
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In MC method, as discussed in section [V-B, the Target is
defined as the return G;:

T
Tg=Gi =Y YRy (32)
j=0

Therefore, the estimate of the value function is updated
at the end of the episode. In contrast, in TD methods the
Target is obtained without waiting the end of the episode,
but bootstrapping; i.e., adding the immediate reward to the
estimate of the future rewards:

Tg = Rit1 4y Va(Si41) (33)

The bias of an estimator ® of a function 6 is defined as the
difference between the estimator’s expected value E[®] and
the true value of the function being estimated. Therefore

B =E[Tg] — vz (S1) (34)

In case of MC method, this equation becomes E[G;] —
vz (Sy), butin RL v, (Sy) = E[G,] by definition, consequently,
MC method is unbiased. In contrast, in TD method, the Tar-
get depends on V(Sy4+1), which is an estimate of the value
function at time ¢ + 1, thus it is biased.

In the case of Deep RL, the value estimate is often obtained
using a deep NN, making things worse. For example, in DQN
the Q-estimates are computed using an old copy of the
network (a “target” network), that will provide ‘“‘older”
Q-estimates, with a very specific kind of bias, relating to the
belief of an outdated model.

Concerning the variance of an estimator, it measures the
noise introduced by stochastic events. In case of MC method,
the Target (i.e., Gy) is the sum of all rewards collected until
the end of the episode. It depends both on the sequence of all
actions taken and on possible actual trajectories. In particular,
taking action A; from S;, the agent may experiment differ-
ent trajectories resulting even in very different cumulative
rewards. Therefore, the variance may be high. In contrast,
in TD method the Targetrp = Ri+1 + ¥ Vz(St+1) has much
less stochastic components. Consequently, the degree of vari-
ance is minor.

Many techniques attempt to mitigate the negative effect
of too much bias or too much variance in the reward signal.
Few of them are Proximal Policy Optimization (PPO), asyn-
chronous advantage AC, trust region policy optimization,
and others [425]. MC or TD can give good performance for
simple environments but for complex environments n — step
bootstrapping can boost learning significantly at the expense
of an extra hyperparameter n.

A combination of online and offline environments is
applied for a bias-variance trade-off in [426]. Previous works
[427] and [428] have handled the issues involved in balancing
bias and variance. The most common methods are to reduce
the variance of an estimate while keeping the bias unchanged.
The baselines of these studies [427] and [428], are of the
policy gradient [429], which utilizes an actor, who defines
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the policy, and a critic, who provides a more reduced variance
reward structure to update the actor.

A DL model having high bias value oversimplifies the
model that causes a model to miss relevant information and
features, leading to high error on both training and testing
data. While, a model having high variance value does not
generalize the unseen data, causing a model to perform well
on training data but shows high error rate on testing data.
An optimal balance is required between these two values
that would never underfit or overfit the required DL model.
A number of techniques have been proposed by researchers
to estimate and control the bias-variance trade-off in a DL
model [430] and [431].

K. LESSON LEARNED

While discussing applications of RL techniques, we noted
few issues that should addressed in future. At the same time
RL methods have strong points in the development of intelli-
gent systems applications. Next we list some learned lessons.

A reward function definition is important to obtain advan-
tages of RL methods. Its choice can be non-trivial as long as it
is crucial to consider the time scale e.g. the balance between a
small immediate gain or a large future benefit and the expert
knowledge. Reward may be learned by use of IRL techniques
if trajectories of expert choices are present.

An implicit balance between exploitation i.e. select-
ing already known rewarding actions and exploration i.e.
to search new actions which may benifit more, is a major issue
for any RL algorithm especially in large states environments.
€ —Greedy, Thompson sampling [22], information gain [432]
and optimistic exploration [433] can provide solution to
exploration-exploitation dilemma.

Some problems like healthcare domain may have par-
tial observation of environments. Conventional RL methods
assume environments are fully observable i.e Markov envi-
ronments. MDP can be generalized to Partially Observable
MDP (POMDP) by restricting the available state information
as for example done in [434] and [435].

Dealing with non-stationary environments is another prob-
lems in machine learning. Conventional machine learn-
ing methods need periodic retraining to mitigate with
non-stationary environments. However, online RL techniques
can cope this issue partially and adapt the policy to a dynamic
non-stationary environment by granting some exploration,
unless the changes happen often.

In the real world, environments may be non-stationary and
demand sequential decision-making under uncertainty [436],
[437] and [438]. The non-stationary rewards and transition
probabilities make these types of applications a difficult
domain to handle. However, reinforcement learning performs
well in case of sequential decision-making under uncertainty
for example by giving more weight to recent rewards than to
long-past rewards [2], [439], [440] and [441].

Some RL methods depends on a sequential try and error
procedures that few times can be time consuming, in partic-
ular Deep RL algorithms. The scientific community recently
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has worked with the industry achieved results on this issue.
A common solution is to have different agents perform learn-
ing individually or learn separate parts of the problem and
then extract a common knowledge.

In many real-time applications, a major issue is the avail-
ability of large datasets for training. Often, the available
amount of data is not sufficient to train properly the mod-
els. However, limited amounts of real-time data can be
expanded into a large set of realistic data using state-of-
the-art techniques and networks like generative adversarial
networks (GANSs) that generate data useful for training syn-
thetically [442]-[445], and [446].

Synthetic data generation using Generative Adversarial
Networks is preferable as compared to other augmentation
techniques [447] as RL agents can be exposed to a broad
range of extreme conditions by combining both real and
synthetic data that allows the model to deal with unpredicted
rare events [442], [448] and [449]. Unlike other augmentation
techniques, GANSs also eliminate data set biases in generated
data for proper training of a machine learning model and
make synthetic data indistinguishable from real data [450]
and [451]. Others solutions are using of transfer learning
[452] for the training of a model over larger datasets and then
use a pre-trained model on small datasets.

VI. DISCUSSION

Convergence of RL methods may depend on the selection
of the hyperparameters such as example discount factor
(gamma), epsilon for exploration, eligibility traces (Lambda),
and on the sequence of averaging steps. Convergence the-
orems can find bounds for hyperparameters. More recom-
mendations on convergence may be studied in the article
“Convergence of reinforcement learning algorithms and
acceleration of learning” [453].

According to [454] “policy gradient methods perform gra-
dient ascent on the objective function, and the convergence
is guaranteed. Value-based RL algorithms, instead, minimize
the “Bellman error’ of fit but, in the worst case, it is not
guaranteed to converge in the nonlinear cases. Differently,
model-based RL techniques minimizes the error of fit and the
model is guaranteed to converge.”

RL algorithms may guarantee convergence to the optimal
policy when an agent can adequately experiment and the
given environment is Markovian. However, in multi-agent
cases, multi RL agents perform learning in a shared environ-
ment, that may not be an MDP model. Therefore, in multi
agent systems the optimal policy of an RL agent not only
depends on the environment, but also on the policies of the
other agents. This scenario arises naturally in many appli-
cations, such as: traffic light control, auctions, distributed
control, economics, telecommunications, robotics, etc. The
multi-agent RL is applied in these fields because control is
inherently decentralized or the complexity of the applica-
tions. In these systems it is crucial that RL agents are able to
find solutions by competing and/or coordinating with other
RL agents [455].
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We have been seeing the enormous growth, exciting new
techniques, breakthroughs and many real-life applications.
We expect and believe to witness even more, much faster and
efficient. As a result, this report is not complete yet regard-
ing width and depth but we have attempted to summarize
the important applications of reinforcement learning and its
variants in various fields.

In this article, we have introduced basic concepts of RL
and its algorithms in an easy and simple way. Then we
have summarized RL applications in healthcare, robotics
and autonomous control, communication and networking,
natural language processing, games and self-organized sys-
tem, scheduling management and configuration of resources,
autonomous IoT, and computer vision.

At the end, it is important to revisit the comprehensive
target of all of present articles: the development of Al,
in particular, RL based systems that are able to interact with
the given environment and learn. Interaction with the world
around is the advantage and disadvantage of RL at the same
time. Whilst having many challenges in an attempt to get
understanding of our continuously changing and complex
world, RL permits us to select how we explore it. In effect,
RL provide the agent with the ability to do experiments
to get a better understanding of the environment, enabling
the agent to learn even complex and high-level causal
relationships [456].

The availability of physics engines and high-quality visual
renderers now encourage us to move forward in this direction,
with research works that are trying to learn intuitive models
of physics in visual world [457]. Presence of challenges in
the real world will be possible, but steady development in
being done in agents that learn the fundamental principles of
the environment through interaction and action. Conceivably,
then, we are not too far away from RL based Al systems that
interact, observe, learn and act in more human-like ways in
more complex environments.

VII. CONCLUSION

Reinforcement learning provides a technically and mathemat-
ically solid solution for optimal decision making in many
challenging tasks having multi-dimensional, noisy data, com-
plex nonlinear dynamics, sequential decision procedures with
delayed rewards. This work intends to present a compre-
hensive report of RL applications to many important areas
including healthcare, robotics, communications and network-
ing, natural language processing, internet of things, computer
vision, games and scheduling.
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