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ABSTRACT The feasibility of Federated Learning (FL) is highly dependent on the training and inference
capabilities of local models, which are subject to the availability of meaningful and annotated data. The
availability of such data is in turn contingent on the tedious and time-consuming annotation job that typically
requires the manual analysis of training samples. Active Learning (AL) provides an alternative solution
allowing a Machine Learning (ML) model to automatically choose and label the data from which it learns
without involving manual inspection of each training sample. In this work, we explore how FL can benefit
from unlabelled data available at each participating client using AL. To this aim, we propose an AL-based FL
framework by employing and evaluating several AL methods in two different application domains. Through
an extensive experimentation setup, we show that AL is equally useful in federated and centralized learning
by achieving comparable results with manually labeled data using fewer samples without involving human
annotators in collecting training data. We also demonstrated that the proposed method is dataset/application
independent by evaluating the proposed method in two interesting applications, namely natural disaster
analysis and waste classification, having different properties and challenges. Promising results are obtained
on both applications resulting in comparable results against the best-case scenario where each sample
is manually analyzed and annotated (Baseline 1), and improvement of 3.1% and 4% with best methods
respectively over the training sets with irrelevant images on natural disaster and waste classification datasets
(Baseline 2).

INDEX TERMS Federated learning, deep learning, active learning, CNNs, LSTM, natural disasters, waste
classification.

I. INTRODUCTION
Federated Learning (FL) is a machine learning (ML) tech-
nique that enables collaborative training of an ML model
across multiple decentralized edge devices without sharing
their data. In recent years, FL has been widely explored in
different privacy-sensitive application domains. Apart from
several other factors, the feasibility of FL in an application
is also constrained by the availability of quality annotated
data at each participating client to properly train local models.
The process of data collection and annotation is one of the
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main bottlenecks especially in supervised ML where human
annotators are generally used to annotate training data for
an ML model [1]. To this aim, usually, a large population
is involved in a crowd-sourcing activity to manually analyze
and annotate data. The process involves two key challenges.
Firstly, each sample is needed to be carefully analyzed, which
is a tedious and time-consuming job. Secondly, the process
does not guarantee the selection of quality samples, which
are more meaningful for a model, having an impact on the
model’s performance. Active Learning (AL), a learning strat-
egy that allows a learning algorithm to interactively query an
information source to pick and label new training samples,
provides a potential solution to these challenges. On the one
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side, it allows ML algorithms to choose the data from which
it learns, and eases the annotation process on the other hand
by automatically labeling training samples from a large pool
of unlabelled samples via a model trained on a very small
manually annotated dataset.

The existing literature on FL assumes the availability of
pre-defined fixed manually labeled training set at each client.
However, in many cases, each client may have a large variety
of unlabelled data, which could be utilized in training the
local models resulting in an ultimate improvement in the
performance of the global model.

In this work, we aim to explore how unlabelled data at a
client could be exploited in an FL environment by proposing
a novel AL-based FL framework to utilize the unlabelled data
available at each client in building a global model collabo-
ratively without sharing data in a multi-stake environment.
To this aim, we employ and evaluate multiple AL methods
with different sampling and disagreement strategies. More
specifically, two pool based methods, namely (i) uncertainty
sampling and (ii) query by committee, are analyzedwith three
different sampling and disagreement strategies, respectively.

In the current implementation, as a first step to avoid com-
plexities in terms of communication and biases of learners
at each client, we keep the AL task offline where the com-
munication with the server starts once the data at each client
is annotated. On the one hand, the offline AL reduces the
communication rounds in FL by avoiding sample selection
at each communication round. On the other hand, choos-
ing and annotating training samples during FL (i.e., at each
communication rounds) may introduce complexities in the
convergence of the global model due to biases of the samples
chosen at each communication round as the global model
will be used as a learner in that case. In such a case, there
would be two main challenges. Firstly, if we keep the number
of samples to be picked at each iteration very high, there
will be higher variations in the performance of the global
model, and secondly, keeping it low will increase the number
of communication rounds. Besides these challenges, another
concern related to the so-called online active learning-based
federated learning is that it would require a higher number
of manually annotated initial training sets (i.e., seed) as we
would need to split it among all the clients to train the learner.

The proposed method is evaluated in two interesting
applications—namely, (i) natural disaster analysis in social
media images, and (ii) waste classification—in which there
is little annotated data but an abundance of unlabelled data.
Besides the novelty in the methodology, the work also
explores a different aspect of the applications compared
to the existing literature on the applications including our
previous contributions (i.e., natural disaster analysis [2]–[4]
and waste classification [5]) as detailed in Sections II, and
it is expected to provide a baseline for future work in the
domain.

The main contributions of the work can be summarized as:
• We explore the possibility of automatically labeling
training samples in FL via a novel framework for

building a global model by utilizing the unlabeled data
available at each local device.

• We evaluate the performance of two pool based AL
methods with six different sampling and disagreement
strategies in both federated and centralized learning,
where a model is trained by uploading data from all
participating parties to a server on the cloud, in two
different applications.

• We show that AL is equally beneficial in both feder-
ated and centralized learning by achieving comparable
results without involving manual annotation.

• We also show that the performance of FL could be
significantly affected in the case of the unavailability
of sufficient training samples at each client to train the
local models, however, AL could be useful in such cases
to obtain relevant samples without involving human
annotators.

The rest of the paper is organized as follows. Section II
describes the existing literature on AL, FL and both appli-
cations. Section III provides a detailed description of the
proposed methodology. Section IV provides the details of
the datasets, experimental setup, conducted experiments and
results. Section V lists the lessons learned from the exper-
iments and finally Section VI provides some concluding
remarks and future research directions.

II. RELATED WORK
In this section, we provide a survey of the existing literature
on the different aspects of the work including AL, FL, and
the two applications, namely (i) natural disaster analysis,
and (ii) waste classification, used for the evaluation of the
proposed method.

A. ACTIVE LEARNING
In literature, AL has been widely exploited for image, text,
videos, and multimedia retrieval in different application
domains [3], [6]–[9]. For instance, in our previous work [10],
an AL learning-based technique has been employed for social
events recognition in personal photo-collections where an
SVMs classifier is used as a learner to identify and anno-
tate relevant pictures in photo collections. More recently,
we also analyze the effectiveness of pool-based AL methods
in the classification of disaster-related images [11]. Sun and
Loparo [12] utilized AL for context-aware image annotation
by exploiting the associated additional information available
in the form of meta-data. In detail, four different features
namely geo-location information, time stamps, users’ tags,
and camera tags are used in clustering to categorize images
into different labeled groups. In [13], AL has been employed
in person re-identification through an AL framework namely
early AL, which annotates pairs of images instead of an
instance. As the name suggests, the framework is applied
at the early stages of the experiments when no pre-labeled
samples (i.e., reference point) are available for human anno-
tation. Ngo et al. [14] proposed an AL scheme for content-
based image retrieval where a ranking function exploiting
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SVMs scores along with another similarity measurement
between the queered image and the images in a database.
Yuan et al. [15] on the other hand propose a multi-criteria AL
scheme to automatically annotate samples for training their
CNN architecture for image classification.

AL has also been proved very effective in other chal-
lenging applications, such as the classification of hyper-
spectral images, where usually a limited number of training
samples are available to train an ML model. For instance,
Cao et al. [16] proposed a CNN-based AL framework for
the classification of hyperspectral images by firstly training
a CNN model on a smaller collection of annotated pixels,
which is then used to annotate/pick potential pixels from the
unlabelled pool. In [17], AL techniques are employed in a
fusion framework combining spatial and spectral information
for the classification of hyperspectral images. TheAL scheme
is mainly used to acquire the most relevant training samples
for the framework.

The proven performance of AL techniques in such rele-
vant and challenging applications provides a basis for our
proposed solution, and evaluation in the two applications as
detailed in Section IV-A.

B. FEDERATED LEARNING
Existing literature on FL mainly focuses on the challenges
associated with the optimization of a global model with non-
IID, unbalanced, and highly distributed data, and focuses on
ensuring privacy and communication efficiency [18]–[21].
For instance, McMahan et al. [22] proposed a global opti-
mization technique namely FedAvg to deal with the unbal-
anced and non-IID nature of data in an FL environment,
where parameters of locally trained models are combined
efficiently. To reduce the communication rounds, the frame-
work selects a fraction of clients in each iteration instead of all
participants. One of the main limitations of FedAvg is its inef-
ficacy in dealing with heterogeneous data. To cope with het-
erogeneous data sources in an FL environment, Li et al. [23]
proposed a modified version of FedAvg namely FedProx
guaranteeing convergence in heterogeneous networks. To this
aim, a proximal term has been added to the objective function
of the model to deal with the heterogeneity associated with
partial information. Smith et al. [18] proposed amulti-tasking
based learning framework namely MOCHA to analyze how
multi-tasking can cope with statistical challenges associated
with FL. In contrast to the state-of-the-art solutions, instead
of a single global model, multiple global models are trained
one for each node.

A large portion of the literature also aims at the protec-
tion of model updates. In FL, data privacy has been cate-
gorized as global and local privacy [24]. The former aims
at ensuring the privacy of the global model’s parameters
while the latter ensures that the local parameters are kept
private. In [25], a Secure Multiparty Computation (SMC)
protocol is developed to secure local model updates from the
server where the server can only aggregate the local models.

Differential privacy techniques have also been employed for
the protection of model’s updates in FL [26].

In the literature, FL has been deployed in several appli-
cations, such as sentiment analysis, monitoring, and tracking
activities of mobile users, different tasks of autonomous vehi-
cles, and healthcare [27], [28], where data is distributed at
multiple devices.

To the best of our knowledge, the literature still lacks in
solutions for utilizing unlabelled data available to clients.
We believe this is one of the interesting directions to be
explored, which may ultimately improve the performance of
the global model.

C. NATURAL DISASTER ANALYSIS
Natural disaster analysis in images from different social
media platforms is one of the interesting key applications
that recently got the attention of the multimedia and signal
processing community [3], [29]. Over the past few years,
several interesting solutions covering different aspects of
natural disaster analysis have been proposed. In [3], we pro-
vided a detailed survey of different solutions proposed for
disaster analysis in images, videos, text, and remotely sensed
data. In our previous work [4], we proposed a tool namely
‘‘Jord’’ to crawl, analyze, and filter disasters-related infor-
mation obtained from social media and satellites. Similarly,
Johnson et al. [30] analyzed Twitter data for the detection and
classification of hurricane-related images. In [31], disaster-
related images from social media are analyzed for damage
estimation.

Disaster analysis in images has also been part of the bench-
mark competition namely MediaEval for three consecutive
years since 2017, where a different aspect of natural disasters
has been analyzed each year [32], [33]. In MediaEval-2017,
2018, and 2019, the competition focused on retrieval of flood-
related content from social media, route passability analysis
in a flooded region, and multi-modal flood-level estimation
in news, respectively [32], [33]. The majority of the proposed
solutions for these tasks rely on existing pre-trained models,
such as AlexNet, GoogleNet, VggNet, and ResNet, which
are either fine-tuned on the task-specific smaller datasets
or used as feature descriptors [3]. For instance, in [34],
existing pre-trained CNNs models are used for retrieval of
disaster-related images. Similarly, in [35] multiple deep mod-
els pre-trained on Imagenet are used for the classification
of flooded and non-flooded routs in social media images.
We also contributed to the MediaEval challenge in our pre-
vious works [2], [36]. In [36], a CNN and Generative Adver-
sarial Networks (GANs) based solution has been proposed
for the detection of food-related events in social media and
satellite imagery. In [2], we proposed a deep architecture
based framework for identification passable routs after floods
in both social media and satellite imagery.

The existing work mostly focuses on a single type of
natural disaster events. For instance, all the three tasks pro-
posed in the MediaEval challenge are based on food events,
only. To the best of our knowledge, the domain lacks in a
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FIGURE 1. Block diagram of the proposed AL-based FL framework. The framework is mainly composed of two blocks, namely AL and FL where the
output of the AL block is provided as input to the FL block.

large-scale benchmark dataset covering several types of dis-
aster events, and this is one of the main motivations in the
selection of the application for the proposed framework [3].
The unavailability of annotated and the abundance of unla-
belled data available on different social media platforms
make it a better choice for the evaluation of the proposed
work. On one side, the proposed framework allows us to
overcome the unavailability of training samples issues. On the
other side, it will enable collaborative learning in a multi-
party environment without sharing their data, leading to
improved data privacy.

D. WASTE CLASSIFICATION
Waste classification is another interesting smart city appli-
cation that has been widely explored in the literature. More
recently, some interesting image-based solutions have also
been introduced for waste classification [5], [37], [38].
For instance, Adede and Wang [38] fine-tuned a pre-
trained model namely ResNet on waste materials images.
Vo et al. [39] also employed a pre-trained model namely
ResNext for classification of waste into organic, inorganic,
and medical waste. In [40], a detailed comparison of deep
learning and traditional methods have been provided. In [41],
a CNNs based framework namely ‘‘compostNet’’ is proposed
for image-based classification of meal waste. Chu et al. [42]
proposed a multilayer hybrid deep learning-based solution
for waste materials classification and recycling. On the
other hand, in our previous work [5], we employed sev-
eral fusion methods for improved waste classification, where
the fusion schemes are used to combine the capabili-
ties of the different deep models in both early and late
fusion.

The recent work in the literature shows the interest of
the computer vision and ML community in the application.
However, one of the key challenges in the domain is the
unavailability of large-scale benchmark datasets. We believe
a large collection of waste-related images could be eas-
ily obtained and the proposed framework could help in
dealing with the data annotation, without involving manual

annotation, as well as data privacy if multiple parties are
involved in the learning process.

III. METHODOLOGY
There are three main components of the framework, namely
(i) feature extraction, (ii) AL, and (iii) FL as illustrated
in Figure 1, which provides the block diagram of the pro-
posed methodology for our AL-based FL framework. The
process starts with feature extraction from input images
via an existing pre-trained deep model namely ResNet [43]
(Section III-A). Subsequently in the AL phase, a classifier
is trained on a smaller annotated training set also known
as a seed. The classifier is also known as the learner is
then used to annotate and pick unlabelled samples from a
large-scale unlabelled pool of images via different sampling
and dis-agreement strategies iteratively (Section III-B). The
AL process continues until a sufficient number of training
samples are obtained from the unlabelled pool of images.
Finally, the training samples acquired through AL are used
to train local ML models at participating clients, which are
then aggregated to form a global model (Section III-C).

A. FEATURE EXTRACTION
Since the main focus of the work is to analyze how FL can
benefit from unlabelled data available to each participating
client using AL, thus, for feature extraction, we adopted
rather a standardmethodwithout digging deeper in this aspect
of the work. To this aim, we employed ResNet pre-trained
on a large-scale ImageNet dataset [44] to extract object-level
features from the input images. Our choice of the deep model
for feature extraction is motivated by some recent works on
the both applications [5], [34], [38], [45]. It is important to
mention that the feature extraction part is independent of the
AL and FL parts so it is expected that the choice of the model
used for feature extraction will not have much impact on the
overall analysis and insights of the AL-based FL. We used
the ResNet configuration with 101 layers where features are
extracted from the last fully connected layer without any fine-
tuning and retraining.
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B. ACQUISITION OF TRAINING SAMPLES VIA AL
The basic goal of the AL phase is to acquire and label training
samples from the unlabelled pool of images available at local
devices. To this aim, we relied on pool-based AL methods
where amodel, for example, ‘‘θ’’, is used to pick and annotate
training samples from a pool of unlabelled samples namely
p = {xj}nj=1. To this aim, the model ‘‘θ’’ is initially built on a
smaller manually annotated set namely ‘‘Seed’’. We mainly
utilized two pool-based methods, namely (i) uncertainty sam-
pling and (ii) query by committee. Uncertainty sampling
methods allow a learner/model to judge the usefulness of
a sample to be picked from a pool based on uncertainty
(i.e., how much uncertain the learn is in assigning a label to
the sample). On the other hand, query by committee relies
on several hypotheses/learners in the selection of a sample,
and the decision is made based on disagreement among the
learners.

Both methods are evaluated under several sampling and
disagreement strategies. The basic motivation for the evalu-
ation of the methods under different sampling and disagree-
ment strategies is to provide a detailed comparative analysis
of the available strategies, which are expected to provide
a base-line for future work in the domain. For the uncer-
tainty sampling method three sampling strategies namely
Least confidence, Margin Sampling, and Entropy Sampling.
On the other hand, query by committee method is evaluated
under three disagreement strategies, namely Vote Entropy,
Consensus Entropy, and Max Disagreement. The sampling
and disagreement methods are described below.

• Least Confidence: This strategy picks the sample for
which the learner/model is least confident, and can be
computed using Eq. 1, where s represents the sample to
be chosen, and y′ is the most probable label.

Ulc(S) = argmax
s

1− pθ (y′|s) (1)

• Margin Sampling: It aims to pick the sample/instance
having the least difference between the probabilities of
the two most probable classes as shown in Eq. 2. Here s
is the sample to be predicted and y′1, y

′

2 are the two most
probable labels.

Ums(S) = pθ (y′1|s)− pθ (y
′

2|s) (2)

• Entropy Sampling: The strategy selects the sample with
the highest entropy as calculated by Eq. 3 where P(y|x),
UES and Y represent posterior probability, uncertainty
measure and output, respectively.

Ues(x) = −
∑
yεY

Pθ (y|x) log2 Pθ (y|x) (3)

• Vote entropy: It is a query by committee generalization
of uncertainty sampling with entropy sampling relying
on the distribution of the votes in sample selection, and
can be computed using Eq. 4. Here yi represents all
possible labels, C represents the number of committee

learners/classifiers while V (yi) shows the number of
learners/classifier predicting label y′ .

QCve(S) = argmax
s
−

∑
i

V (yi)
C

log
V (yi)
C

(4)

• Consensus entropy: Instead of vote distribution, this
method firstly computes the consensus of learn-
ers/classifiers by averaging their class probabilities. The
entropy of the consensus probability is then computed
using Eq. 5, and an instance with the highest consensus
entropy is selected.

QCce(S) =
1
C

C∑
c=1

Pθ (yi) (5)

• Maximum disagreement: The method computes each
learner/classifier’s disagreement with the consensus
probabilities and chooses the sample having maximum
disagreement for a learner.

In the AL part, as a first step, a learner is trained on the seed
(a small manually labeled) which is then used to predict labels
for the samples in an unlabelled pool of images and add them
to the seed under a criterion defined in the underlying sam-
pling and disagreement strategy. It is important to mention
that it is an iterative process where the most relevant sample
is fetched from the pool at each iteration. The process will
keep fetching samples from the pool until a stopping criterion
is met. The max number of iterations is a key parameter
to be chosen as after certain iterations the relevancy of the
selected sample will start decreasing and ALwill force to add
irrelevant samples in the training set at a certain point. To this
aim different strategies could be used to fix the number of
iterations. One of the possible solutions is to stop the process
when the accuracy of the model reaches a stable point. Our
stopping criteria are based on the max number of iterations,
which is represented as ‘‘N ’’ in the following Algorithm 1.

Algorithm 1 Acquisition/Annotation of Training Samples
via AL at Each Client
Require: Input images, learner (i.e., a classification algo-

rithm) and sampling or dis-agreement strategies for query
selection.

Ensure: Labels for samples fromunlabelled poolof images.

Step 1: Division of data into seed (an initial small
training set) and unlabelled pool of images.
for i = 1:N do
Step 2: Train learner/model on seed.
Step 3: predicting labels for the samples in the unla-
belled pool of samples and selection/queering samples
to be added in seed.

end for

C. BUILDING THE GLOBAL MODEL IN FL ENVIRONMENT
The final component of our framework is based on an
FL architecture, inspired by Federated Averaging (FedAvg)

208522 VOLUME 8, 2020



L. Ahmed et al.: Active Learning Based Federated Learning for Waste and Natural Disaster Image Classification

FIGURE 2. Block diagram of FL architecture [48]. The process starts with
the initialization of the global parameters by the servers, which are then
shared with k clients. The clients then update the parameters via training
on local data and then send it back to the server, which repeats the
process. Here ‘‘θt represents the parameters of the initial global model
while K , n, nk , θk

t , and θ(t+1) represent the total number of clients, size of
the whole data, the data size of the kth client, the parameters of the local
model trained by the kth client, and the updated parameters of the global
model at time t + 1, respectively.

algorithm [22], to build a global model by combining the
stochastic gradient descent (SGD) of the local models.
Figure 2 describes the basic architecture of the FL algorithm,
where parameters ‘θt ’’ of the global model are shared by the
server among the participating clients, which in response train
their local models on their data. After successful training,
the parameters of the local models (e.g., ‘‘θkt of the nth
client) are shared with the server to update the parameters of
the global model (i.e., ‘‘θ(t+1)’’), which repeats the process
by sharing the updated model’s parameters with the clients
again. The process continues for a certain number of com-
munication rounds.

In our case, a total of five clients participate in FL, while a
Recurrent Neural Network (RNN) namely Long short-term
memory (LSTM) has been used as the learning algorithm.
It is important to mention that LSTM is trained on the deep
features extracted with a pre-trained model namely ResNet
as described earlier. The choice of LSTM is motivated by
the fact that re-training a deep CNNs each time to update the
model in FL requires heavy computation resources at the edge
devices. Thus, the hybrid CNN-LSTM model will help to
combine the capabilities of CNNs and RNNs for better image
classification as reported in [46], [47]. Details of the LSTM
model in terms of the number of layers, number of neurons in
a layer, and other parameters are provided in Section IV-B.
For building the global model via aggregation of the local

models’ parameters, we adopted the optimization algorithms
namely FedAvg [22]. Algorithm 2 provides the pseudo-code
of FedAvg algorithm. The algorithm is divided into two parts.
The first part shows the operations on the server-side while
the second part depicts the operations made by each client.
Here θt represents the parameters of the global model while
θk K , B, E , η, nk , and n show the kth local model’s parameter,

the total number of clients, mini Batch size, the total number
of training iterations, learning rate, data size at client k, and
the size of the whole data, respectively.

Algorithm 2 Building a Federated Model via FedAvg Algo-
rithm With a Total Number of K Clients [22], [48].
Require: K , B, E , nk , n, η, and n.
Ensure: θ t global model’s parameters.

Operations on the server side:
for each communication round t = 1, 2, 3 . . . do
(i) Select a fraction of clients m = CxK where C ∈ (0,
1)
(ii) Download θt to each client k
for each client k ∈ m do

(i)Wait Client k for synchronization
(ii) Compute θt =

∑m
k=1

nk
n θ

k

end for
end for
Operations on the clients’ side (suppose client at K):
θk = θt
for each iteration 1 to E do
for batch b ∈ B do
θk = θk − η

`
Lk (θk , b)

end for
end for
return θ

Moreover, the details of the FL parameters, such as the
number of communication rounds, the total number of clients,
and the number of clients contacted per iteration, are provided
in Section IV-B.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
In this section, we provide the details of the datasets used in
both applications are provided below.

1) NATURAL DISASTER ANALYSIS
For this application, we crawled images from social media
platforms. In total, the dataset is composed of more than
7,000 natural disaster-related images from eight different
disasters, namely cyclone, drought, earthquake, floods, land-
slide, thunderstorms, snowstorms, and wildfires. Figure 3
depicts some sample images from the dataset. We divided the
dataset into training and test sets. The test set is composed
of 2,540 images while the training set contains more than
5,000 images. The training set is further divided into a smaller
manually annotated dataset also known as ‘‘Seed’’ and a
larger pool of unlabelled images. Further details of the subsets
of the training set are provided in Section IV-B.

2) WASTE CLASSIFICATION DATASET
For waste classification, we used a benchmark dataset
provided in [49]. The dataset is composed of a total
of 2,527 images from six different waste categories, namely
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FIGURE 3. Sample images from the natural disaster dataset. The dataset is composed of eight different classes.

FIGURE 4. Sample images from the waste classification dataset. The dataset is composed of six different classes.

cardboard, glass, metal, paper, plastic, and trash. Figure 4 pro-
vides sample images from the dataset. To cover different chal-
lenges, such as rotation and illumination issues, the images
are taken at different angles under different lighting con-
ditions. Similarly to natural disaster analysis applications,
the training set is further divided into ‘‘seed’’ and pool of
unlabelled images where the labels of the images are ignored.
Besides, irrelevant images are added to the unlabelled pool of
images to challenge the learner in picking relevant samples

for the training purposes. More details are provided in the
next subsection.

B. EXPERIMENTAL SETUP
To show the effectiveness of the proposed AL-based FL
framework, we conducted several experiments. On one side,
we evaluate and compare the performances of the AL meth-
ods in the FL environment against two baselines, namely
(i) Baseline 1 (i.e., manually annotated training set) and
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(ii) Baseline 2 (i.e., the one containing impurities, which
we termed as a loosely labeled set). Since the work aims
to evaluate the benefits of active learning in a federated
learning environment thus, we believe, the two baselines
seem more feasible options for comparisons instead of SoA
in both domains. The first baseline shows the best-case sce-
nario, where manually annotated training data is available,
while the second scenario represents the worst case where a
model is trained on a dataset containing a reasonable amount
of irrelevant samples. To this aim, the waste classification
dataset is synthesized by adding up-to 35 to 40% irrelevant
images in the unlabelled pool of images. On the other hand,
the natural disaster analysis application represents a more
practical scenario where the second baseline is trained on a
collection of images from social media with the correspond-
ing tags/queries without manual inspection and removal of
irrelevant images. However, for the manually annotated base-
line, all the images are manually analyzed and annotated via
crowd-sourcing.

We also aim to show how the performance of AL methods
vary when deployed in federated and centralized learning.
In addition, we analyze how the performance of a global
model is affected by clients with fewer samples. The experi-
ment setup is kept unchanged for both AL and FL throughout
the experiments. In the next subsections, we provide the
details of the experimental setup specific to AL and FL.
In Table 1, we summarize the parameter values used during
the experimentation process.

TABLE 1. Salient parameters used during experimentation.

1) ACTIVE LEARNING
The most important parameters to be set in the AL part are
the number of images/samples in ‘‘Seed’’ (i.e., the initial
training set for the learner) and the maximum number of
iterations defining the stopping criteria for AL. In practice,
the size of the seed depends on the availability of the manu-
ally annotated training samples for an application. Since the
learner is trained on the seed so the number and quality of
samples in the seed are very crucial for the performance of
the learner [50]. However, acquiring more annotated samples
for the initial training set requires human labor, thus, it shows
a trade-off between the labor required for annotation and the
performance, which is one of the main themes of AL. For
a successful AL method, it is very crucial to obtain better
results with a smaller seed. In our experiments, we started

with a total of 160 and 120 samples (20 images from each
class) in the seed for natural disaster and waste classifi-
cation applications, respectively, which are then iteratively
increased through the query selection schemes by adding the
most relevant image at each iteration. Moreover, we used a
total of 2000 and 1500 iterations for natural disaster analysis
and waste classification, respectively. It is important to men-
tion that the test and seed sets are manually annotated.

2) FEDERATED LEARNING
Similar to the AL part, a fixed experimental setup has been
used for FL throughout the experimentation. For instance,
the dataset is divided into six parts where five of them cover
the training set and are distributed among five clients in such a
way that each client gets sufficient samples from each of the
classes. The sixth part is composed of the test images only.
It is important to mention that the division of the training
set into clients is based on the fewer samples in the dataset.
The LSTM, which is used as the learning model, is composed
of two layers (containing 100 and 20 neurons, respectively),
dropout, and a classification layer. The dropout layer, which
randomly removes certain features by setting them to zero,
is used to deal with the data over-fitting issue. Some other
key parameters of the FL framework include the number
of communication rounds and clients contacted per round,
which is set with values of 50 and 5, respectively. Moreover,
to analyze the impact of variation in the number of clients
on the performance of the framework, we also experimented
with various number of clients as detailed in Section IV-C.

C. EXPERIMENTAL RESULTS
1) NATURAL DISASTER ANALYSIS IN SOCIAL MEDIA IMAGES
Figure 5a provides the experimental results of the proposed
framework under different sampling and disagreement strate-
gies in both centralized and federated learning in terms of
accuracy on the natural disaster analysis dataset. As can be
seen, no significant differences have been observed in the
performance of the AL methods under different sampling
and disagreement strategies after the maximum number of
iterations. However, during experiments, we observed signif-
icant variations in the performances of the methods under
these sampling and disagreement strategies at the initial
500 iterations. One of the possible reasons is that the perfor-
mance stabilizes after a certain number of iterations for all
of the methods. Generally query by committee methods are
observed to achieve the highest accuracy a bit sooner (i.e.,
with fewer samples) compared to uncertainty method. Since
one of the key motivations of the AL method is to obtain
higher or comparable results with fewer samples than manu-
ally annotated datasets, thus on this basis, we can say query by
committee method performed better than uncertainty method
in terms of obtaining the maximum accuracy with fewer
samples. As far as the performance of the ALmethods in cen-
tralized and federated learning environments is concerned,
interestingly the performance of the methods is comparable
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FIGURE 5. Comparison of the AL methods in Federated Learning
(#clients = 5) and Centralized Learning environments under different
sampling and disagreement strategies.

in most of the cases except query by committee with con-
sensus entropy-based disagreement scheme where the per-
formance is slightly reduced in FL compared to centralized
learning.

We also evaluate the methods in terms of other metrics,
namely precision, recall, and F-measure, which will help to
evaluate the methods in a fair way by considering the imbal-
ance classes of the dataset in generally and after deploying
the AL methods in particular, where a higher number of
samples may be obtained from the unlabelled pool for certain
classes compared to the others. As can be seen in Table 2,
a mostly similar trend has been observed in the results also
in terms of weighted precision, recall, and F-measure. In
order to better describe the variation in the performance of
the methods, we also provide the standard deviation of the
variations in the performance of methods in FL and CL
setups. The lower values of the standard deviation suggest
a lower impact on the performance in FL with an added
privacy.

2) WASTE CLASSIFICATION
Figure 5b provides experimental results of the proposed
framework on the waste classification dataset. One of the
main objectives of the experiments on the waste classifi-
cation dataset, which is slightly smaller in the number of
images, is to analyze the impact of fewer samples on the
performance in centralized and federated learning as AL
results in a further reduction in the number of training sam-
ples. Thus, it is important to analyze the feasibility of the
proposed framework on a smaller dataset. Similar to natu-
ral disaster analysis, comparable results are obtained with
AL methods using fewer training samples without involving
manual annotation in both federated and centralized learn-
ing. Similarly, there’s no clear winner among the AL meth-
ods under different sampling and disagreement strategies,
however, query by committee methods obtain the highest
accuracy with fewer samples compared to the uncertainty
methods.

In contrast to the natural disaster analysis use-case,
in waste classification, a slight reduction can be observed in
the performance of theALmethodswhen deployed in central-
ized and federated environments. One possible reason could
be the lower number of samples in the waste classification
dataset overall as well as in certain classes. For instance, trash,
cardboard, and metal classes have fewer samples. In the FL
the dataset is further divided into five subsets each allocated
to a client to train a local model where the performance of
the global model may be affected due to insufficient train-
ing for local models. In Table 2b, we provide the exper-
imental results in terms of weighted precision, recall, and
F-measure.

3) TRADE-OFF ANALYSIS BETWEEN ACCURACY
AND NUMBER OF CLIENTS
Figure 6 provides the results of our second experiment, where
we analyze the trade-off between the number of clients and
the accuracy of the global model in FL. The main motivation
of the experiment is to analyze how increasing the number
of clients affect the performance of the global model. To this
aim, we experimented with the manually annotated training
set. We started with two clients, where the total available
training samples are distributed between two clients, and
increased the number of clients, iteratively. As depicted in
the figure, a significant reduction has been observed in the
performance on both datasets. At the initial stages with fewer
clients, the accuracy is stable on both datasets, however, it is
reduced more rapidly when the number of clients increases
resulting in a significant reduction in the number of train-
ing samples at each client. Compared to natural disaster
analysis use-case, the reduction in the accuracy of waste
classification is slightly on a higher side due to the fewer
training samples in the dataset. This experiment provides a
basis for our third experiment, where we analyze the impact
on the accuracy by extending the training set at each client
via AL.
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TABLE 2. Comparison of the AL methods in Federated Learning (#clients = 5) and Centralized Learning environments under different sampling and
disagreement strategies in terms of weighted precision, recall, and F1-score.

FIGURE 6. Trade-off between the number of clients and accuracy in FL. The accuracy of the global model drops as we reduce the
training samples per client by distributing the available training set among additional clients.

4) TRADE-OFF ANALYSIS BETWEEN ACCURACY AND
NUMBER OF TRAINING SAMPLES
Figure 7 represents the results of our final experiment where
we analyze the impact on the accuracy of the global model
by extending the training set of each client in FL by keeping
the number of clients constant. To this aim, we experimented
on the manually annotated training set from both datasets.
We started with a total of 1000 samples from each dataset,
which were distributed among the five clients ensuring a
sufficient number of training samples per client. We kept
extending the training set of each client by adding 50 samples
per client manually, making an increase of 250 samples in the
total number of training samples. As can be seen in Figure 7,
the performance of the model is improved each time we
increased the number of training samples. The variation is
higher at the initial stages, and the rate of increase in the

performances decreases as the number of training samples
increases per client.

5) COMPARISON AGAINST THE BASELINES
In order to show the effectiveness of the ALmethods, we also
compare the results of the AL methods against the two base-
lines in both FL and CL environments in terms of accuracy
and F-score in Table 3a and Table 3b. On natural disaster
images, in both FL and CL, comparable results have been
achieved by the model trained on training samples annotated
with the ALmethods andmanually annotated data.Moreover,
in both cases, all the AL methods obtained better results
compared to the model when trained on a loosely labeled
training set, which shows the effectiveness of the methods.
A similar trend has been observed in the waste classification
where the AL methods provide comparable results with the
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FIGURE 7. Trade-off between the number of training samples and accuracy in FL. The number of clients is fixed (i.e., 5) in this
experiment. The accuracy of the global model increases as we increase the training samples per client.

TABLE 3. Comparison against the two baselines in terms of accuracy and F1-score. (Baseline 1 represents the best case where each sample is manually
analyzed and annotated while the Baseline 2 represents a training set with irrelevant images.) Promising results are obtained by the proposed method,
outperforming Baseline 2 and comparable performance against Baseline 1 on both datasets.

baseline 1 (i.e., manually annotated dataset) while significant
improvement could be observed in terms of both evaluation
metrics over baseline 2.

In order to better highlight the changes in the performances
of the models in FL and CL we also provide a standard
deviation of the performances of the methods as well as the
difference in the performance of the individual methods when
deployed in CL and FL environments. The lower values of
the standard deviation of the performances of the individual
methods in CL and FL demonstrate the capabilities of the
FL by achieving comparable results with improved privacy.
On the other hand, slightly higher variation can be observed
in the performance of the baseline and proposed methods.
The main contributor in the variation of the performance is
the baseline 2, where the results are lower compared to the
baseline 1 and AL methods.

V. LESSONS LEARNED
The following lessons can be learned from the experimental
results.
• Comparable results could be obtained with AL using
fewer samples than the traditional passive learning.

• AL is equally beneficial in both federated and central-
ized learning environments.

• Some of the methods (or sampling/disagreement strate-
gies) achieve the highest level of performancewith fewer
samples compared to others. Thus, the number of sam-
ples required to achieve the highest accuracy should
be considered in the evaluation of AL methods/query
selection schemes.

• Stopping criteria for AL schemes is an important factor
to be considered in the success of the schemes in an
application as after a certain number of iterations the
algorithm is forced to pick less relevant samples, which
might harm the performance.

• The performance of an algorithm is not affected much
generally in FL; however, a significant amount of
training samples at each client is required to prop-
erly train the local models. Performance could be sig-
nificantly affected in the case of the unavailability
of sufficient training samples at each client to train
the local model. AL could be deployed in such cases
to obtain relevant samples without involving human
annotators.
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VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented an AL-based FL framework to
utilize unlabelled samples at clients for training local models
in two interesting applications. A detailed evaluation of two
different pool-based AL methods under several sampling
and disagreement strategies have been provided. Moreover,
we show that AL could be equally beneficial in federated and
centralized learning in general and the applications lacking
in large-scale annotated datasets. In addition, we analyze the
impact of fewer training samples at clients on the perfor-
mance of the global model. In the current implementation,
we treated AL as an offline process to automatically annotate
training samples at a client before participating in FL.

In the future, we aim to extend the framework to an online
AL by exploring how unlabelled data can be incorporated in
training local models during different communication rounds
of FL, which seems a more challenging task due to several
reasons. In such a case, there would be two main challenges.
Firstly, if we keep the number of samples to be picked at
each iteration very high, there will be higher variations in
the performance of the global model, and on the other hand,
keeping it low will increase the number of communication
rounds.
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